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Preface

In this monograph we study the properties of solutions of the Navier–Stokes
(N–S) partial differential equations (PDE) on .x; y; z; t/ 2 R

3 � .0;T/. Initially we
convert the PDE to a system of integral equations (IE). We then describe spaces A
of analytic functions that house solutions of this equation, and we show that these
spaces of analytic functions are dense in the spaces S of rapidly decreasing and
infinitely differentiable functions. These spaces are defined more explicitly later in
this monograph. Some reasons for doing this are the following:

1. The functions of S are nearly always conceptual rather than explicit, i.e.,
relatively few such explicit functions are known, and except in concept, they
differ from functions of calculus, which are generally analytic.

2. Initial and boundary conditions of solutions of PDE are usually given by
scientists of applications, and as such, they are nearly always piecewise analytic,
and in this case the solutions have the same properties.

3. When methods of approximation are applied to functions of A, they converge at
an exponential rate, whereas methods of approximation applied to the functions
of S converge only at a polynomial rate.

4. The space A also provides other conveniences, such as enabling sharper bounds
on the solution, enabling easier existence proofs, and enabling a more accurate
and more efficient method of solution including accurate error bounds—all of
which are included in this monograph.

Following our proofs of denseness, we prove the existence of a solution of the IE in
the space of functions A \ R

3 � .0;T/, and we provide an explicit novel algorithm
based on Sinc approximation and Picard-like iteration for computing the solution.

We also provide an explicit Mathematica program for computing the solution
based on our approximation procedure, given the initial divergence-free velocity,
and we provide explicit illustrations of our computed solution.

More specifically, the problem which we shall analyze and solve numerically in
this monograph is the PDE problem as described by Fefferman [1] for the space S,
i.e.,

v
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@uj

@t
� "� uj D �

3X

kD1
uk @uj

@xk
� @p

@xj
; .r; t/ 2 R

3 � RC: (1)

This problem is to be solved subject to the divergence-free condition

div u D
3X

kD1

@uj

@xj
D 0; .Nr; t/ 2 R

3 � RC; (2)

and subject to initial conditions

u0.Nr/ D u.Nr; 0/ r 2 R
3: (3)

Here, u D �
u1; u2; u3

�
denotes a velocity vector of flow, p denotes the pressure,

u0 D �
u0;1; u0;2; u0;3

�
is a given divergence-free velocity field on R

3, " is a positive

coefficient (the viscosity), and � denotes the Laplacian, � D
3X

iD1

@2

.@xi/2
.

This monograph deals mainly with the solution of the above PDE using its
corresponding integral equation formulation, due to recent developments enabling
much more efficient and much more rapidly convergent solutions, making it possible
for us to obtain solutions over infinite domains [2]. We thus first derive the following
integral equation (IE), which can be written in the operator form

u D v C N u; (4)

where the terms on the right-hand side are defined as follows:

v.Nr; t/ D
Z

R3

G .Nr � Nr0; t/u0.Nr/ dNr0

N u.Nr; t/ D
Z t

0

Z

R3

˚��r 0 G
� � u.Nr0; t0/

�
u.Nr0; t0/

C �r 0 G
�

p.Nr0; t0/
�

dNr0 dt0: (5)

In (5) r 0 indicates the gradient taken with respect to Nr0, and we have written G for
G .Nr � Nr0; t � t0/.

According to [1], the initial condition u0 must belong to a class of functions
S3 which are infinitely differentiable with respect to all variables and which are
rapidly decreasing with respect to each spacial variable on the real line. This class
is described in more detail in Sect. 1.2 below. We also introduce in Chap. 2 a class
of analytic functions A which is a subclass of S, which we prove to be dense in the
class S, and to which the solutions of (4) belong to whenever u0 2 A.

