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Foreword

This book constitutes the proceedings of the 5th World Congress of Paraconsistent
Logic, a kind of logic whose systematic development effectively began in the
middle of the twentieth century.

Loosely speaking, a paraconsistent system of logic can be defined as a system
that may be the underlying logic of inconsistent but nontrivial theories, i.e.,
inconsistent theories, in which there are sentences of their languages that are not
provable.

The systems of paraconsistent logic may be envisaged from two basic per-
spectives: (a) as rivals of classical logic, for instance, when inconsistent though
apparently nontrivial set theories are built as rivals of classical set theories and
(b) as systems complementary to classical logic, when, for example, a paracon-
sistent negation is present together with classical negation.

An important characteristic of paraconsistent logic is that it has found numerous
applications in philosophy, quantum mechanics, artificial intelligence, traffic con-
trol, medicine, economics, finances, and computing. So, we are in the presence of
an area of logic which opened up new research directions in philosophy, science,
and technology.

This volume is valuable not only due to the technical works it includes, but also
because it contributes to show the meaning of paraconsistent logic and its con-
nection with other domains of knowledge. It also testifies to how paraconsistent
logic is spreading around the world, the 5th edition of this congress having been
organized in India.

Florianópolis Newton C.A. da Costa
September 2015
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Preface

This book is a collection of papers presented at the 5th World Congress on
Paraconsistency, which was organized at the Indian Statistical Institute (ISI),
Kolkata, India, February 13–17, 2014.

A paraconsistent logic is a logic where there is a nonexplosive negation, i.e.,
from a proposition and its paraconsistent negation it is not necessarily possible to
deduce anything. The expression “paraconsistent logic” was coined in a discussion
between Newton da Costa and the Peruvian philosopher Francisco Miró Quesada.
This expression had a booming effect as recalled by da Costa:

Several years ago, I needed a convenient and meaningful denomination for a logic that did
not eliminate contradictions from the outset as being false, i.e., as absolutely unacceptable.
Miró Quesada helped me. On the one hand, it should be recalled that, by that time, all logics
unavoidably condemned contradictions. The new logic in which I worked faced too much
resistance, it was badly divulged, and those that got to know it were in general sceptics. By
that time I wrote to Miró Quesada, who saw the new logic with great enthusiasm,
requesting a name for it. I remember as it was today that he answered with three proposals:
it could be called metaconsistent, ultraconsistent or paraconsistent. After commenting on
these possible denominations, he stated that, from his viewpoint, he preferred the latter. The
term paraconsistent sounded splendid and I began to use it, suggesting that people inter-
ested on this logic did the same. Two or three months later, the miracle took place; the term
spread through the world, all the centres directly or indirectly related to logic, from northern
to southern hemisphere, began to employ it. I believe that few times in the history of
science (definitely in the history of logic) something similar has happened, for not only the
word run the whole world, but the very logic called by Miró Quesada “paraconsistent”
received a formidable push. It became one of the most discussed theories of logic of our
time. (da Costa, “La Filosofia de la Logica de Francisco Miró Quesada Cantuarias,” in
Logica, Razon y Humanismo, Lima, 1992, pp. 69–78.)

Previous world congresses on paraconsistency were organized in the following
locations:

• 1st Word Congress on Paraconsistency: Ghent, Belgium (1997)
• 2nd Word Congress on Paraconsistency: Juquehy, Brazil (2000)
• 3rd Word Congress on Paraconsistency: Toulouse, France (2003)
• 4th Word Congress on Paraconsistency: Melbourne, Australia (2008)

vii



In India, paraconsistent logic is still not very well known, but people do have
interest in the subject, and a few researchers have taken it quite seriously. In Indian
ancient methodology, there was “chatuskoti,” which had four corners of which one
was both “yes” and “no.” This implies that contradiction was not altogether
rejected. That is why it was decided to organize the 5th edition of the world
congress on paraconsistency in this country.

And to make paraconsistent logic better known in India, we decided to organize
tutorials during this event. Three tutorials were given, and they are included in the
first part of this book. The other parts of the books contain papers presented during
the event, and a few others are by people who were not able to come.

The event was nice and relaxing. The ISI is a charming place surrounded by
nature and with a convenient guest house. The people from ISI were enthusiastic
and animated to organize this event. The members of the local organizing ISI team
included Sisir Roy, Rana Barua, Probal Dasgupta, Kuntal Ghosh, and Guruprasad
Kar. Kuntal led the team in an efficient manner, supported by some local students,
who helped to make this event a success. One evening a beautiful cruise was
organized on the Ganga.

Jean-Yves Beziau
Mihir Chakraborty

Soma Dutta
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Chapter 1
Tutorial on Inconsistency-Adaptive Logics

Diderik Batens

Abstract This paper contains a concise introduction to a few central features of
inconsistency-adaptive logics. The focus is on the aim of the program, on logics that
may be useful with respect to applications, and on insights that are central for judging
the importance of the research goals and the adequacy of results. Given the nature
of adaptive logics, the paper may be read as a peculiar introduction to defeasible
reasoning.

Keywords Paraconsistent logic · Inconsistency-adaptive logic
Mathematics Subject Classication (2000) 03-01, 03B53, 03B60, 03A05

1.1 Introduction

By a logic I shall mean a function that assigns a consequence set to any premise set.
So where L is a language schema, with F as its set of formulas and W as its set
of closed formulas, a logic is a function ℘(W) → ℘(W). The standard predicative
language schema, viz. that of CL (classical logic), will be called Ls ; Fs its set of
formulas and Ws its set of closed formulas.

Adaptive logics are formal logics but are not deductive logics. They do not define
the meaning of logical symbols and are certainly not in the competition for the title
‘standard of deduction’—that is, for delineating deductively correct inferences from
incorrect inferences and from non-deductive inferences. To the contrary, adaptive
logics explicate reasoning processes that are typically not deductive, viz. defeasible
reasoning processes.

I am indebted to Mathieu Beirlaen for careful comments on a previous draft.

