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Preface

In this monograph we study the properties of solutions of the Navier—Stokes
(N-S) partial differential equations (PDE) on (x,y,z.f) € R® x (0, T). Initially we
convert the PDE to a system of integral equations (IE). We then describe spaces A
of analytic functions that house solutions of this equation, and we show that these
spaces of analytic functions are dense in the spaces S of rapidly decreasing and
infinitely differentiable functions. These spaces are defined more explicitly later in
this monograph. Some reasons for doing this are the following:

1. The functions of S are nearly always conceptual rather than explicit, i.e.,
relatively few such explicit functions are known, and except in concept, they
differ from functions of calculus, which are generally analytic.

2. Initial and boundary conditions of solutions of PDE are usually given by
scientists of applications, and as such, they are nearly always piecewise analytic,
and in this case the solutions have the same properties.

3. When methods of approximation are applied to functions of A, they converge at
an exponential rate, whereas methods of approximation applied to the functions
of S converge only at a polynomial rate.

4. The space A also provides other conveniences, such as enabling sharper bounds
on the solution, enabling easier existence proofs, and enabling a more accurate
and more efficient method of solution including accurate error bounds—all of
which are included in this monograph.

Following our proofs of denseness, we prove the existence of a solution of the IE in
the space of functions A N R x (0, T), and we provide an explicit novel algorithm
based on Sinc approximation and Picard-like iteration for computing the solution.

We also provide an explicit Mathematica program for computing the solution
based on our approximation procedure, given the initial divergence-free velocity,
and we provide explicit illustrations of our computed solution.

More specifically, the problem which we shall analyze and solve numerically in
this monograph is the PDE problem as described by Fefferman [1] for the space S,
ie.,
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This problem is to be solved subject to the divergence-free condition

3 .
o
divu_§ a—:o, (7.1 e R xRy, )

and subject to initial conditions

uw’(@) =u(0) reR. 3)
Here, u = ( L2 u3) denotes a velocity vector of flow, p denotes the pressure,
w = ( 0 ) is a given divergence-free velocity field on R?, ¢ is a positive
3
32
coefficient (the viscosity), and A denotes the Laplacian, A = Z —,
L (o)

This monograph deals mainly with the solution of the above PDE using its
corresponding integral equation formulation, due to recent developments enabling
much more efficient and much more rapidly convergent solutions, making it possible
for us to obtain solutions over infinite domains [2]. We thus first derive the following
integral equation (IE), which can be written in the operator form

u=v+Nu, “4)

where the terms on the right-hand side are defined as follows:
V(1) = / G -7, Hu'(F) dr
R3

Nu(h.1) = /0 /R (V') ) o)
+(V'9) p(.1)} dr dr'. Q)

In (5) V' indicates the gradient taken with respect to 7, and we have written ¢ for
Gr—v,t-1).

According to [1], the initial condition u” must belong to a class of functions
S* which are infinitely differentiable with respect to all variables and which are
rapidly decreasing with respect to each spacial variable on the real line. This class
is described in more detail in Sect. 1.2 below. We also introduce in Chap. 2 a class
of analytic functions A which is a subclass of S, which we prove to be dense in the
class S, and to which the solutions of (4) belong to whenever u° € A.

After proving the denseness of the class A in S, we prove in Chap. 3 that the
integral part of the above IE maps functions of A back into A; in Chap. 4 we prove

0
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that if the initial condition vector u® belongs to A and is divergence-free, then the
above (IE) has a solution in A for all T sufficiently small; in Chap. 5 we introduce
an iterative method of solution of the IE; and in Chap. 6 we provide two explicit
examples and its numerical solution. Appendix A provides a detailed step-by-step
description of our method of solution including an explicit Mathematica program
based on our explicit algorithmic procedure. Appendix B contains for demonstration
purposes an explicit example of a result data file generated by our algorithm.

