
Pro Spark
Streaming

The Zen of Real-time Analytics using
Apache Spark
—
Zubair Nabi

 Pro Spark Streaming
 The Zen of Real-Time Analytics

Using Apache Spark

 Zubair Nabi

Pro Spark Streaming: The Zen of Real-Time Analytics Using Apache Spark

Zubair Nabi
Lahore, Pakistan

ISBN-13 (pbk): 978-1-4842-1480-0 ISBN-13 (electronic): 978-1-4842-1479-4
DOI 10.1007/978-1-4842-1479-4

Library of Congress Control Number: 2016941350

Copyright © 2016 by Zubair Nabi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system,
for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only
under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use
must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Developmental Editor: Matthew Moodie
Technical Reviewer: Lan Jiang
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, James DeWolf, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham, Susan McDermott,
Matthew Moodie, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Rita Fernando
Copy Editor: Tiffany Taylor
Compositor: SPi Global
Indexer: SPi Global

Cover image designed by Freepik.com

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com ,
or visit www.springer.com . Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text is available to readers at
 www.apress.com . For detailed information about how to locate your book’s source code, go to
 www.apress.com/source-code/ .

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

 To my father, who introduced me to the sanctity of the written word, who
taught me that erudition transcends mortality, and who shaped me

into the person I am today. Thank you, Baba.