D. Batens (B)
Centre for Logic and Philosophy of Science, Ghent University,
Blandijnberg 2, 9000 Gent, Belgium
e-mail: Diderik.Batens@UGent.be

© Springer India 2015
J.-Y. Beziau et al. (eds.), New Directions in Paraconsistent Logic,
Springer Proceedings in Mathematics & Statistics 152,
DOI 10.1007/978-81-322-2719-9_1
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4 D. Batens

Sometimes deductive logics are opposed to inductive logics. The expression
“inductive logic” may refer to constructions that proceed, for example in terms of
probabilities, as in Carnap’s work [31]. Where the expression refers to a logic in the
sense of the previous paragraph, inductive logics are a specific form of defeasible
reasoning, next to many others. Handling inconsistency as described in the present
paper is just one of them.1

A logic is formal iff its consequence relation is defined in terms of logical form.
Some people identify this with the Uniform Substitution rule,2 but that is a mistake
because Uniform Substitution defines just one way in which a logic may be formal.
Let me quickly spell out a different one. A language or language schema L will
comprise one or more sets of non-logical symbols, for example sentential letters,
predicative letters, letters for individual constants, etc. Consider all total functions
f that map every such set to itself. Extend f to formulas, f (A) being the result of
replacing every non-logical symbol ξ in A by f (ξ). A logic L is clearly formal iff
the following holds: A1, . . . , An �L B iff, for every such f , f (A1), . . . , f (An) �L

f (B).
Logics may obviously be presented in very different ways. Formal logics are usu-

ally presented as sets of rules, possibly combined with the somewhat special rules
that are called axioms (and axiom schemata). Apart from many types of ‘axiom-
atizations’, logics are standardly characterized by a semantics, which has a rather
different function. Deductive logics are typically Tarski logics. This means that they
are reflexive (� ⊆ CnL(�)),3 transitive (if � ⊆ CnL(�), then CnL(�) ⊆ CnL(�)),
and monotonic (CnL(�) ⊆ CnL(� ∪ �′) for all �′). Another interesting property,
which is required if a logic has to have static proofs,4 is compactness (if A ∈ CnL(�)

then there is a finite �′ ⊆ � such that A ∈ CnL(�′)).
This paper follows several conventions that I better spell out from the start. Clas-

sical logic, CL, will be taken as the standard of deduction. This is a purely pragmatic
decision, not a principled one. Next, all metalinguistic statements are meant in their
classical sense. More specifically, the metalinguistic negation will always be clas-
sical. So where I say that A is not a L-consequence of �, I rule out that A is a
L-consequence of �. Similarly, I shall use “false” in its classical sense; no statement
can be true as well as false in this sense. An inconsistent situation will be one in
which both A and ¬A are true, not one in which A is both true and false. There is a

1See, for example, [17] for many other real-life examples of reasoning forms for which there is no
positive test. The import of a positive test is discussed further in the text.
2Uniform Substitution is rule of propositional logic. Predicative classical logic is traditionally
axiomatized in terms of a finite set of rules and axiom schemata, rather than axioms. So no sub-
stitution rule is then required. Substitution rules in predicate logic have been studied [56] and the
outcome is very instructive.
3The L-consequence set of � is defined as CnL(�) =df {A | � �L A}.
4Just think about usual proofs. Every formula in the proof is a consequence of the premise set and
every proof may be extended into a longer proof by applications of the rules.
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rather deep divide between paraconsistent logicians on these matters. There are those
who claim that ‘the true logic’ is paraconsistent and that it should always be used, in
particular in its own metalanguage. Some of these even take it that classical negation
is not coherent, lacks sense and the like. Other paraconsistent logicians, with whom
I side, have no objections against the classical negation or against its occurrence in
the same language as a paraconsistent negation. This is related to the fact that they
are pluralists, either in general or with respect to contexts. They might argue, for
example, that consistent domains, like most paraconsistent logics themselves, are
more adequately described by CL than by a paraconsistent logic.

Awarningof a different kind is that thematerials discussed in the subsequent pages
have been studied at the predicative level. That I shall offer mainly propositional toy
examples has a pedagogical rationale.

The last general survey paper that I wrote on adaptive logics was [20]. Meanwhile
new results were and are being obtained, some of them are still unpublished. This
may be as expected, but one aspect needs to be mentioned from the start. Quite a
group of people have contributed to adaptive logics and have published in the field,
manymore than I shall mention below.While I was always eager to retain the unity of
the domain, not everyone attached the same value to unification. Such a situation was
obviously very useful to prevent that interesting things are left out of the picture—in
principle the aim is to integrate directly or under a translation all potentially realistic
first-order defeasible reasoning forms. As we shall see, this integrating frame is the
standard format. Little changes were introduced over the years in an attempt to make
it as embracing as possible. While most were improvements or clarifications, there
was one development that I now consider as misguided. In the end it resulted in the
systematic introduction of a set of new symbols to any language. These new symbols
had their CL-meaning, whence they were called classical. They were added even
if they duplicated existing symbols. In the second half of Sect. 1.11, I shall discuss
the idea of adding classical symbols and the reasons for not adding them any more
today.

The present paper is by no means a summary of all available results on adap-
tive logics. It merely provides an introduction to the central highlights. Moreover,
this paper is explicitly intended as an introduction to inconsistency-adaptive logics,
viz. adaptive logics that handle inconsistency. They concern compatibility, inductive
generalization, abduction, prioritized reasoning, the dynamics of discussions, belief
revision, abstract argumentation theory, deontic logic and so on. Most adaptive log-
ics in standard format are not inconsistency-adaptive and have no connection to
paraconsistency. Nevertheless, the present paper can also be read as an introduction
to adaptive logics in general, with special attention to handling inconsistency and
with illustrations from that domain. The reference section is not a bibliography of
inconsistency-adaptive logics.



6 D. Batens

1.2 The Original Problem

Consider a theory T that was intended as consistent and was given CL as its under-
lying logic: T = 〈�, CL〉, in which � is the set of non-logical axioms of T and
CnCL(�) is the set of theorems of T , often simply called T . Suppose, however, that
T turns out to be inconsistent. There are several well-documented examples of such
situation, both in mathematics (Newton’s infinitesimal calculus, Cantor’s set theory,
Frege’s set theory, …) and in the empirical sciences [30, 43, 44, 47, 51–53, 62].
Actually, it is not difficult to find more examples, especially in creative episodes, for
example in scientists’ notes.

What scientists do in such situations, is look for a consistent replacement for T .
As history teaches, however, they do not look for a consistent replacement from
scratch. To the contrary, they reason from T , trying to locate the problems in it.
This reasoning obviously cannot proceed in terms of CL because CL validates Ex
Falso Quodlibet: A,¬A �CL B. So the theory T , viz. its set of theorems CnCL(�)

is trivial; it contains each and every sentence of the language. If CL is the criterion,
all one can do is give up the theory and restart from scratch; but scientists do not do
so. The upshot is that one should reason about T in terms of a paraconsistent logic,
a logic that allows for non-trivial inconsistent theories. Note that any such logic has
a semantics that contains inconsistent models—models that verify inconsistent sets
of sentences.