Salt Lake City, UT, USA Frank Stenger
Salt Lake City, UT, USA Don Tucker
Cairo, Egypt Gerd Baumann

September 19, 2016
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Chapter 1
Introduction, PDE, and IE Formulations

Abstract In this chapter we first state the Navier—Stokes (N—S) problem as a system
of nonlinear partial differential equations (PDE) along with initial conditions. We
then convert this system of PDE to a system of integral equations (IE).

1.1 Introduction: The PDE Problem

The partial differential equation (PDE) problem which we shall consider is the
following, as presented in [1], i.e., let R = (—o0, 00) denote the real line, let T
denote a positive number, and let the velocity vector u = u(r,7) = (ul, u?, u3)
satisfy the Navier—Stokes (N-S) PDE problem

o o op _
— — AW = k— 2 R3 7). 1.1
pria W= Z Ty g (r,1) e R* x [0, T] (1.1)

This problem is to be solved subject to the divergence-free condition'

3 .
el
divu—Za— =0, (r.0)eR*x][0,T], (1.2)

and subject to initial conditions

() =u(r0) rFeR. (1.3)
Here, p denotes the pressure, u® = (u®!,u®2 %) is a given divergence-free
velocity field on R3, ¢ is a positive coefficient (the viscosity), A denotes the

3 2
Laplacian, A = ———, and p denotes the pressure.
p ; Gy P p

IFefferman actually had [0, 0o) instead of [0, T]. We shall however consider only the case of [0, 7]
in this monograph.

© Springer International Publishing AG 2016 1
F. Stenger et al., Navier-Stokes Equations on R x [0, T},
DOI 10.1007/978-3-319-27526-0_1



2 1 Introduction, PDE, and IE Formulations
1.2 The Classes S" and S7,

Let n denote a positive integer, and let S" denote the family of all infinitely
differentiable functions g = g(7) defined on R” such that

|0%g(F)| < Cox (1 + |F])™® 7€ R", forany constants & and K, (1.4)

for some constant C, g is a constant and similarly, let S denote the family of all
functions g = g(7,t) defined on R" x [0, T], such that for any constants «, K and
any integer m > 0,

|02 97g(F)| < Comi (1 + [F)7X, 7 e R", (1.5)

for some constant Cy , k-

1.3 The Corresponding IE Problem

Let us denote by 4 = ¥ (F, t), the well-known Green’s function of the heat equation
on R3 x Ry, where Ry = [0, 00),

_ 1 r’ _
%(r, f) = m exp (—4—“) , r= |r| (16)

This Green’s function is the bounded solution to the following initial value problem
onR3 xRy :

G(r.1) — e AG(F, 1) = 8(t) 8P (7),
(1.7)
4(r,07) =0,

where §(f) and §® denote the one- and three-dimensional delta functions, where
R = (—o00, 0o0) and where RT = (0, 00).

It is straightforward to use this Green’s function ¢ to transform the system (1.1)
of three PDE into the following system of three integral equations (IE), for j =
1,2,3,

uf(;,t)=/ G(F—7, 1) u’(F) dv
R3
, S (%
_ = e k27 _p =/ 3/
/o . Gr—r,t—1) (; o + 3x’)dr dr.

7



1.3 The Corresponding IE Problem 3

We omit the trivial proof of the following lemma.

Lemma 1.3.1. Ifg € S, and if y is defined by either of the integrals

y(r, 1) =/ G —7,0)e(@,0)dr,
R3

(1.9)

t

y(rn) = / / G(r—7v.,t—1) g, t)dr dr,
0 JR3
inwhicht € (0,T), theny € S%. Moreover, we have forj = 1, 2, 3, that
Vi (7 1) = / G (r—7. 0 g( ndr
R}
= —/ Go(r—7.0)g( . 1)dr (1.10)
R

= [ G(r—7.,0)gs(F, 0dr.
R3 !

Furthermore, the functions yy, of (1.10) also belong to S%.

Lemma 1.3.1 enables differing IE expressions for the same system (1.8).