v

Contents at a Glance

About the Author ... xiii

About the Technical Reviewer ...xv

Acknowledgments ...xvii

Introduction ..xix

 ■Chapter 1: The Hitchhiker’s Guide to Big Data ... 1

 ■Chapter 2: Introduction to Spark ... 9

 ■Chapter 3: DStreams: Real-Time RDDs .. 29

 ■Chapter 4: High-Velocity Streams: Parallelism and Other Stories 51

 ■Chapter 5: Real-Time Route 66: Linking External Data Sources 69

 ■Chapter 6: The Art of Side Effects .. 99

 ■Chapter 7: Getting Ready for Prime Time .. 125

 ■Chapter 8: Real-Time ETL and Analytics Magic ... 151

 ■Chapter 9: Machine Learning at Scale ... 177

 ■Chapter 10: Of Clouds, Lambdas, and Pythons .. 199

Index ... 227

vii

Contents

About the Author ... xiii

About the Technical Reviewer ...xv

Acknowledgments ...xvii

Introduction ..xix

 ■Chapter 1: The Hitchhiker’s Guide to Big Data ... 1

 Before Spark .. 1

 The Era of Web 2.0 .. 2

 Sensors, Sensors Everywhere .. 6

 Spark Streaming: At the Intersection of MapReduce and CEP ... 8

 ■Chapter 2: Introduction to Spark ... 9

 Installation .. 10

 Execution .. 11

 Standalone Cluster ... 11

 YARN ... 12

 First Application ... 12

 Build ... 14

 Execution .. 15

 SparkContext .. 17

 Creation of RDDs .. 17

 Handling Dependencies .. 18

 Creating Shared Variables .. 19

 Job execution ... 20

 ■ CONTENTS

viii

 RDD .. 20

 Persistence ... 21

 Transformations .. 22

 Actions .. 26

 Summary .. 27

 ■Chapter 3: DStreams: Real-Time RDDs .. 29

From Continuous to Discretized Streams ... 29

First Streaming Application .. 30

Build and Execution .. 32

StreamingContext ... 32

DStreams .. 34

The Anatomy of a Spark Streaming Application ... 36

Transformations .. 40

Summary .. 50

 ■Chapter 4: High-Velocity Streams: Parallelism and Other Stories 51

 One Giant Leap for Streaming Data .. 51

 Parallelism.. 53

 Worker .. 53

 Executor .. 54

 Task .. 56

 Batch Intervals ... 59

 Scheduling ... 60

 Inter-application Scheduling ... 60

 Batch Scheduling .. 61

 Inter-job Scheduling ... 61

 One Action, One Job.. 61

 Memory .. 63

 Serialization .. 63

 Compression ... 65

 Garbage Collection ... 65

 ■ CONTENTS

ix

 Every Day I’m Shuffl ing .. 66

 Early Projection and Filtering ... 66

 Always Use a Combiner .. 66

 Generous Parallelism .. 66

 File Consolidation ... 66

 More Memory ... 66

 Summary .. 67

 ■Chapter 5: Real-Time Route 66: Linking External Data Sources 69

Smarter Cities, Smarter Planet, Smarter Everything .. 69

ReceiverInputDStream ... 71

Sockets ... 72

MQTT .. 80

Flume ... 84

Push-Based Flume Ingestion .. 85

Pull-Based Flume Ingestion .. 86

Kafka .. 86

Receiver-Based Kafka Consumer ... 89

Direct Kafka Consumer ... 91

Twitter .. 92

Block Interval ... 93

Custom Receiver .. 93

HttpInputDStream ... 94

Summary .. 97

 ■Chapter 6: The Art of Side Effects .. 99

Taking Stock of the Stock Market .. 99

foreachRDD .. 101

Per-Record Connection ... 103

Per-Partition Connection ... 103

 ■ CONTENTS

x

Static Connection ... 104

Lazy Static Connection ... 105

Static Connection Pool .. 106

Scalable Streaming Storage ... 108

HBase ... 108

Stock Market Dashboard .. 110

SparkOnHBase .. 112

Cassandra ... 113

Spark Cassandra Connector ... 115

Global State .. 116

Static Variables ... 116

updateStateByKey() .. 118

Accumulators .. 119

External Solutions ... 121

Summary .. 123

 ■Chapter 7: Getting Ready for Prime Time .. 125

Every Click Counts .. 125

Tachyon (Alluxio) .. 126

Spark Web UI .. 128

Historical Analysis .. 142

RESTful Metrics .. 142

Logging... 143

External Metrics ... 144

System Metrics .. 146

Monitoring and Alerting .. 147

Summary .. 149

 ■ CONTENTS

xi

 ■Chapter 8: Real-Time ETL and Analytics Magic ... 151

 The Power of Transaction Data Records ... 151

 First Streaming Spark SQL Application .. 153

 SQLContext ... 155

 Data Frame Creation ... 155

 SQL Execution ... 158

 Confi guration .. 158

 User-Defi ned Functions .. 159

 Catalyst: Query Execution and Optimization ... 160

 HiveContext... 160

 Data Frame ... 161

 Types .. 162

 Query Transformations ... 162

 Actions .. 168

 RDD Operations .. 170

 Persistence ... 170

 Best Practices ... 170

 SparkR .. 170

 First SparkR Application ... 171

 Execution .. 172

 Streaming SparkR .. 173

 Summary .. 175

 ■Chapter 9: Machine Learning at Scale ... 177

Sensor Data Storm ... 177

Streaming MLlib Application .. 179

MLlib... 182

Data Types .. 182

Statistical Analysis.. 184

Proprocessing ... 185

 ■ CONTENTS

xii

Feature Selection and Extraction ... 186

Chi-Square Selection .. 186

Principal Component Analysis .. 187

Learning Algorithms ... 187

Classifi cation .. 188

Clustering ... 189

Recommendation Systems ... 190

Frequent Pattern Mining ... 193

Streaming ML Pipeline Application... 194

ML .. 196

Cross-Validation of Pipelines .. 197

Summary .. 198

 ■Chapter 10: Of Clouds, Lambdas, and Pythons .. 199

A Good Review Is Worth a Thousand Ads ... 200

 Google Dataproc ... 200

First Spark on Dataproc Application ... 205

 PySpark .. 212

 Lambda Architecture .. 214

 Lambda Architecture using Spark Streaming on Google Cloud Platform ... 215

 Streaming Graph Analytics ... 222

 Summary .. 225

Index ... 227

xiii

 About the Author

 Zubair Nabi is one of the very few computer scientists who have solved
Big Data problems in all three domains: academia, research, and industry.
He currently works at Qubit, a London-based start up backed by Goldman
Sachs, Accel Partners, Salesforce Ventures, and Balderton Capital, which
helps retailers understand their customers and provide personalized
customer experience, and which has a rapidly growing client base that
includes Staples, Emirates, Thomas Cook, and Topshop. Prior to Qubit,
he was a researcher at IBM Research, where he worked at the intersection
of Big Data systems and analytics to solve real-world problems in the
telecommunication, electricity, and urban dynamics space.