It is useful to make a little excursion at this point because many people under-
estimate the difficulties arising in inconsistent situations. Time and again, people
argue that one should figure out where the inconsistency resides and next modify
the theory in such a way that the inconsistency disappears. They apparently think
that it is easy to separate the consistent parts of a theory from the inconsistencies.
Next, if they are very uninformed, they will think that one may choose one half
of the inconsistency (or inconsistencies) and add that to the consistent part. If they
are a bit better informed, they will realize that a conceptual shift may very well
be required, that the new consistent theory should only contain the important state-
ments from the consistent parts, or even a good approximation of them, and should
only contain an approximation of one of the ‘halves’ of the inconsistencies. What is
wrong with this reasoning, even with the sophisticated version, is that it is in general
impossible to identify the consistent parts of a predicative theory. There is no general
positive test for consistency. Being a consistent set of predicative statements is not
semi-decidable. The set of consistent subsets of a set of predicative statements is not
semi-recursive. So there is no systematic method, no Turing machine, that is able to
identify an arbitrary consistent set as consistent, independent of the number of steps
that one allows the Turing machine (or the person who applies the method) to take.
So the reasoning from an inconsistent theory can only be explicated in terms of a
paraconsistent logic.

Moving from CL to a paraconsistent logic has some drastic consequences. Not
only Ex Falso Quodlibet, but many other rules are invalidated. Which rules will
be invalidated will depend on the chosen paraconsistent logic. If one chooses a
compact Tarski logic inwhich negation is paraconsistent but inwhich all other logical
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symbols have the same meaning as in CL, then Disjunctive Syllogism and several
other rules are definitely invalidated. Incidentally, the weakest compact Tarski logic
in which negation is paraconsistent but not paracomplete5 and in which all other
logical symbols have their CL-meaning is CLuN, to which I return in Sect. 1.3.

Let us first have a look at Disjunctive Syllogism (or rather at one of its forms),
for example A ∨ B,¬A/B. Reasoning about the classical semantics one shows: if
A ∨ B and ¬A are true, then B is true. Here is one version of the reasoning.

1 A ∨ B and ¬A are true supposition
2 A ∨ B is true from 1
3 ¬A is true from 1
4 A is true or B is true from 2
5 A is false from 3
6 B is true from 4 and 5

Reasoning about the paraconsistent semantic leads to a very different result because
5 is not derivable from 3. Indeed, both A and ¬A may be true in a paraconsistent
model. If that is the case, however, then both A ∨ B and ¬A are true even if B is
false. So there are models in which A ∨ B and ¬A are true and B is false.

Remember that we were considering CLuN and paraconsistent extensions of it.
We have seen that Disjunctive Syllogism is invalid in CLuN. Moreover, as Addition
(in particular the variant A/A ∨ B) is valid, extending CLuN with Disjunctive Syl-
logism would make Ex Falso Quodlibet derivable, whence we would be back at CL.
Other CL-rules are also invalid in CLuN, but CLuN may be extended with them.
Double Negation is among those rules, for example the axiom ¬¬A ⊃ A and also
its converse. If A is false, ¬A is bound to be true, but ¬¬A may still be true also.
So some paraconsistent models verify ¬¬A and falsify A. Although ¬¬A ⊃ A is
invalid inCLuN, extendingCLuNwith it results in a paraconsistent logic. This holds
for many CL-theorems, for example ¬(¬A ∧ ¬B) ⊃ (A ∨ B). However, extending
CLuN with several such CL-theorems may again result in CL.

1.3 Paraconsistent Tarski Logics

The basic paraconsistent logicCLuN was already mentioned in the previous section.
It is obtained in two steps. First, full positive logic CL+ is retained. Next, for the
negation, Excluded Middle (� A ∨ ¬A, which is contextually equivalent to � (A ⊃
¬A) ⊃ ¬A) is retained, but Ex Falso Quodlibet is not.6 To avoid confusion, let

5A logic L is paracomplete (with respect to a negation ¬) iff some A may false together with its
negation ¬A; syntactically: iff there are �, A and B such that �, A �L B and �,¬A �L B, but
� �L B.
6In the context of CL+, Excluded Middle together with Ex Falso Quodlibet define the classical
negation.
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me characterize CLuN semantically. It is obtained from the CL-semantics by first
removing the clause for negation—the result of this removal is CL+—and next
adding “If vM(A) = 0, then vM(¬A) = . . .”7

That CLuN contains CL+ warrants that, for example, ¬p �CLuN q ⊃ (¬p ∧ q)

because A �CL+ B ⊃ (A ∧ B). This is because CL+ theorem schemata hold for all
formulas, formulas of the form¬A included. However,CL+ does not have any effect
within such formulas, in otherwordswithin the scopeof a negation symbol.As a result
of this, Replacement of Equivalents is invalid:�CLuN p ≡ (p ∧ p) and�CLuN ¬p ≡
¬p but �CLuN ¬p ≡ ¬(p ∧ p). For the same reason, Replacement of Identicals is
invalid: a = b �CLuN Pa ≡ Pb but a = b �CLuN ¬Pa ≡ ¬Pb. However, it is easy
to extend CLuN with Replacement of Identicals.

In the previous section, I referred several times to CLuN-models. The reader
may wonder what these models precisely look like. For all that was said until now,
the CLuN-semantics is indeterministic. Excluded Middle is retained, vM(¬A) = 1
whenever vM(A) = 0, but the converse obviously cannot hold because, if it did,
Ex Falso Quodlibet would be valid. It is not difficult to restore determinism and
the method is interesting because it can be applied rather generally. Two func-
tions play an important role in connection with models. The assignment v is part
of the model itself: M = 〈D, v〉.8 The assignment fixes the ‘meaning’ of non-logical
symbols. Next, the valuation vM fixes the ‘meaning’ of logical symbols. A decent
semantics presupposes a complexity ordering < which is such that if A < B, then
all non-logical symbols that occur in A also occur in B. If the semantics is deter-
ministic, the valuation function defines the valuation value vM(A) in terms of the
assignment function and in terms of valuation values vM(B1), …, vM(Bn) such that
B1 < A, …, Bn < A. So every valuation value vM(A) is a function of assignment
values of formulas B such that B < A and of non-logical symbols that occur in those
B. Actually, a deterministic semantics is the standard. If two models are identical
M = 〈D, v〉 = 〈D′, v′〉 = M ′, whence D = D′ and v = v′, then they better verify
the same formulas. If they do not, then we should describe a semantics in terms of
model variants rather than models. Nevertheless, indeterministic semantic systems
have been around for more than 30 years, never caused any confusion and were the
subject of several interesting systematic studies [3–6].

Theofficial deterministic semantics forCLuN is obtained from the indeterministic
one by replacing the clause “if vM(A) = 0, then vM(¬A) = 1” by

vM(¬A) = 1 iff vM(A) = 0 or v(¬A) = 1 .