After proving the denseness of the class A in S, we prove in Chap. 3 that the
integral part of the above IE maps functions of A back into A; in Chap. 4 we prove
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that if the initial condition vector u0 belongs to A and is divergence-free, then the
above (IE) has a solution in A for all T sufficiently small; in Chap. 5 we introduce
an iterative method of solution of the IE; and in Chap. 6 we provide two explicit
examples and its numerical solution. Appendix A provides a detailed step-by-step
description of our method of solution including an explicit Mathematica program
based on our explicit algorithmic procedure. Appendix B contains for demonstration
purposes an explicit example of a result data file generated by our algorithm.

Salt Lake City, UT, USA Frank Stenger
Salt Lake City, UT, USA Don Tucker
Cairo, Egypt Gerd Baumann
September 19, 2016
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Chapter 1
Introduction, PDE, and IE Formulations

Abstract In this chapter we first state the Navier–Stokes (N–S) problem as a system
of nonlinear partial differential equations (PDE) along with initial conditions. We
then convert this system of PDE to a system of integral equations (IE).

1.1 Introduction: The PDE Problem

The partial differential equation (PDE) problem which we shall consider is the
following, as presented in [1], i.e., let R D .�1;1/ denote the real line, let T
denote a positive number, and let the velocity vector u D u.Nr; t/ D �

u1; u2; u3
�

satisfy the Navier–Stokes (N–S) PDE problem

@uj

@t
� "� uj D �

3X

kD1
uk @uj

@xk
� @p

@xj
; .Nr; t/ 2 R

3 � Œ0;T�: (1.1)

This problem is to be solved subject to the divergence-free condition1

div u D
3X

jD1

@uj

@xj
D 0; .Nr; t/ 2 R

3 � Œ0;T�; (1.2)

and subject to initial conditions

u0.Nr/ D u.Nr; 0/ Nr 2 R
3: (1.3)

Here, p denotes the pressure, u0 D �
u0;1; u0;2; u0;3

�
is a given divergence-free

velocity field on R
3, " is a positive coefficient (the viscosity), � denotes the

Laplacian, � D
3X

jD1

@2

.@xj/2
, and p denotes the pressure.

1Fefferman actually had Œ0;1/ instead of Œ0;T�. We shall however consider only the case of Œ0;T�
in this monograph.

© Springer International Publishing AG 2016
F. Stenger et al., Navier–Stokes Equations on R

3 � Œ0;T�,
DOI 10.1007/978-3-319-27526-0_1
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2 1 Introduction, PDE, and IE Formulations

1.2 The Classes Sn and Sn
T

Let n denote a positive integer, and let Sn denote the family of all infinitely
differentiable functions g D g.Nr/ defined on R

n such that

j@˛Nr g.Nr/j � C˛;K .1C jNrj/�K Nr 2 R
n; for any constants ˛ and K; (1.4)

for some constant C˛;K is a constant and similarly, let Sn
T denote the family of all

functions g D g.Nr; t/ defined on R
n � Œ0;T�, such that for any constants ˛;K and

any integer m � 0,

j@˛Nr @m
t g.Nr/j � C˛Im;K .1C jNrj/�K ; Nr 2 R

n; (1.5)

for some constant C˛;m;K .

1.3 The Corresponding IE Problem

Let us denote by G D G .Nr; t/, the well-known Green’s function of the heat equation
on R

3 � RC, where RC D Œ0;1/,

G .Nr; t/ D 1

.4 � " t/3=2
exp

�
� r2

4 " t

�
I r D jNrj: (1.6)

This Green’s function is the bounded solution to the following initial value problem
on R

3 � RC:

Gt.Nr; t/ � "�G .Nr; t/ D ı.t/ ı.3/.Nr/;

G .Nr; 0C/ D 0;

(1.7)

where ı.t/ and ı.3/ denote the one- and three-dimensional delta functions, where
R D .�1;1/ and where R

C D .0;1/.
It is straightforward to use this Green’s function G to transform the system (1.1)

of three PDE into the following system of three integral equations (IE), for j D
1; 2; 3,

uj.Nr; t/ D
Z

R3

G .Nr � Nr0; t/ u0;j.Nr/ dNr0

�
Z t

0

Z

R3

G .Nr � Nr0; t � t0/
 

3X

kD1
uk @uj

@x0
k

C @p

@x0
j

!
dNr0 dt0:

(1.8)



1.3 The Corresponding IE Problem 3

We omit the trivial proof of the following lemma.