 Zubair’s work has been featured in MIT Technology Review , SciDev ,
 CNET , and Asian Scientist , and on Swedish National Radio, among others.
He has authored more than 20 research papers, published by some
of the top publication venues in computer science including USENIX
Middleware, ECML PKDD, and IEEE BigData; and he also has a number of
patents to his credit.

 Zubair has an MPhil in computer science with distinction from
Cambridge.

xv

 About the Technical Reviewer

 Lan Jiang is a senior solutions consultant from Cloudera. He is an
enterprise architect with more than 15 years of consulting experience,
and he has a strong track record of delivering IT architecture solutions for
Fortune 500 customers. He is passionate about new technology such as
Big Data and cloud computing. Lan worked as a consultant for Oracle, was
CTO for Infoble, was a managing partner for PARSE Consulting, and was a
managing partner for InSemble Inc. prior to joining Cloudera. He earned
his MBA from Northern Illinois University, his master’s in computer
science from University of Illinois at Chicago, and his bachelor’s degree in
biochemistry from Fudan University.

xvii

 Acknowledgments

 This book would not have been possible without the constant support, encouragement, and input of a
number of people. First and foremost, Ammi and Sumaira deserve my neverending gratitude for being the
bedrocks of my existence and for their immeasurable love and support, which helped me thrive under a
mountain of stress.

 Writing a book is definitely a labor of love, and my friends Devyani, Faizan, Natasha, Omer, and Qasim
are the reason I was able to conquer this labor without flinching.

 I cannot thank Lan Jiang enough for his meticulous attention to detail and for the technical rigour and
depth that he brought to this book. Mobin Javed deserves a special mention for reviewing initial drafts of the
first few chapters and for general discussions regarding open and public data.

 Last but by no means least, hats off to the wonderful team at Apress, especially Celestin, Matthew, and
Rita. You guys are the best.

xix

 Introduction

 One million Uber rides are booked every day, 10 billion hours of Netflix videos are watched every month, and
$1 trillion are spent on e-commerce web sites every year. The success of these services is underpinned by Big Data
and increasingly, real-time analytics. Real-time analytics enable practitioners to put their fingers on the pulse
of consumers and incorporate their wants into critical business decisions. We have only touched the tip of the
iceberg so far. Fifty billion devices will be connected to the Internet within the next decade, from smartphones,
desktops, and cars to jet engines, refrigerators, and even your kitchen sink. The future is data, and it is becoming
increasingly real-time. Now is the right time to ride that wave, and this book will turn you into a pro.

 The low-latency stipulation of streaming applications, along with requirements they share with
general Big Data systems—scalability, fault-tolerance, and reliability—have led to a new breed of real-
time computation. At the vanguard of this movement is Spark Streaming, which treats stream processing
as discrete microbatch processing. This enables low-latency computation while retaining the scalability
and fault-tolerance properties of Spark along with its simple programming model. In addition, this gives
streaming applications access to the wider ecosystem of Spark libraries including Spark SQL, MLlib,
SparkR, and GraphX. Moreover, programmers can blend stream processing with batch processing to create
applications that use data at rest as well as data in motion. Finally, these applications can use out-of-the-
box integrations with other systems such as Kafka, Flume, HBase, and Cassandra. All of these features have
turned Spark Streaming into the Swiss Army Knife of real-time Big Data processing. Throughout this book,
you will exercise this knife to carve up problems from a number of domains and industries.

 This book takes a use-case-first approach: each chapter is dedicated to a particular industry vertical.
Real-time Big Data problems from that field are used to drive the discussion and illustrate concepts from
Spark Streaming and stream processing in general. Going a step further, a publicly available dataset from
that field is used to implement real-world applications in each chapter. In addition, all snippets of code
are ready to be executed. To simplify this process, the code is available online, both on GitHub 1 and on the
publisher’s web site. Everything in this book is real: real examples, real applications, real data, and real code.
The best way to follow the flow of the book is to set up an environment, download the data, and run the
applications as you go along. This will give you a taste for these real-world problems and their solutions.