Obviously, for this towork, v needs to assign a value to formulas of the form¬A. Note
that vM(¬A) is still not a function of vM(A) in the deterministic CLuN-semantics.
Determinism does not entail truth-functionality.

7So p ∧ ¬q �CL+ ¬q, ∀x¬Px �CL+ ¬Pa, and a = b, Px �CL+ Pb, but a = b,¬Px �CL+
¬Pb.
8Names and notation may obviously be different and the model may be more complex.
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A useful observation is the following. Precisely because, in the two-valued seman-
tics of paraconsistent logics, vM(¬A) is not a function of vM(A), the truth-value of
¬A depends on information not contained in the truth-value of A. Information of
this type must naturally be conveyed by the assignment v. Indeed, a model itself,
viz. M = 〈D, v〉, represents a possible situation (or possible state of the world, etc.),
whereas the valuation describes the conventions by which we define logical sym-
bols in order to build complex statements—formulas at the schematic level—that
enable us to describe the situation. So all information should obviously come from
the model itself—the situation, the world, or however you prefer to call it. Moreover,
in order to handle not only negation gluts, viz. inconsistencies, but gluts and gaps
with respect to any logical symbol, one better lets the assignment map every formula
of the language to the set of truth values {0, 1}.9

Incidentally, the view onmodels presented in the previous paragraph throws some
doubt on claims to the effect that classical negation is not a sensible logical operator,
among other things because it would be tonk-like. Unless a different approach to
logic and models is elaborated, such claims seem not to refer to the situation or
world, but to the way in which we handle language. If that is so, one wonders why
a modification to our logical operators (for example banning classical negation) is
more legitimate than modifying the way in which we handle language.10

As already suggested in the previous section, several CL-theorems (as well as
the corresponding rules) are lost in CLuN. Moreover, some of these are such that
if CLuN is extended with them, even separately, then Ex Falso Quodlibet is deriv-
able, whence we are back to CL, or Ex Falso Quodlibet Falsum (A,¬A � ¬B) is
derivable, whence we are back to something almost as explosive as CL. Disjunctive
Syllogism is such a rule. Other examples of such rules are (full) Contraposition,
Modus Tollens, Reductio ad Absurdum and Replacement of Equivalents. Let me
illustrate the matter for Modus Tollens. In view of A �CLuN B ⊃ A and reflexivity,
B ⊃ A,¬A ∈ CnCLuN({A,¬A}). So extending CLuN with Modus Tollens results
in A,¬A �CLuN ¬B in view of transitivity.

As was also suggested in the preceding section, some CL-theorems and CL-rules
are invalid in CLuN, but adding them (separately) to CLuN results in a richer para-
consistent logic. Among the striking examples are ¬¬A/A; de Morgan properties;
A,¬A � B for non-atomic A; Replacement of Identicals; and so on. Note that some
combinations of such CL-theorems and CL-rules still result in the validity of Ex
Falso Quodlibet or of Ex Falso Quodlibet Falsum.

9Take conjunction as an example. The clause allowing for gluts: vM (A ∧ B) = 1 iff (vM (A) = 1
and vM (B) = 1) or v(A ∧ B) = 1; the one allowing for gaps: vM (A ∧ B) = 1 iff (vM (A) = 1 and
vM (B) = 1) and v(A ∧ B) = 1; the one allowing for both: vM (A ∧ B) = v(A ∧ B).
10I heard the claim that restricting the formation rules of natural language so as to classify “this
sentence is false” as non-grammatical is illegitimate because the sentence is ‘perfect English’. I
also heard the claim that invalidating Disjunctive Syllogism is illegitimate because this reasoning
form is ‘perfectly sound’.
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It still seems useful tomention a result from an almost 35-year-old publication [8].
There is an infinity of logics between the propositional fragments of CLuN and CL.
These logics form a mesh. Some of them are maximally paraconsistent in that every
extension of them is either propositional CL or the trivial logic Tr, characterized by
� �Tr A, in other words CnTr(�) = W . Many propositional paraconsistent logics
have a place in this mesh—exceptions are extensions of CLuN that validate non-
CL-theorems like¬(A ⊃ ¬A).11 Other paraconsistent logics are fragments of logics
in this mesh, for example Priest’s LP, which has no detachable implication. Other
paraconsistent propositional logics are obviously not within the mesh, for example
relevant logics, modal paraconsistent logics, logics that display other gluts or gaps
and so on.

An example of a maximal paraconsistent logic is the propositional fragment
of a logic which is called CLuNs in Ghent because Schütte [59] was the first to
describe that propositional fragment. CLuNs, fragments of it and slight variants of
it were heavily studied and are known under many names [1, 2, 8, 25, 33, 35–
40, 57, 61]. CLuNs is obtained by extending CLuN with axiom schemas to ‘drive
negations inwards’ as well as with an axiom schema that restores Replacement of
Identicals: ¬¬A ≡ A, ¬(A ⊃ B) ≡ (A ∧ ¬B), ¬(A ∧ B) ≡ (¬A ∨ ¬B), ¬(A ∨
B) ≡ (¬A ∧ ¬B), ¬(A ≡ B) ≡ ((A ∨ B) ∧ (¬A ∨ ¬B)), ¬(∀α)A ≡ (∃α)¬A,
¬(∃α)A ≡ (∀α)¬A, and α = β ⊃ (A ⊃ B), in which B is obtained by replac-
ing in A an occurrence of α by β. CLuNs has a nice two-valued semantics and
several other semantic systems, among which a three-valued one, are adequate
for it. I refer the reader elsewhere [25] for this. Priest’s LP is obtained from
CLuNs by removing the axioms and semantic clauses for implication and equiv-
alence and defining the symbols in a non-detachable way: A ⊃ B =df ¬A ∨ B and
A ≡ B =df (A ⊃ B) ∧ (B ⊃ A).

Several paraconsistent logics having been described, we may now return to the
original problem and phrase things in a more precise way.

1.4 The Original Problem Revisited

We considered a T = 〈�, CL〉 that turned out inconsistent. T itself is obviously too
strong, viz. trivial, to offer a sensible view on ‘what T was intended to be’. But
we know a way to avoid triviality: replace CL by a paraconsistent logic. So let
us pick CLuN or any other paraconsistent Tarski logic. For nearly all sensible �,
T ′ = 〈�, CLuN〉 offers a non-trivial interpretation of ‘what T was intended to be’.
A little reflection reveals, however, that this T ′ is too weak.