Lemma 1.3.1. If g 2 S3T , and if � is defined by either of the integrals

�.Nr; t/ D
Z

R3

G .Nr � Nr0; t/ g.Nr0; t/ dNr0;

�.Nr; t/ D
Z t

0

Z

R3

G .Nr � Nr0; t � t0/ g.Nr0; t0/ dNr0 dt0;

(1.9)

in which t 2 .0;T/, then � 2 S3T . Moreover, we have for j D 1; 2; 3, that

�xj.Nr; t/ D
Z

R3

Gxj.Nr � Nr0; t/ g.Nr0; t/ dNr0

D �
Z

R3

Gx0

j
.Nr � Nr0; t/ g.Nr0; t/ dNr0

D
Z

R3

G .Nr � Nr0; t/ gx0

j
.Nr0; t/ dNr0:

(1.10)

Furthermore, the functions �xj of (1.10) also belong to S3T .

Lemma 1.3.1 enables differing IE expressions for the same system (1.8).

Next, in Theorem 1.3.1 which follows, we present an IE system which is equivalent
to the one in (1.8), and with which we shall work within the remainder of this
monograph.

Theorem 1.3.1. If each component of u belongs to S3T , and if u is divergence-free,
then the system of differential equations (1.3) is equivalent to the integral equation
formulation

u D v C N u; (1.11)

where the terms on the right-hand side are defined as follows:

v.Nr; t/ D
Z

R3

G .Nr � Nr0; t/u0.Nr/ dNr0

N u.Nr; t/ D
Z t

0

Z

R3

˚��r 0 G
� � u.Nr0; t0/

�
u.Nr0; t0/C

.r 0 G / p.Nr0; t0/g dNr0 dt0:

(1.12)
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In (1.12) r 0 indicates the gradient taken with respect to Nr0, and in (1.12),
G D G .Nr � Nr0; t � t0/.

Proof. Using (1.6), (1.7) as well as Lemma 1.3.1, and assuming that u is divergence-
free, i.e., that

P3
jD1 uj

xj
D 0, we get the vector IE (1.11).

1.4 The Pressure p

We here derive an integral expression for the pressure p. Our derived expression is
obtained under the assumption that if u is divergence-free, then so is the vector on
the right-hand side of the IE (1.11).

Theorem 1.4.1. Let each component of u0 2 S3 and let each vector u 2 S3T on the
right-hand side of (1.12) be divergence-free. Let the pressure p be selected such that
the vector on the right-hand side of (1.12) is also divergence-free. Then p is given by

p.Nr; t/ D
Z

R3

G0.Nr � Nr0/ g.Nr0; t/ d Nr0 (1.13)

where

G0.Nr/ D 1

4� r
;

g.Nr; t/ D
3X

jD1

3X

kD1
uj

xk.Nr; t/ uk
xj.Nr; t/:

(1.14)

Proof. By differentiating each term on the right-hand side of (1.8) with respect to
xj, summing over j and in that way, “forcing” (1.2), we get

3X

jD1
uj

xj
D 0 D

3X

jD1

�
Aj � Bj � Cj

�
; (1.15)

where

Aj D
Z

R3

Gxj.Nr � Nr0; t/ u0;j.Nr0/ dNr0

Bj D
Z t

0

Z

R3

Gxj.Nr � Nr0; t � t0/
3X

kD1
uk.Nr0; t0/ uj

xk
.Nr0; t0/ dNr0 dt0

Cj D
Z t

0

Z

R3

Gxj.Nr � Nr0; t � t0/ px0

j
dNr0 dt0:

(1.16)
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For the term Aj in (1.16) we clearly have
P3

jD1 Aj D 0, since we assumed that
u0 is divergence-free. Next, by our assumption that the right-hand side of (1.12) is
also divergence-free, we must also have

P3
jD1.Bj C Cj/ D 0. But by application of

Lemma 1.3.1 to this sum, we arrive at the equation

0 D
Z t

0

Z

R3

G .Nr � Nr0; t � t0/
˚
g.Nr0; t0/C�Nr0 p.Nr0; t0/

�
dNr0 dt0; (1.17)

in which g is given in (1.14) above.
In this case, because the right-hand side of (1.12) will also be divergence-free we

determine p.Nr; t/ such that

�Nr p.Nr; t/ D � g.Nr; t/; .Nr; t/ 2 R
3 � Œ0;T�; (1.18)

with g given in (1.14). There is only one solution to this PDE problem which
satisfies (1.18) and which is bounded on R

3 for all t 2 Œ0;T�; this solution is given
by the statement of Theorem 1.4.1 above.

1.5 Modifying the IE

The above derived expression (1.13) for the pressure p leads to a more complicated
kernel in the N–S IE, which we will now simplify.

If we substitute p as given by Theorem 1.4.1 into the IE (1.12), then the resulting
right-hand side of the IE involves an integral over R

6 � .0;T/. We can reduce
this integral into a lower dimensional integral based on the result of the following
lemma.

Lemma 1.5.1. Let K be defined by

K .Nr; t/ D
Z

R3

G .Nr � Nr0; t/G0.Nr0/ dNr0; (1.19)

where G and G0 are given in (1.6) and (1.14) respectively. Then K is also given by

K .Nr; t/ D 1

4�3=2 ."t/1=2

Z 1

0

exp

�
� r2

4 " t
y2
�

dy: (1.20)

Proof. We set N� D .�1; �2; �3/, and � D j N�j. It is well known that the Fourier
transforms of G .Nr; t/ and G0.Nr/ taken with respect to Nr are exp.��2 " t/ and ��2
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respectively. Hence, it follows from (1.20) that K is just the inverse transform of
the product of these transforms, i.e.,

K .Nr; t/ D 1

8�3

Z

R3

e�i N� �Nr ��2 exp.��2 " t/ d N�: (1.21)

Transforming this integral from Cartesian to spherical coordinates, so that the

element of volume d N� becomes �2 d˝.bN�/ where b.�/ denotes a unit vector and

where d˝.bN�/ denotes the solid angle, and using the easily verifiable result [3],

Z

j ON�jD1
e�i N� �Nr d˝. N�/ D 4�

sin.� r/

� r
; (1.22)

that is obtainable by expanding .� r/�1 sin.� r/ in powers of � r and then
performing term wise integration, we arrive at (1.20).

1.6 The Theoretical Iteration Scheme

In this section we introduce two iterative methods for solving (1.11)–(1.12), the
first, a Neumann-type iterative method, which we shall use to prove existence and
uniqueness of the solution, and the second, a Gauss–Seidel type method, which we
shall use in Chap. 5 below to get a numerical solution.

1.6.1 Von Neumann Iteration

Let us write the IE (1.11)–(1.12) in the IE form

u D v C N uI N u D P u C Q u; (1.23)

where v is given in (1.12), and where

P u.Nr; t/
D
Z t

0

Z

R3

��r 0 G .Nr � Nr0; t � t0/
� � u.Nr0; t0/

�
u.Nr0; t0/ dNr0 dt0

Q u.Nr; t/ D
Z t

0

Z

R3

��r 0 K .Nr � Nr0; t � t0/
�

g.Nr0; t0/
�

dNr0 dt0:

(1.24)

In (1.24), g, G , and K are given in (1.14), (1.6), and (1.19)–(1.20), respectively.
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One way to solve (1.23) for sufficiently small T is by use of the classical
successive approximation scheme

UnC1 D v C N.Un/; n D 0; 1; : : : ; (1.25)

with U0 D v. In Chap. 4 we shall prove that this procedure converges on R
3 � Œ0;T�

for suitably restricted ranges of T and v.