 These are exciting times for Spark Streaming and Spark in general. Spark has become the largest open
source Big Data processing project in the world, with more than 750 contributors who represent more than
200 organizations. The Spark codebase is rapidly evolving, with almost daily performance improvements and
feature additions. For instance, Project Tungsten (first cut in Spark 1.4) has improved the performance of the
underlying engine by many orders of magnitude. When I first started writing the book, the latest version of
Spark was 1.4. Since then, there have been two more major releases of Spark (1.5 and 1.6). The changes in these
releases have included native memory management, more algorithms in MLlib, support for deep learning via
TensorFlow, the Dataset API, and session management. On the Spark Streaming front, two major features have
been added: mapWithState to maintain state across batches and using back pressure to throttle the input rate
in case of queue buildup. 2 In addition, managed Spark cloud offerings from the likes of Google, Databricks, and
IBM have lowered the barrier to entry for developing and running Spark applications.

 Now get ready to add some “Spark” to your skillset!

 1 https://github.com/ZubairNabi/prosparkstreaming .
 2 All of these topics and more will hopefully be covered in the second edition of the book.

https://github.com/ZubairNabi/prosparkstreaming

1© Zubair Nabi 2016
Z. Nabi, Pro Spark Streaming, DOI 10.1007/978-1-4842-1479-4_1

 CHAPTER 1

 The Hitchhiker’s Guide to Big Data

 From a little spark may burst a flame.

 —Dante

 By the time you get to the end of this paragraph, you will have processed 1,700 bytes of data. This number
will grow to 500,000 bytes by the end of this book. Taking that as the average size of a book and multiplying it
by the total number of books in the world (according to a Google estimate, there were 130 million books in
the world in 2010 1) gives 65 TB. That is a staggering amount of data that would require 130 standard, off-the-
shelf 500 GB hard drives to store.

 Now imagine you are a book publisher and you want to translate all of these books into multiple
languages (for simplicity, let’s assume all these books are in English). You would like to translate each line
as soon as it is written by the author—that is, you want to perform the translation in real time using a stream
of lines rather than waiting for the book to be finished. The average number of characters or bytes per line
is 80 (this also includes spaces). Let’s assume the author of each book can churn out 4 lines per minute (320
bytes per minute), and all the authors are writing concurrently and nonstop. Across the entire 130 million-
book corpus, the figure is 41,600,000,000 bytes, or 41.6 GB per minute. This is well beyond the processing
capabilities of a single machine and requires a multi-node cluster. Atop this cluster, you also need a real-time
data-processing framework to run your translation application. Enter Spark Streaming. Appropriately, this
book will teach you to architect and implement applications that can process data at scale and at line-rate.

 Before discussing Spark Streaming, it is important to first trace the origin and evolution of Big Data
systems in general and Spark in particular. This chapter does just that.

 Before Spark
 Two major trends were the precursors to today’s Big Data processing systems, such as Hadoop and Spark:
Web 2.0 applications, for instance, social networks and blogs; and real-time sources, such as sensor
networks, financial trading, and bidding. Let’s discuss each in turn.

 1 Leonid Taycher, “Books of the world, stand up and be counted! All 129,864,880 of you,” Google Books Search , 2010,
 http://booksearch.blogspot.com/2010/08/books-of-world-stand-up-and-be-counted.html .

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-1479-4_1)
contains supplementary material, which is available to authorized users.

http://booksearch.blogspot.com/2010/08/books-of-world-stand-up-and-be-counted.html
http://dx.doi.org/10.1007/978-1-4842-1479-4_1

CHAPTER 1 ■ THE HITCHHIKER’S GUIDE TO BIG DATA

2

 The Era of Web 2.0
 The new millennium saw the rise of Web 2.0 applications , which revolved around user-generated content. The
Internet went from hosting static content to content that was dynamic, with the end user in the driving seat.
In a matter of months, social networks, photo sharing, media streaming, blogs, wikis, and their ilk became
ubiquitous. This resulted in an explosion in the amount of data on the Internet. To even store this data,
let alone process it, an entirely different new of computing, dubbed warehouse-scale computing, 2, 3 was needed.