A toy example will be helpful. Specify the� in T to be�1 = {p, q,¬p ∨ r,¬q ∨
s,¬q}. Note that � �CLuN s and � �CLuN r . However, there seems to be a clear dif-
ference between p and q. Intuitively speaking, �1 obviously requires that q behaves

11This formula is CL-equivalent to A but not CLuN-equivalent to it.
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inconsistently but does not require that p behaves inconsistently. However, and this
is interesting, CLuN leads to exactly the same insight. Indeed, �1 �CLuN q ∧ ¬q
whereas �1 �CLuN p but �1 �CLuN ¬p. Let us see whether something interesting
can be done with the help of this apparently interesting distinction.

As p and ¬p ∨ r are T -theorems, r was intended as a T -theorem. Similarly, as
q and ¬q ∨ s are T -theorems, s was intended as a T -theorem. However, s better be
not a T -theorem. Indeed, intuitively and by CLuN, q and ¬q ∨ A are T -theorems
for every A. So if, relying q, we obtain the conclusion s from ¬q ∨ s, then, by
exactly the same move we obtain the conclusion A from ¬q ∨ A. The justification
for deriving s justifies deriving every formula A because ¬q ∨ A is just as much a
CLuN consequence of�1 as is¬q ∨ s. In other words, this kind of reasoning leads to
triviality. The matter is very different in the case of r . Indeed, r can be a T -theorem.
Relying on p one obtains the conclusion r from¬p ∨ r and there is no other formula
of the form¬p ∨ A to which the samemove might sensibly be applied.12 A different
way to phrase the matter is by saying that applications of Disjunctive Syllogism of
which q is theminor result in triviality, but that applications of Disjunctive Syllogism
ofwhich p is theminor do not result in triviality. The reason for the difference is clear:
�1 requiresq to behave inconsistently, but does not require p to behave inconsistently.

One might take that the preceding paragraphs led to the following insight: what
was intended as aT -theoremand canbe retained as a T -theorem, should be retained as
a T -theorem. Alas, this will not do. Consider another toy example for the non-logical
axioms: �2 = {¬p,¬q, p ∨ r, q ∨ s,¬t, u ∨ t, p ∨ q}. Clearly, r was intended as a
theorem and indeed it can be retained. However, then q, which was also intended as
a theorem, should by the same reasoning also be retained. Moreover, if q is retained,
then so is q ∨ A for every formula A. So, although s was also intended as a theorem,
it cannot be retained because, relying on ¬q we cannot only obtain s from q ∨ s, but
we can obtain every formula A from q ∨ A.

That may seem all right at first sight, but it is not. If you take a closer look at
�2, you will see that p and q are strictly on a par. The reasoning in the preceding
paragraph relied on the consistent behaviour of p to derive s and q and hence to
find out that q behaves inconsistently. However, one may just as well start off by
relying on the consistent behaviour of q to obtain s as well as p and hence to find out
that p behaves inconsistently. So the insight mentioned at the outset of the previous
paragraph should be corrected. Here is the correct version: what was intended as a
T -theorem and can be retained as a T -theorem in view of a systematic and formal
account, should be retained as a T -theorem. A little reflection on the part of the
reader will readily reveal that neither r nor s can be retained as consequences of �2,
but that u can be so retained.

What is the upshot? We want to replace T by a consistent theory. Obviously,
there is no point in pursuing a consistent replacement for a trivial theory—every

12As q is CLuN-derivable from the premises, so is ¬p ∨ q. However, relying on p to repeat the
move described in the text delivers a formula that was already derivable, viz. q. The same story may
be retold for every CLuN-consequence of �1 and each time the move will be harmless because
nothing new will come out of it.
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consistent theory is equally qualified. Moreover, T ′, in which CL is replaced by
CLuN will be non-trivial for most �, but is clearly too weak. However, for most
� one may strengthen T ′ by adding certain instances of applications of CL-rules
that are CLuN-invalid. These instances of applications may be added to T ′ in view
of the fact that a systematic distinction can be made between formulas that behave
consistently with respect to � and others that do not. In this way one obtains T “in
its full richness, except for the pernicious consequences of its inconsistency”; one
obtains an ‘interpretation’ of T that is as consistent as possible, and also as much as
possible in agreement with the intention behind T .

Of course the matter should still be made precise. This will be done in the next
section, but a central clue is the following:

¬A, A ∨ B �CLuN B but ¬A, A ∨ B �CLuN B ∨ (A ∧ ¬A) .

In view of this, one may consider formulas of the form A ∧ ¬A as false, unless
and until proven otherwise—unless it turns out that the premises do not permit to
consider them as false on systematic grounds. In the first toy example �1 requires
that q ∧ ¬q is true, but not that p ∧ ¬p is true:�1 �CLuN q ∧ ¬q whereas �1 �CLuN

p ∧ ¬p. Relying on the presumed falsehood of p ∧ ¬p, wemay take r to be true. The
second toy example shows that the matter is slightly more complicated: �2 �CLuN

(p ∧ ¬p) ∨ (p ∧ ¬p) whereas neither �2 �CLuN p ∧ ¬p nor �2 �CLuN p ∧ ¬p.
We shall deal with this in the next section.

In order to avoid circularity, it is essential to distinguish between CLuN-
consequences of a premise set anddefeasible consequences derived in viewofCLuN-
consequences. Which formulas behave consistently with respect to a given premise
set, will typically be decided in terms of the CLuN-consequences of �.

1.5 Dynamic Proofs

Dynamic proofs are a typical feature of adaptive logics. The logics were ‘discov-
ered’ in terms of the proofs. In the first paper written on the topic [10], not the first
published, only a rather clumsy semantics was available. The semantics for what
became later known as the Minimal Abnormality strategy was described in an article
[9] that was written 6 years later but published earlier. A decent semantics for the
Reliability strategy appears only in [12]. Dynamic proofs are also typical for adaptive
logics because nearly no other approaches to defeasible reasoning present proofs and
certainly not proofs that resemble Hilbert proofs. A theoretic account of static proofs
as well as dynamic proofs, which turn out to be a generalization of the former, is
published [21]; a more extensive account is available on the web [24, Sect. 4.7].

Let us, very naively, have a look at some examples of dynamic proofs. More
precise definitions follow in Sect. 1.7, but obtaining a clear and intuitive insight may
be more important for the reader. Let us start with a dynamic proof from �1. First
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have a look at stage 7 of the proof—a stage is a sequence of lines; think about stage
0 as the empty sequence and let the addition of a line to stage n result in stage n + 1.