Next, in Theorem 1.3.1 which follows, we present an IE system which is equivalent
to the one in (1.8), and with which we shall work within the remainder of this
monograph.

Theorem 1.3.1. If each component of u belongs to S3., and if u is divergence-free,
then the system of differential equations (1.3) is equivalent to the integral equation
formulation

u=v+Nu, (1.11)

where the terms on the right-hand side are defined as follows:

v(7r, 1) = fRS G -7, 0 (F) dv

Nll(;‘, t) = /0 A} {((V/g) . u(;/,tl)) u(?/,t') + (112)

V'9) p(¥,1)} dr dr.



4 1 Introduction, PDE, and IE Formulations

In (1.12) V' indicates the gradient taken with respect to ¥, and in (1.12),
G =9Gr—7,t-1).

Proof. Using (1.6), (1.7) as well as Lemma 1.3.1, and assuming that u is divergence-
free, i.e., that ijl Ltf(j = 0, we get the vector IE (1.11).

1.4 The Pressure p

We here derive an integral expression for the pressure p. Our derived expression is
obtained under the assumption that if u is divergence-free, then so is the vector on
the right-hand side of the IE (1.11).

Theorem 1.4.1. Let each component of u® € S* and let each vector u € S on the
right-hand side of (1.12) be divergence-free. Let the pressure p be selected such that
the vector on the right-hand side of (1.12) is also divergence-free. Then p is given by

p(?,t):/ G(r—7)g( ., 0d7 (1.13)
IR3
where
1
%(’_’) = drr
. s (1.14)
gr.t) =Y Y W (F.0)ul(F.0).
=1 k=1

Proof. By differentiating each term on the right-hand side of (1.8) with respect to
x;j, summing over j and in that way, “forcing” (1.2), we get
3 3

W, =0=> (A-B-C), (1.15)

j
1 j=1

J

where
A= / G (F =7, ) u (i) d¥
R3
t 3
B = /0 /1; G.(r—7.1-1) Zu"(?’,t’) w, (7. 7)dr' df (1.16)
k=1

t
CJ'=/ / G (r—7 . t—=1)pydrdr.
0o JRr3 !



1.5 Modifying the IE 5

For the term A/ in (1.16) we clearly have Z?:lAj = 0, since we assumed that

u’ is divergence-free. Next, by our assumption that the right-hand side of (1.12) is
also divergence-free, we must also have Zle (B + ¢) = 0. But by application of
Lemma 1.3.1 to this sum, we arrive at the equation

t
0= / Gr—7,1—1) {g7. 1)+ Ay p(F. 1)} dF dr, (1.17)
0 R3

in which g is given in (1.14) above.
In this case, because the right-hand side of (1.12) will also be divergence-free we
determine p(r, r) such that

A:p(r.t) = —g(r.1), (r.1) e R*x [0, 7], (1.18)

with g given in (1.14). There is only one solution to this PDE problem which
satisfies (1.18) and which is bounded on R for all ¢ € [0, T]; this solution is given
by the statement of Theorem 1.4.1 above.

1.5 Modifying the IE

The above derived expression (1.13) for the pressure p leads to a more complicated
kernel in the N-S IE, which we will now simplify.

If we substitute p as given by Theorem 1.4.1 into the IE (1.12), then the resulting
right-hand side of the IE involves an integral over R® x (0, 7). We can reduce
this integral into a lower dimensional integral based on the result of the following
lemma.