 In this architecture, data centers made up of commodity off-the-shelf servers and network switches
act as a large distributed system. To exploit economies of scale, these data centers host tens of thousands
of machines under the same roof, using a common power and cooling mechanism. Due to the use of
commodity hardware, failure is the norm rather than the exception. As a consequence, both the hardware
topology and the software stack are designed with this as a first principle. Similarly, computation and data
are load-balanced across many machines for processing and storage parallelism. For instance, Google
search queries are sharded across many machines in a tree-like, divide-and-conquer fashion to ensure low
latency by exploiting parallelism. 4 This data needs to be stored somewhere before any processing can take
place—a role fulfilled by the relational model for more than four decades.

 From SQL to NoSQL
 The size, speed, and heterogeneity of this data, coupled with application requirements, forced the industry
to reconsider the hitherto role of relational database-management systems as the de facto standard. The
relational model, with its Atomicity, Consistency, Isolation, Durability (ACID) properties could not cater to
the application requirements and the scale of the data; nor were some of its guarantees required any longer.
This led to the design and wide adoption of the Basically Available, Soft state, Eventual consistency (BASE)
model. The BASE model relaxed some of the ACID guarantees to prioritize availability over consistency: if
multiple readers/writers access the same shared resource, their queries always go through, but the result
may be inconsistent in some cases.

 This trade-off was formalized by the Consistency, Availability, Partitioning (CAP) theorem. 5, 6 According
to this theorem, only two of the three CAP properties can be achieved at the same time. 7 For instance, if
you want availability, you must forego either consistency or tolerance to network partitioning. As discussed
earlier, hardware/software failure is a given in data centers due to the use of commodity off-the-shelf
hardware. For that reason, network partitioning is a common occurrence, which means storage systems
must trade off either availability or consistency. Now imagine you are designing the next Facebook,
and you have to make that choice. Ensuring consistency means some of your users will have to wait a
few milliseconds or even seconds before they are served any content. On the other hand, if you opt for
availability, these users will always be served content—but some of it may be stale. For example, a user’s
Facebook newsfeed might contain posts that have been deleted. Remember, in the Web 2.0 world, the user
is the main target (more users mean more revenue for your company), and the user’s attention span (and in
turn patience span) is very short. 8 Based on this fact, the choice is obvious: availability over consistency.

 2 IEEE Computer Society, “Web Search for a Planet: The Google Cluster Architecture,” 2003, http://static.
googleusercontent.com/media/research.google.com/en//archive/googlecluster-ieee.pdf .
 3 Luiz André Barroso and Urs Hölzle, The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale
Machines (Morgan& Claypool, 2009), www.morganclaypool.com/doi/abs/ 10.2200/S00193ED1V01Y200905CAC006 .
 4 Jeffrey Dean and Luiz André Barroso, “The Tail at Scale,” Commun. ACM 56, no 2 (February 2013), 74-80.
 5 First described by Eric Brewer, the Chief Scientist of Inktomi, one of the earliest web giants in the 1990s.
 6 Werner Vogels, “Eventually Consistent – Revisited,” All Things Distributed , 2008, www.allthingsdistributed.com/
2008/12/eventually_consistent.html .
 7 ACID and BASE are not binary choices, though. There is a continuum between the two, with many design points.
 8 This attention span is getting shorter because most users now consume these services on the go on mobile devices.

http://static.googleusercontent.com/media/research.google.com/en//archive/googlecluster-ieee.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/googlecluster-ieee.pdf
http://dx.doi.org/10.2200/S00193ED1V01Y200905CAC006
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

CHAPTER 1 ■ THE HITCHHIKER’S GUIDE TO BIG DATA

3

 A nice side property of eventual consistency is that applications can read/write at a much higher
throughput and can also shard as well as replicate data across many machines. This is the model adopted by
almost all contemporary NoSQL (as opposed to traditional SQL) data stores. In addition to higher scalability
and performance, most NoSQL stores also have simpler query semantics in contrast to the somewhat
restrictive SQL interface. In fact, most NoSQL stores only expose simple key/value semantics. For instance,
one of the earliest NoSQL stores, Amazon’s Dynamo, was designed with Amazon’s platform requirements in
mind. Under this model, only primary-key access to data, such as customer information and bestseller lists,
is required; thus the relational model and SQL are overkill. Examples of popular NoSQL stores include key-
value stores, such as Amazon’s DynamoDB and Redis; column-family stores, such as Google’s BigTable (and
its open source version HBase) and Facebook’s Cassandra; and document stores, such as MongoDB.