1 p Prem ∅
2 q Prem ∅
3 ¬p ∨ r Prem ∅
4 ¬q ∨ s Prem ∅
5 ¬q Prem ∅
6 r 1, 3; RC {p ∧ ¬p}
7 s 2, 4; RC {q ∧ ¬q}
So the premises were introduced and next two conditional steps were taken. Line 6
informs us that r is derivable on the condition that p ∧ ¬p is false and line 7 that
s is derivable on the condition that q ∧ ¬q is false. Incidentally, a line with a non-
empty condition corresponds nicely and directly with a line from a static proof—in
the present case a Hilbert-style CLuN-proof. The condition, �, of a line is always a
finite set of contradictions.Where a line of the dynamic proof contains a line at which
A is derived on the condition �, the corresponding static CLuN-proof contains a
line at which A ∨ ∨

(�) is derived—as expected,
∨

(�) is the disjunction of the
members of �. So in a sense stage 7 of this dynamic proof is nothing but a static
proof in disguise. Note that the rule applied at lines 6 and 7 is called RC (conditional
rule) because, as explained, a formula A ∨ ∨

(�) is CLuN-derivable from previous
members of the proof, but � is pushed into the condition.

The way in which dynamics is introduced appears from the continuation of the
proof. I do not repeat 1–5, which merely introduce the premises.

6 r 1, 3; RC {p ∧ ¬p}
7 s 2, 4; RC {q ∧ ¬q} �
8 q ∧ ¬q 2, 5; RU ∅
At stage 8 of the proof, q ∧ ¬q is unconditionally derived, viz. at line 8. So the
supposition of line 7, viz. that {q ∧ ¬q} is false, cannot be upheld. As a result, line
7 is marked, which means that its formula is considered as not derived from the
premise set �1.13 Incidentally, the rule applied at line 8 is called RU (unconditional
rule) because (the formula of) 8 is a CLuN-consequence of (the formulas of) 2 and 5.

So the dynamics is controlled by marks. Which lines are marked or unmarked is
decided by a marking definition, which is typical for a strategy. More information
on this follows in Sect. 1.7. For now, it is important that the reader understands why
line 7 is marked and other lines are unmarked. As far as this specific proof stage is
concerned, nothing interesting happens when the proof is continued. No mark will
be removed or added to any of these 8 lines.14 Incidentally, the only line that might

13Do not read the “not derived” as “not derivable”. Indeed, a formula may be derivable in several
ways from the same premise set.
14A more accurate wording requires that one adds: in a proof from �1 that extends the present stage
8. Indeed, the logic we are considering is non-monotonic. So extending the premise set may result
in line 6 being marked.
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become marked is line 6. The formulas derived on lines with an empty condition
are CLuN-consequences of the premises. These are the stable consequences of the
premise set. The marks pertain to the supplementary, defeasible consequences of the
premise set.

How can I be so sure that the marks of lines 1–8 will not be changed in an
extension of the proof from �1? The example is propositional and propositional
CLuN is decidable in the same sense as propositional CL. It is easy enough to prove
that q ∧ ¬q is the only contradiction that is CLuN-derivable from �1.15 Beware. As
is the case for CL, only some fragments of CLuN are decidable. So arguing that
a predicative proof is stable with respect to certain lines will often be much more
complicated than in the present case.

Before we proceed, allow me to summarize that the two components governing
dynamic proofs are rules (of inference) and the marking definition. The rules are
applied at will by the people who devise the proof—if they are smart, they will follow
a certain heuristics. As we shall see, the marking definition operates independently
of any human intervention. In view of the stage of the proof, the marking definition
determines which lines are marked.

When we consider more examples, a little complication will catch our attention.
Here is a dynamic proof from �2 = {¬p,¬q, p ∨ r, q ∨ s,¬t, u ∨ t, p ∨ q}.

1 ¬p PREM ∅
2 ¬q PREM ∅
3 p ∨ r PREM ∅
4 q ∨ s PREM ∅
5 ¬t PREM ∅
6 u ∨ t PREM ∅
7 p ∨ q PREM ∅
8 r 1, 3;RC {p ∧ ¬p} √
9 s 2, 4;RC {q ∧ ¬q} √
10 u 5, 6;RC {t ∧ ¬t}
11 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 2, 7;RC ∅

At stage 10 of the proof—when the proof consists of lines 1–10 only—no line is
marked. At stage 11, however, lines 8 and 9 are both marked. Why is that? Line
11 gives us the information that either p or q behaves inconsistently on �2, but
does not inform us which of both behaves inconsistently. So a natural reaction is
to consider both p ∧ ¬p and q ∧ ¬q as unreliable. This is the reaction that agrees
with the Reliability strategy—we shall come across other strategies later. According
to the Reliability strategy a line is marked if one of the members of its condition
is unreliable. At this point in the paper, consider the unreliable formulas as the

15The reader might think that, as p is also a CLuN-consequence of �1, (p ∧ q) ∧ ¬(p ∧ q) is also
a CLuN-consequence of �1. This however is mistaken. ¬q �CLuN ¬(p ∧ q).



1 Tutorial on Inconsistency-Adaptive Logics 15

disjuncts of the minimal disjunctions of contradictions. If the “minimal” was not
there, Addition would cause every contradiction to be unreliable as soon as one
contradiction is unreliable.

In both example proofs, some lines were unmarked at a stage and marked at a
later stage. The converse move is also possible, as is illustrated by a proof from
�3 = {(p ∧ q) ∧ t,¬p ∨ r,¬q ∨ s,¬p ∨ ¬q, t ⊃ ¬p}.
1 (p ∧ q) ∧ t PREM ∅
2 ¬p ∨ r PREM ∅
3 ¬q ∨ s PREM ∅
4 ¬p ∨ ¬q PREM ∅
5 t ⊃ ¬p PREM ∅
6 r 1, 2; RC {p ∧ ¬p} √
7 s 1, 3; RC {q ∧ ¬q} √
8 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 4; RU ∅
Both lines 6 and 7 are marked at stage 8 because (p ∧ ¬p) ∨ (q ∧ ¬q) is a minimal
disjunction of contradictions that is derived at the stage. However, look what happens
if stage 9 looks as follows—I do not repeat 1–5.

6 r 1, 2; RC {p ∧ ¬p} √
7 s 1, 3; RC {q ∧ ¬q}
8 (p ∧ ¬p) ∨ (q ∧ ¬q) 1, 4; RU ∅
9 p ∧ ¬p 1, 5; RU ∅
At stage 9 of this proof, (p ∧ ¬p) ∨ (q ∧ ¬q) is not a minimal disjunction of abnor-
malities because (the ‘one disjunct disjunction’) p ∧ ¬p was derived. We knew
already that either p ∧ ¬p or q ∧ ¬q was unreliable and now obtain the more spe-
cific information that it is actually p ∧ ¬p that is unreliable. So q ∧ ¬q is off the
hook, whence line 7 is unmarked. Stage 9 of this proof is stable: no mark will be
removed or added to lines 1–9 if the stage is extended. Actually, nothing interesting
happens in any such extension.