Lemma 1.5.1. Let % be defined by

VAN =/ G(r—7,0% () dr, (1.19)
R3

where G and 4y are given in (1.6) and (1.14) respectively. Then ¢ is also given by

1 1 7'2 )
rt) = ————- — dy. 1.20
#(.) 47312 (er)1/2 fo exp( 4sty) Y (1.20)

Proof. We set A = (A1,A2.43), and A = |A]. It is well known that the Fourier
transforms of ¢(7,t) and %,(7) taken with respect to 7 are exp(—A%&t) and A2
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respectively. Hence, it follows from (1.20) that %" is just the inverse transform of
the product of these transforms, i.e.,

1 L x - _
H (P, 1) = P /1;@ eTAT A2 exp(— A% e ) dA. (1.21)

Transforming this integral from Cartesian to spherical coordinates, so that the
element of volume dA becomes A2dS2(A) where (-) denotes a unit vector and

where dS2 (;1_\) denotes the solid angle, and using the easily verifiable result [3],

sin(Ar)
Ar

/: AT AQA) = 4n (1.22)
| Al=1

that is obtainable by expanding (A r)~! sin(Ar) in powers of Ar and then
performing term wise integration, we arrive at (1.20).

1.6 The Theoretical Iteration Scheme

In this section we introduce two iterative methods for solving (1.11)-(1.12), the
first, a Neumann-type iterative method, which we shall use to prove existence and
uniqueness of the solution, and the second, a Gauss—Seidel type method, which we
shall use in Chap. 5 below to get a numerical solution.

1.6.1 Von Neumann Iteration

Let us write the IE (1.11)—(1.12) in the IE form
u=v+Nu;, Nu=Pu+Qu, (1.23)
where v is given in (1.12), and where
Pu(r, 1)

- [t / (V9GF—7.1=1) -u(@, 1)) i, 1) dF dar
n (1.24)

Qu(r.1) = /0 /R (VA Gt 1)) g.0)) dF di.

In (1.24), g, ¥, and % are given in (1.14), (1.6), and (1.19)—(1.20), respectively.
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One way to solve (1.23) for sufficiently small T is by use of the classical
successive approximation scheme

U1 =Vv+NU,), n=0,1, ..., (1.25)

with Uy = v. In Chap. 4 we shall prove that this procedure converges on R? x [0, T]
for suitably restricted ranges of 7 and v.

1.6.2 Gauss—Seidel Iteration

Instead of using the scheme (1.25) to solve (1.12) we shall use the following Gauss—
Seidel-like scheme,

Uy = v+ N, u5,10),
Wy =02+ N2yl ul (1.26)

n+1°%n>“n/>
3 3 3(,,1 2 3
Uppp =0 +N (utz+1’un+1’un)’

starting with uy = v, where

V(1) = / G -7, ) u’ () dr
® (1.27)

Nu = Plu + Q'u,
and where

Plu(7, 1)
t _ B _ o ~
=/0 /RS(Vg(r—r,t—t)-u(r,t)) W (¥, 1) dr dt, (1.28)

Qw7 1) = /t / Jiﬁj(?_ P.r—1) g, t)dr dt,
0o JR?

where g is given in (1.14). In general, the scheme (1.26) converges more rapidly than
the scheme (1.25), and indeed, our programming examples comparing this Gauss—
Seidel scheme with the one in [2] bears this out. It thus enables a convergent iterative
solution for larger values of T than that for (1.25).
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Chapter 2
Spaces of Analytic Functions

Abstract We present here spaces of analytic functions Ay, ; C S" as well as spaces,
Al 7 C Sp,n =1, 2, 3. In this chapter, we shall study the properties of these
spaces, we shall prove in Chap. 3 that if the components of the initial condition
vector u’ belong to A} , then each component of N'u of (1.23) belongs to A? , ., and
we shall furthermore prove in Chap. 4 that the solution to (1.23) belongs to A} , ;.
for all T sufficiently small. These spaces are in fact special cases of the spaces S"
and S% introduced in Sect. 1.2. They provide several conveniences, such as enabling
sharper error bounds and yielding exponential convergence of our approximate
solution which we obtain in Chap. 5.

2.1 The Spaces A’ , and A}, , .

Let n denote a positive integer, and let us now define vector spaces of functions Ag, ,
and Ag , -

Definition 2.1.1. Set7* = 7+ip, withr € R", p € R",setr = |r| ,and p = |p|.