 MapReduce: The Swiss Army Knife of Distributed Data Processing
 As early as the late 1990s, engineers at Google realized that most of the computations they performed
internally had three key properties:

• Logically simple, but complexity was added by control code.

• Processed data that was distributed across many machines.

• Had divide-and-conquer semantics.

 Borrowing concepts from functional programming, Google used this information to design a library
for large-scale distributed computation, called MapReduce. In the MapReduce model, the user only has to
provide map and reduce functions; the underlying system does all the heavy lifting in terms of scheduling,
data transfer, synchronization, and fault tolerance.

 In the MapReduce paradigm, the map function is invoked for each input record to produce key-value
pairs. A subsequent internal groupBy and shuffle (transparent to the user) group different keys together and
invoke the reduce function for each key. The reduce function simply aggregates records by key. Keys are
hash-partitioned by default across reduce tasks. MapReduce uses a distributed file system, called the Google
File System (GFS), for data storage. Input is typically read from GFS by the map tasks and written back to GFS
at the end of the reduce phase. Based on this, GFS is designed for large, sequential, bulk reads and writes.

 GFS is deployed on the same nodes as MapReduce, with one node acting as the master to keep
metadata information while the rest of the nodes perform data storage on the local file system. To
exploit data locality, map tasks are ideally executed on the same nodes as their input: MapReduce
ships out computation closer to the data than vice versa to minimize network I/O. GFS divvies up files
into chunks/blocks where each chunk is replicated n times (three by default). These chunks are then
distributed across a cluster by exploiting its typical three-tier architecture. The first replica is placed on
the same node if the writer is on a data node; otherwise a random data node is selected. The second
and third replicas are shipped out to two distinct nodes on a different rack. Typically, the number of map
tasks is equivalent to the number of chunks in the input dataset, but it can differ if the input split size is
changed. The number of reduce tasks, on the other hand, is a configurable value that largely depends on
the capabilities of each node.

 Similar to GFS, MapReduce also has a centralized master node, which is in charge of cluster-wide
orchestration and worker nodes that execute processing tasks. The execution flow is barrier controlled:
 reduce tasks only start processing once a certain number of map tasks have completed. This model also
simplifies fault-tolerance via re-execution: every time a task fails, it is simply re-executed. For instance, if
the output of a map task is lost, it can readily be re-executed because its input resides on GFS. If a reduce
task fails, then if its inputs are still available on the local file system of the map tasks (map tasks write their
intermediate state to the local file system, not GFS) that processed keys from the partition assigned to
that reduce task, the input is shuffled again; otherwise, the map tasks need to be selectively or entirely re-
executed. Tasks (map or reduce) whose progress rate is slower than the job average, known as stragglers ,
are speculatively executed on free nodes. Whichever copy finishes first—the original or the speculative

CHAPTER 1 ■ THE HITCHHIKER’S GUIDE TO BIG DATA

4

one—registers its output; the other is killed. This optimization helps to negate hardware heterogeneity. For
 reduce functions, which are associative and commutative, an optional combiner can also be provided; it is
applied locally to the output of each map task. In most cases, this combine function is a local version of the
 reduce function and helps to minimize the amount of data that needs to be shipped across the network
during the shuffle phase.

 Word Count a la MapReduce

 To illustrate the flow of a typical MapReduce job, let’s use the canonical word-count example . The purpose
of the application is to count the occurrences of each word in the input dataset. For the sake of simplicity,
let’s assume that an input dataset—say, a Wikipedia dump—already resides on GFS. The following map and
 reduce functions (in pseudo code) achieve the logic of this application:

 map(k, v):
 for word in v.split(" "):
 emit((word, 1))

 reduce(k, v):
 sum = 0
 for count in v.iterator():
 sum += count
 emit(k, sum)

 Here’s the high-level flow of this execution:

 1. Based on the specified format of the input file (in this case, text) the MapReduce
subsystem uses an input reader to read the input file from GFS line by line. For
each line, it invokes the map function.

 2. The first argument of the map function is the line number, and the second is the
line itself in the form of a text object (say, a string). The map function splits the
line at word boundaries using space characters. Then, for each word, it emits (to
a component, let’s call it the collector) the word itself and the value 1.