It is time to make the marking more precise. Dynamic proofs need to explicate the
dynamic reasoning. So, at the level of the proofs, the dynamics needs to be controlled.
The central features for this control are the conditions and the marking definition.
The way in which conditions are introduced should be clear by now—precise generic
rules follow in Sect. 1.7. However, how does one precisely figure out which lines are
marked?

Only some adaptive logics are inconsistency-adaptive. So allow me to use a
slightlymore general terminology. The formulas that occur in conditions of lines—in
the previous examples these were contradictions—are called abnormalities and � is
the usual name for the set of abnormalities.

A classical disjunction of abnormalities will be called a Dab-formula—it goes
without saying that a disjunction of formulas is always a disjunction of finitely
many formulas. I shall often write Dab(�) to refer to the classical disjunction of the
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members of a finite � ⊂ �. A Dab-formula that is derived in a proof stage by RU at
a line with condition ∅will be called a inferred Dab-formula of the proof stage. Note
that a Dab-formula introduced by Prem is not an inferred Dab-formula in the sense
of this definition. Dab(�) is a minimal inferred Dab-formula of a proof stage if it is
an inferred Dab-formula of the proof stage and there is no 	 ⊂ � such that Dab(	)

is an inferred Dab-formula of the proof stage. Where Dab(�1), . . . , Dab(�n) are
the minimal inferred Dab-formulas of stage s, the set of unreliable formulas of stage
s is Us(�) = �1 ∪ . . . ∪ �n . Where 	 is the condition of line i , line i is marked iff
	 ∩ Us(�) �= ∅. This is the marking definition for the Reliability strategy—every
strategy has its own marking definition.

Marks come and go. As they determine which formulas are considered as derived,
derivability seems to be unstable; it changes from stage to stage. Let this unstable
derivability be called derivability at a stage. Apart from it, we want a stable form
of derivability, which is called final derivability and is noted as � �CLuNr A. There
are several ways to define final derivability. At this point in my story, the following
seems most handy. If A is derived at an unmarked line i of a stage of a proof from
� and the stage is stable with respect to i—line i is not marked in any extension of
the stage—then A is finally derived from �.

Just as we wanted the stable entity called final derivability, we also want to have
some further entities that refer to what is CLuN-derivable from the premise set �

rather than referring to a stage of a proof from �.

Definition 1.1 Dab(�) is a minimal Dab-consequence of � iff � �CLuN Dab(�)

and, for all �′ ⊂ �, � �CLuN Dab(�′).

Definition 1.2 Where Dab(�1), . . . , Dab(�n) are the minimal Dab-consequences
of �, U (�) = �1 ∪ . . . ∪ �n .

The set U (�) is defined in view of the Reliability strategy. A very different set
will be introduced later in view of Minimal Abnormality.

The reader may expect a section on semantics at this point, but I shall only deal
with the semantics as defined by the standard format.

1.6 The Standard Format SF

There is a large diversity of adaptive logics. Every new adaptive logic requires that
one delineates its syntax (proof theory), its semantics (models), and, what is the hard
bit, its metatheory (study of properties of the system). This suggested the search for
a common structure for a large set of adaptive logics, if possible for all of them. The
idea was that the structure would take care of most of the work beforehand, that the
proof theory and semantics would be defined in terms of the common structure and
that the metatheoretic properties would be provable from the structure. The common
structure would be a function of certain parameters and specifying these would result
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in a specific adaptive logicwith all required features available. This common structure
is called the standard format.

An adaptive logic AL in Standard Format is defined as a triple comprising16:

• a lower limit logic LLL: a logic that has static proofs and contains classical dis-
junction,

• a set of abnormalities �, a set of formulas that share a (possibly restricted) logical
form or a union of such sets,

• a strategy (Reliability, Minimal Abnormality, …).

That the lower limit logic contains a classical disjunction means that one of the
logical symbols is implicitly or explicitly defined in such away that it has themeaning
of theCL-disjunction. Explaining the notion of static proofs goes beyond the scope of
the present paper, but the reader may for all useful purposes replace the requirement
by: a formal and compact Tarski logic.

“Abnormality” is a technical term, different adaptive logics require that differ-
ent formulas are seen as abnormalities. Only the abnormalities of corrective adap-
tive logics—those with LLL weaker than CL—are CL-falsehoods. In nearly all
inconsistency-adaptive logics, existentially closed contradictions are abnormalities.
Also other formulas may belong to the �, for example Universally closed contra-
dictions or formulas of the form A ∧ ¬(A ∨ B). Some examples of restricted and
unrestricted logical forms will be presented below.

Adaptive strategies will be discussed at some length later in this section.
If the lower limit logicLLL is extended with a set of rules or axioms that trivialize

abnormalities (and no other formulas), then one obtains a logic called the upper limit
logic ULL. Examples follow but it should be clear by now that, for all A ∈ � and
for all B ∈ W , A/B should be a derivable rule in ULL. As � is characterized by a
logical form, it is in possible to obtain ULL by extending LLL with a set of rules.

I shall suppose that a characteristic semantics ofLLL is available. This will enable
me to define the semantics of AL in terms of the standard format. The LLL-models
that verify nomember of� form a semantics forULL.17 A premise set that hasULL-
models is often called a normal premise set; it does not require that any abnormality
is true.

It is instructive to have a closer look at the difference between ULL and AL.
ULL extends LLL by validating some further rules of inference. AL extends LLL
by validating certain applications ofULL-rules. The point is easily illustrated in con-
nection to Disjunctive Syllogism.CL validates this rule, while in the (not yet precise)
toy examples of proofs from Sect. 1.5, some but not all applications of Disjunctive
Syllogism were sanctioned as correct. As those examples clarify, it depends on the
premises—or should one say on the content of the premises—which applications

16Names like LLL, AL, ALr, and ULL are used as generic names to define the standard format
and to study its features. The names refer to arbitrary logics that stand in a certain relation to each
other.
17Similarly for those models together with the trivial model—the model that verifies all formulas.
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turn out valid. In other words, adaptive logics display a form of content guidance.18

A different way of phrasing the matter is that CnAL(�) comes to CnLLL(�) extended
with what is derivable if as many abnormalities are false as the premises permit. This
phrase is obviously ambiguous, but strategies disambiguate it, as we shall see.

An important supposition on the language L of AL is that it contains a classical
disjunction. It may of course contain several disjunctions, but one of them should be
classical. In the sequel of this paper, the symbol ∨̂ will always refer to this disjunc-
tion.19 Similarly, ∼ will always refer to a classical negation. This is not supposed to
occur in every considered language schema.