(a) Corresponding to some positive numbers « and d, let A, 4 denote the family of
all functions f with the following properties:

(1) Analyricity property. There exists a positive number d’ > d, such that each f
is analytic in the domain

n={*=r+ipeC': p<d}; 2.1)
and

(ii) Asymptotic property. There exist positive numbers C = C(f,d’) and o’ > «,
such that for all 7* € 7,

lfGF*)| < C exp(—a’ 7). (2.2)

Notice that if f and g belong either to A, 4 or to A, 4.7, then so does &, where
for any constants @, b, and ¢, h = af + bg,orh = cf.

© Springer International Publishing AG 2016 9
F. Stenger et al., Navier-Stokes Equations on R x [0, T},
DOI 10.1007/978-3-319-27526-0_2



10 2 Spaces of Analytic Functions

(b) We also define the space A[, ,; of functions f = f(¥*,t*) such that f(-,7) €
A}, , for each fixed ¢ € [0, T], and such that (7, -) is an analytic and uniformly
bounded function of + = * in the “eye-shaped” region

Dpr =4t €C:|arg(t™/(T—1"))| <d'}. (2.3)

(c) The spaces A}, ; and A}, ; 1, are normed for p € [1,00) by || - ||, i.€.,

/p
I, = ([ rorar) " itp e (1,00

(2.4)
[ flloo = sup [f(F)].
reRrn
and similarly,
T 1/p
1 flpr = ( [ [ ve r>|ﬂd?dr) i p € [1,00) and
o (2.5)

[flloor = sup [f(r.0)].

FER" 1€(0,T)

The following theorem describes an important and beautiful property of the class of
functions A, ;.

Theorem 2.1.1. In the notation of Definition 2.1.1, let f € A, ,. Letf‘ denote the

Fourier transform of f ie.,
f(A) = / f(#) exp(i A-7)d¥. (2.6)
]Rn

Thenf € Al,,.

Proof. The one-dimensional version of this result is found in Theorem 26 of
Sect. 1.27 of [3]. The proof of the three-dimensional case is similar, and we omit it.

[
Upon recalling the inverse Fourier transform formula for R3 [see, e.g., (1.21)] we
also have by Parseval’s theorem that

I1£ll2 = 2 7)*2 Ifll2, 2.7)

and similarly for |[f|| 27



2.2 Denseness of Aj, ; in S” 11

Definition 2.1.2. Let n denote a positive integer, and setb = (by, ..., b,), with b;
nonnegative integers and with |b| = Z,"l=1 b;, and define

ol

D'f = :
f A(xl)ybr, ..., 9(x)bn

(2.8)

Theorem 2.1.2. Letd, d, a, and o' defined as in Definition 2.1.1 be given.

(i) Iff € A", then DPf € A" ;

(ii) Iff is analytic in the domain 9., and if for all 7* = v +i p in 9}, and constants
C>0m>0anda” € (a, &), we have f(r*) < Cr" exp(—a’r), then
f€AL

Proof. Part (i): In the notation of Definition 2.1.1, taking d’ € (d,d’) and o’ €

(a,a’), we have for any 7* = (x',x?,x°) € 2%, and any ¢ € min(0,d" —d”, (o' —

a'’’)), that

o _ k! f(p*)d¥

- = —— —. 2.9
ox/ 2mi |7 —p* |=¢ (é:] —X])k ( )

Hence by our assumption that for all 7 € 7, , we have |[f(¥*)| < Cexp(—a'r), it
follows that |[f(6*| < C exp(—a’ p + &) < C exp(—a” p), and so

A

ox/

=<
2 ek

exp(—a r), (2.10)

This proves Theorem 2.1.2 for the case of f = f(#¥*) when taking one derivative
with respect to ¥. The proof for the case of DPf is similar, just by repeating the
one-dimensional argument. The proof for the case of f = f(¥*, r) with ¢ € [0, T] is
also similar, and we omit it.