1.6.2 Gauss–Seidel Iteration

Instead of using the scheme (1.25) to solve (1.12) we shall use the following Gauss–
Seidel–like scheme,

u1nC1 D v1 C N1.u1n; u
2
n; u

3
n/;

u2nC1 D v2 C N2.u1nC1; u2n; u3n/;
u3nC1 D v3 C N3.u1nC1; u2nC1; u3n/;

(1.26)

starting with u0 D v, where

vj.Nr; t/ D
Z

R3

G .Nr � Nr0; t/ u0;j.Nr0/ dNr0

Nju D Pju C Qju;

(1.27)

and where

Pju.Nr; t/

D
Z t

0

Z

R3

�r 0G .Nr � Nr0; t � t0/ � u.Nr0; t0/
�

uj.Nr0; t0/ dNr0 dt0;

Qj.u/.Nr; t/ D
Z t

0

Z

R3

Kxj.Nr � Nr0; t � t0/ g.Nr0; t0/ dNr0 dt0;

(1.28)

where g is given in (1.14). In general, the scheme (1.26) converges more rapidly than
the scheme (1.25), and indeed, our programming examples comparing this Gauss–
Seidel scheme with the one in [2] bears this out. It thus enables a convergent iterative
solution for larger values of T than that for (1.25).
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Chapter 2
Spaces of Analytic Functions

Abstract We present here spaces of analytic functions An
˛;d � Sn as well as spaces,

An
˛;d;T � Sn

T , n D 1; 2; 3. In this chapter, we shall study the properties of these
spaces, we shall prove in Chap. 3 that if the components of the initial condition
vector u0 belong to A3

˛;d then each component of N u of (1.23) belongs to A3
˛;d;T , and

we shall furthermore prove in Chap. 4 that the solution to (1.23) belongs to A3
˛;d;T ,

for all T sufficiently small. These spaces are in fact special cases of the spaces Sn

and Sn
T introduced in Sect. 1.2. They provide several conveniences, such as enabling

sharper error bounds and yielding exponential convergence of our approximate
solution which we obtain in Chap. 5.

2.1 The Spaces An
˛;d and An

˛;d;T

Let n denote a positive integer, and let us now define vector spaces of functions An
˛;d

and An
˛;d;T .

Definition 2.1.1. Set Nr� D NrC i N�, with Nr 2 R
n, N� 2 R

n, set r D jNrj , and � D j N�j.
(a) Corresponding to some positive numbers ˛ and d, let A˛;d denote the family of

all functions f with the following properties:

(i) Analyticity property. There exists a positive number d0 > d, such that each f
is analytic in the domain

Dn
d0 D fNr� D Nr C i N� 2 C

n W � < d0gI (2.1)

and
(ii) Asymptotic property. There exist positive numbers C D C. f ; d0/ and ˛0 > ˛,

such that for all Nr� 2 Dn
d0 ,

j f .Nr�/j < C exp.�˛0 r/: (2.2)

Notice that if f and g belong either to A˛;d or to A˛;d;T , then so does h, where
for any constants a, b, and c, h D a f C b g, or h D c f .

© Springer International Publishing AG 2016
F. Stenger et al., Navier–Stokes Equations on R

3 � Œ0;T�,
DOI 10.1007/978-3-319-27526-0_2

9
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(b) We also define the space An
˛;d;T of functions f D f .Nr�; t�/ such that f .�; t/ 2

An
˛;d for each fixed t 2 Œ0;T�, and such that f .Nr; �/ is an analytic and uniformly

bounded function of t D t� in the “eye-shaped” region

Dd0;T D ft� 2 C W j arg.t�=.T � t�//j < d0g: (2.3)

(c) The spaces An
˛;d and An

˛;d;T , are normed for p 2 Œ1;1/ by k � kp, i.e.,

k f kp D
�Z

Rn
jf .Nr/jp dNr

�1=p

; if p 2 Œ1;1/ and

k f k1 D sup
Nr2Rn

jf .Nr/j:
(2.4)

and similarly,

k f kp;T D
�Z

Rn

Z T

0

jf .Nr; t/jp dNr dt

�1=p

; if p 2 Œ1;1/ and

k f k1;T D sup
Nr2Rn;t2.0;T/

jf .Nr; t/j:
(2.5)

The following theorem describes an important and beautiful property of the class of
functions An

˛;d.