As we already have seen in Sect. 1.5, we need ∨̂ for Dab-formulas—but see
Sect. 1.11 for an alternative. In Sect. 1.5, I also introduced inferred Dab-formulas
and minimal inferred Dab-formulas of a proof stage as well as the notation Dab(�).

Let us consider some examples of adaptive logics. Expressions ∃A will denote
the existential closure of A, viz. A preceded by an existential quantifier over every
variable free in A.

The adaptive logic CLuNm is defined by the following triple:

• lower limit logic: CLuN,
• set of abnormalities � = {∃(A ∧ ¬A) | A ∈ Fs}
• strategy: Minimal Abnormality.

The upper limit logic is CL, obtained by extending CLuN with, for example, the
axiom schema (A ∧ ¬A) ⊃ B.20 It is not difficult to prove that the CLuN-models
that verify no abnormality form a semantics of CL.

The logic CLuNsm is defined by:

• lower limit logic: CLuNs,
• set of abnormalities � = {∃(A ∧ ¬A) | A ∈ Fa

s }
• strategy: Minimal Abnormality,

in whichFa
s is the set of atomic (open and closed) formulas of Ls—atomic formulas

are those in which no logical symbols occur except possibly for identity=. The upper
limit logic isCL, obtained by extendingCLuNswith, for example, the axiom schema
(A ∧ ¬A) ⊃ B.21 Semantically: theCLuNs-models that verify no abnormality form
a CL-semantics.

18The notion played a rather central role in discussions on scientific heuristics. A very clear and
argued position was for example proposed by Dudley Shapere [60].
19This obviously does not mean that ∨̂ is a symbol of the language. It is a conventional name to
refer to a symbol of the language that has the meaning of classical disjunction. It may even refer
ambiguously: if there are several classical disjunctions, ∨̂ need not always refer to the same one.
20Axioms are suppose to be closed formulas. So A ∈ Ws . The idea is that CLuN-valid rules are
fully retained in the extension. One of these rules is: from � A(a) ⊃ B to derive � ∃x A(x) ⊃ B
provided a does not occur in B.
21The axiom schema may be restricted to A ∈ Wa

s , but there is no need to do so.
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Some further examples are easy variants. CLuNr is like CLuNm, except that
Minimal Abnormality is replaced by Reliability. LPm is like CLuNsm except that
CLuNs is replaced by Priest’s LP—see Sect. 1.3 for the relation between CLuNs
and LP.

In these examples LLL or the strategy are varied. What about the difference
between the set of abnormalities of CLuNm as opposed to CLuNsm? In a sense this
is just a variation. Yet, if the �s are exchanged, the resulting variant of CLuNm is
still an inconsistency-adaptive logic, but its ULL is weaker than CL—a feature that
is difficult to justify with respect to applications. If the� are exchanged, the resulting
variant of CLuNsm is also still an inconsistency-adaptive logic, but it is a flip-flop
logic—see Sect. 1.12, where also more variation will be considered.

If an adaptive logic is in standard format, this fact (not specific properties of the
logic) provides it with:

• its proof theory,
• its semantics (models),
• most of its metatheory (including soundness and completeness).

So the standard format provides guidance in devising new adaptive logics. Moreover,
once a new adaptive logic is phrased in standard format, most of the hard work is
over.

1.7 SF: Proof Theory

As we already know, every adaptive logic requires a set of rules of inference and
a marking definition. The rules of inference are determined by LLL and �; the
marking definition is determined by � and by the strategy. We also know that the
dynamics of the proofs is controlled by attaching conditions (finite subsets of �) to
derived formulas, or, if you prefer, to lines at which formulas are derived. We also
have seen what is special about annotated dynamic proofs: their lines consist of four
rather than three elements: a number, a formula, a justification and a condition. The
rules govern the addition of lines, the marking definition determines for every line
i at every stage s of a proof whether i is unmarked or marked— this means that it
is respectively IN or OUT—in view of (i) the condition of i and (ii) the minimal
inferred Dab-formulas of stage s.

The rules of inference can be presented as three generic rules. Let� be the premise
set and let

A �

abbreviate that A occurs in the proof on the condition �.
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Prem If A ∈ �: … …
A ∅

RU If A1, . . . , An �LLL B: A1 �1

… …
An �n

B �1 ∪ . . . ∪ �n

RC If A1, . . . , An �LLL B ∨̂ Dab(	): A1 �1

… …
An �n

B �1 ∪ . . . ∪ �n ∪ 	

Only RC introduces new non-empty conditions (adds a non-empty set to the con-
ditions of the local premises). Prem introduces empty conditions and RU merely
carries conditions over and adds them up in a union.

Easy illustrations: RU may be applied in view of p, p ⊃ q �CLuN q; RC may
be applied in view of p,¬p ∨ q �CLuN q ∨̂ (p ∧ ¬p). In view of the formulation
of the antecedent of RU and RC, all rules are finitary—have a finite number of
local premises. This formulation does not in any way affect the adaptive logic AL
because LLL is a compact logic anyway. Incidentally, it is instructive to review the
toy examples in terms of the precise formulation of the rules.

Marking definitions proceed in terms of the minimal inferred Dab-formulas at the
proof stage.Where Dab(�1), . . . , Dab(�n) are the minimal inferred Dab-formulas
at stage s, Us(�) = �1 ∪ . . . ∪ �n .

Definition 1.3 Marking for Reliability: where � is the condition of line i , line i is
marked at stage s iff � ∩ Us(�) �= ∅.

The idea behind the definition consists of two steps. First, the minimal inferred
Dab-formulas of stage s of a proof from � provide, at stage s, the best available
estimate of the minimal Dab-consequences of�. So their disjuncts, which are abnor-
malities, cannot be safely considered as false. Next, the formula of a line can only
be considered as derived (by present insights) if the abnormalities in the condition
of the line can be considered as false. If they cannot, the line is marked.

However sensible this may sound, Minimal Abnormality offers a more refined
approach. A choice set of 
 = {�1,�2, . . .} is a set that contains one element out
of each member of 
. A minimal choice set of 
 is a choice set of 
 of which no
proper subset is a choice set of 
. Where Dab(�1), . . . , Dab(�n) are the minimal
inferred Dab-formulas of stage s, �s(�) is the set of the minimal choice sets of
{�1, . . . ,�n}.
Definition 1.4 Marking for Minimal Abnormality: where A is the formula and � is
the condition of line i , line i is marked at stage s iff (i) there is no ϕ ∈ �s(�) such
that ϕ ∩ � = ∅, or (ii) for some ϕ ∈ �s(�), there is no line at which A is derived
on a condition 	 for which ϕ ∩ 	 = ∅.