Part (ii). Let us select € > 0, such that «” — & > «, and let us then select R > 0,
such that if r > R, then " < exp(er). Then we have C r" e?'r < CeP " for r > R,
where B = a” — & > a. We now select C' > 0 such that C' ¢®® = CR™. Then
Cefr<crme’ " forre (0, c0).

2.2 Denseness of AZ P in §”*

As we already mentioned, our preference is to work with the spaces Aj, ;, not only
for computing the solution of the N-S equations efficiently and accurately, but also
for obtaining a simpler proof of existence of the solution to the equations. We first
show in this section that the Sinc spaces are dense in the spaces S”. We then use
this result in Sect.2.2.2 to show that the spaces A[, ; defined above are dense in the
spaces S".
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Now, let h > 0,letk € Z,let § € C, letk € Z", and let r € R". Let us
define the Sinc function S(k, #)(§) in one dimension and a product . (k, #)(¥*), in
n dimensions, where now r* € C".

sin (¥ (x — kh))
S(k, h = —h
(W = =
(2.11)

&) =[Sk (), & eC.

J=1

2.2.1 Denseness of Sinc Approximation in S"

We shall prove the denseness of Sinc approximation only with respect to the “sup”
norm; we omit the proofs of L>—approximation at this time, since such proofs
follow almost verbatim from the L.°° ones of this section. We thus prove only the
following theorem in the remainder of this section.

Theorem 2.2.1. Let r = (xl, o, X))y eRY letg € S§", leth > 0, let N be a
positive integer, and set
gva(®) = Y g(kh).Z (k. h)(F), (2.12)
KeZy,
where
Zy={k= (' ..., k) eZ": =N <K <N, j=1, ..., n}. (2.13)

Given any positive number ¢, we can select h > 0 and N such that

llg — enull™ = sup [g(F) — gna(F)| < e. (2.14)

reRr”

We split the proof of this theorem into the proofs of some lemmas.
We omit the proof of the following lemma since the (a)-Part of it is well known
([2], Theorem 1.2.1), and since the (b)-Part follows directly from the (a)-Part.

Lemma 2.2.1.
(a) If (x,y) € Cx (—m/h,7/h), then
e =Y "8G h)(x) e’ (2.15)

jez
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(b) Let Q" be defined by

O'={p=@E".....eR |¢|<n/h j=1, ..., n}. (2.16)

Then we have the identity

exp(i7 - p) = »_ L (k.h)(F) exp(ijhp - k) (2.17)
kezn

forall (r,p) € C"x Q"

Remark 2.2.1. The function on the right-hand side of (2.15) can be extended as a
function of y to the real line R, where for arbitrary integer m it is a periodic copy of
e on (—m/h, w/h) to the interval ((2m—1) 7 /h, (2m+1) 7 /h). The infinite series
on the right-hand side of (2.15) is discontinuous at each of the points (2m + 1) w/h
where it takes on the value cos( x). In particular, both functions, that on the left-
hand side of (2.15) and that on the right-hand side, are bounded by 1 on R x R.
Similarly, both sides of (2.17) are identically equal on C x Q", and also the right-
hand side of (2.17) has periodic extension to all of R”, similar to that of (2.15) for
the n = 1 case, and so both sides of (2.17) are bounded by 1 on R"” x R".

Let gy, be defined as in (2.12) and set
gn(r) = lim gy (7). (2.18)
N—00

Lemma 2.2.2. Let g € S", and let g, be defined as in (2.18). Given ¢ > 0 there
exists h > 0 such that

_ _ &
llg — gnll™ = sup [g(r) — gn(P)| < X (2.19)

rer”?

Proof. Let g denote the n-dimensional Fourier transform of g, i.e., with 7 and p in
Rn’

o) = /1; exp(iT - 1) 8(7)dp (2.20)

It then follows immediately, upon using (2.17) and applying the inverse of the
Fourier transform formula of (2.20), that

8~ (M
1

= —ir - p)— Lk, h) (7 —ihk - p) | - _
o5 | (exp( B 3 ) el p)) @a1)

-8(p) dp.