Theorem 2.1.1. In the notation of Definition 2.1.1, let f 2 An
˛;d. Let Of denote the

Fourier transform of Of , i.e.,

Of . N�/ D
Z

Rn
f .Nr0/ exp.i N� � Nr0/ dNr0: (2.6)

Then Of 2 An
d;˛ .

Proof. The one-dimensional version of this result is found in Theorem 26 of
Sect. 1.27 of [3]. The proof of the three-dimensional case is similar, and we omit it.

Upon recalling the inverse Fourier transform formula for R3 [see, e.g., (1.21)] we
also have by Parseval’s theorem that

k Of k2 D .2 �/3=2 kf k2; (2.7)

and similarly for kOf k2;T .
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Definition 2.1.2. Let n denote a positive integer, and set b D .b1; : : : ; bn/, with bj

nonnegative integers and with jbj D Pn
jD1 bj, and define

Db f D @jbjf
@.x1/b1 ; : : : ; @.xn/bn

: (2.8)

Theorem 2.1.2. Let d, d0, ˛, and ˛0 defined as in Definition 2.1.1 be given.

(i) If f 2 An
˛;d, then Db f 2 An

˛;d;
(ii) If f is analytic in the domain Dn

d0 and if for all Nr� D Nr C i N� in Dn
d0 and constants

C > 0, m � 0 and ˛00 2 .˛; ˛0/, we have f .Nr�/ � C rm exp.�˛00r/, then
f 2 An

˛;d.

Proof. Part (i): In the notation of Definition 2.1.1, taking d00 2 .d; d0/ and ˛00 2
.˛; ˛0/, we have for any Nr� D .x1; x2; x3/ 2 Dn

d00 and any " 2 min.0; d0 � d00; .˛0 �
˛00//, that

@f

@xj
D k Š

2 � i

Z

jNr�� N��jD"
f . N��/ d	 j

.	 j � xj/k
: (2.9)

Hence by our assumption that for all Nr� 2 Dn
˛0;d0 we have jf .Nr�/j � C exp.�˛0 r/, it

follows that jf . N��j � C exp.�˛0 �C "/ < C exp.�˛00 �/, and so

ˇ̌
ˇ̌ @f

@xj

ˇ̌
ˇ̌ � C

2�"k
exp.�˛00 r/; (2.10)

This proves Theorem 2.1.2 for the case of f D f .Nr�/ when taking one derivative
with respect to xj. The proof for the case of Db f is similar, just by repeating the
one-dimensional argument. The proof for the case of f D f .Nr�; t/ with t 2 Œ0;T� is
also similar, and we omit it.

Part (ii). Let us select " > 0, such that ˛00 � " > ˛, and let us then select R > 0,
such that if r � R, then rm � exp."r/. Then we have C rm e˛

00 r < C eˇ r, for r � R,
where ˇ D ˛00 � " > ˛. We now select C0 > 0 such that C0 e"R D C Rm. Then
C0 eˇ r � C rm e˛

00 r for r 2 .0;1/.

2.2 Denseness of An
˛;d in Sn

As we already mentioned, our preference is to work with the spaces An
˛;d, not only

for computing the solution of the N–S equations efficiently and accurately, but also
for obtaining a simpler proof of existence of the solution to the equations. We first
show in this section that the Sinc spaces are dense in the spaces Sn. We then use
this result in Sect. 2.2.2 to show that the spaces An

˛;d defined above are dense in the
spaces Sn.
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Now, let h > 0, let k 2 Z, let 	 2 C, let k 2 Z
n, and let Nr 2 R

n. Let us
define the Sinc function S.k; h/.	/ in one dimension and a product S .k; h/.Nr�/, in
n dimensions, where now Nr� 2 C

n.