 3. The collector maintains an in-memory buffer that it periodically spills to disk.
If an optional combiner has been turned on, it invokes that on each key (word)
before writing it to a file (called a spill file). The partitioner is invoked at this point
as well, to slice up the data into per-reducer partitions. In addition, the keys are
sorted. Recall that if the reduce function is employed as a combiner, it needs to
be associative and commutative. Addition is both, that’s why the word-count
 reduce can also be used as a combiner.

 4. Once a configurable number of map s have completed execution, reduce tasks are
scheduled. They first pull their input from map tasks (the sorted spill files created
by the collector) and perform an n -way merge. After this, the user-provided
 reduce function is invoked for each key and its list of values.

 5. The reduce function counts the occurrences of each word and then emits the
word and its sum to another collector. In contrast to the map collector, this reduce
collector spills its output to GFS instead of the local file system.

CHAPTER 1 ■ THE HITCHHIKER’S GUIDE TO BIG DATA

5

 Google internally used MapReduce for many years for a large number of applications including
Inverted Index and PageRank calculations. Some of these applications were subsequently retired and
reimplemented in newer frameworks, such as Pregel 9 and Dremel. 10 The engineers who worked on
MapReduce and GFS shared their creations with the rest of the world by documenting their work in the form
of research papers. 11, 12 These seminal publications gave the rest of the world insight into the inner wirings of
the Google engine.

 Hadoop: An Elephant with Big Dreams

 In 2004, Doug Cutting and Mike Cafarella, both engineers at Yahoo! who were working on the Nutch search
engine, decided to employ MapReduce and GFS as the crawl and index and, storage layers for Nutch,
respectively. Based on the original research papers, they reimplemented MapReduce and GFS in Java and
christened the project Hadoop (Doug Cutting named it after his son’s toy elephant). Since then, Hadoop
has evolved to become a top-level Apache project with thousands of industry users. In essence, Hadoop
has become synonymous with Big Data processing, with a global market worth multiple billions of dollars.
In addition, it has spawned an entire ecosystem of projects, including high-level languages such as Pig
and FlumeJava (open source variant Crunch); structured data storage, such as Hive and HBase; and data-
ingestion solutions, such as Sqoop and Flume; to name a few. Furthermore, libraries such as Mahout and
Giraph use Hadoop to extend its reach to domains as diverse as machine learning and graph processing.

 Although the MapReduce programming model at the heart of Hadoop lends itself to a large number of
applications and paradigms, it does not naturally apply to others:

• Two-stage programming model: A particular class of applications cannot be
implemented using a single MapReduce job. For example, a top-k calculation
requires two MapReduce jobs: the first to work out the frequency of each word,
and the second to perform the actual top-k ranking. Similarly, one instance of a
PageRank algorithm also requires two MapReduce jobs: one to calculate the new
page rank and one to link ranks to pages. In addition to the somewhat awkward
programming model, these applications also suffer from performance degradation,
because each job requires data materialization. External solutions, such as
Cascading and Crunch, can be used to overcome some of these shortcomings.

• Low-level programming API: Hadoop enforces a low interface in which users have to
write map and reduce functions in a general-purpose programming language such
as Java, which is not the weapon of choice for most data scientists (the core users
of systems like Hadoop). In addition, most data-manipulation tasks are repetitive
and require the invocation of the same function multiple times across applications.
For instance, filtering out a field from CSV data is a common task. Finally, stitching
together a directed acyclic graph of computation for data science tasks requires
writing custom code to deal with scheduling, graph construction, and end-to-end
fault tolerance. To remedy this, a number of high-level languages that expose a SQL-
like interface have been implemented atop Hadoop and MapReduce, including Pig,
JAQL, and HiveQL.

 9 Grzegorz Malewicz et al., “Pregel: A System for Large-Scale Graph Processing,” Proceedings of
SIGMOD ‘10 (ACM, 2010), 135-146.
 10 Sergey Melnik et al., “Dremel: Interactive Analysis of Web-Scale Datasets, Proc. VLDB Endow 3 ,
no. 1-2 (September 2010), 330-339.
 11 Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” Proceedings of
OSDI 04 6 (USENIX Association, 2004), 10.
 12 Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google File System,” Proceedings of SOSP ‘03
(ACM, 2003), 29-43.