S.k; h/.x/ D sin
�
�
h .x � k h/

�

�
h .x � k h/

;

S .k; h/.Nr�/ D
nY

jD1
S.kj; h/.	

j/; 	 j 2 C:

(2.11)

2.2.1 Denseness of Sinc Approximation in Sn

We shall prove the denseness of Sinc approximation only with respect to the “sup”
norm; we omit the proofs of L2—approximation at this time, since such proofs
follow almost verbatim from the L1 ones of this section. We thus prove only the
following theorem in the remainder of this section.

Theorem 2.2.1. Let Nr D .x1; : : : ; xn/ 2 R
n, let g 2 Sn, let h > 0, let N be a

positive integer, and set

gN;h.Nr/ D
X

k2Zn
N

g.k h/S .k; h/.Nr/; (2.12)

where

Z
n
N D fk D .k1; : : : ; kn/ 2 Z

n W �N � kj � N; j D 1; : : : ; ng: (2.13)

Given any positive number ", we can select h > 0 and N such that

kg � gN;hk1 D sup
Nr2Rn

jg.Nr/ � gN;h.Nr/j < ": (2.14)

We split the proof of this theorem into the proofs of some lemmas.
We omit the proof of the following lemma since the (a)-Part of it is well known

([2], Theorem 1.2.1), and since the (b)-Part follows directly from the (a)-Part.

Lemma 2.2.1.

(a) If .x; y/ 2 C � .��=h; �=h/, then

ei x y D
X

j2Z
S.j; h/.x/ ei j h y: (2.15)
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(b) Let Qn be defined by

Qn D ˚ N� D .	1; : : : ; 	n/ 2 R
n W j	 jj < �=h; j D 1; : : : ; n

�
: (2.16)

Then we have the identity

exp.i Nr � N�/ D
X

k2Zn

S .k; h/.Nr/ exp.i j h N� � k/ (2.17)

for all .Nr; N�/ 2 C
n � Qn.

Remark 2.2.1. The function on the right-hand side of (2.15) can be extended as a
function of y to the real line R, where for arbitrary integer m it is a periodic copy of
ei x y on .��=h; �=h/ to the interval ..2m�1/ �=h; .2mC1/ �=h/. The infinite series
on the right-hand side of (2.15) is discontinuous at each of the points .2m C 1/ �=h
where it takes on the value cos.� x/. In particular, both functions, that on the left-
hand side of (2.15) and that on the right-hand side, are bounded by 1 on R � R.
Similarly, both sides of (2.17) are identically equal on C � Qn, and also the right-
hand side of (2.17) has periodic extension to all of Rn, similar to that of (2.15) for
the n D 1 case, and so both sides of (2.17) are bounded by 1 on R

n � R
n.

Let gN;h be defined as in (2.12) and set

gh.Nr/ D lim
N!1 gN;h.Nr/: (2.18)

Lemma 2.2.2. Let g 2 Sn, and let gh be defined as in (2.18). Given " > 0 there
exists h > 0 such that

kg � ghk1 D sup
Nr2Rn

jg.Nr/ � gh.Nr/j < "

2
: (2.19)

Proof. Let Og denote the n-dimensional Fourier transform of g, i.e., with Nr and N� in
R

n,

Og.Nr/ D
Z

Rn
exp.i Nr � N�/ g. N�/ d N�: (2.20)

It then follows immediately, upon using (2.17) and applying the inverse of the
Fourier transform formula of (2.20), that

g.Nr/ � gh.Nr/
D 1

.2 �/n

Z

Rn

 
exp.�i Nr � N�/ �

X

k2Zn

S .k; h/.Nr/ exp.�i h k � N�/
!

�
� Og. N�/ d N�:

(2.21)


