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Introduction

When I first learned about Hive I was working as a consultant on two data warehousing projects. One of
them was in its sixth month of development. We had a team of 12 consultants and we were showing little
progress. The source database was relational but, for some unknown reason, all the constraints such as
primary and foreign key references had been turned off. For all intents and purposes, the source was non-
relational and the team was struggling with moving the data into our highly structured data warehouse. We
struggled with NULL values and building constraints as well as master data management issues and data
quality. The goal at the end of the project was to have a data warehouse that would reproduce reports they
already had.

The second project was smaller but involved hierarchical relationships. For example, a TV has a brand
name, a SKU, a product code, and any number of other descriptive features. Some of these features are
dynamic while others apply to one or more different products or brands. The hierarchy of features would be
different from one brand to another. Again we were struggling with representing this business requirement
in a relational data warehouse.

The first project represented the difficulty in moving from one schema to another. This problem had to
be solved before anyone could ask any questions and, even then the questions had to be known ahead of
time. The second project showed the difficulty in expressing business rules that did not fit into a rigid data
structure. We found ourselves telling the customer to change their business rules to fit the structure.

When I first copied a file into HDFS and created a Hive table on top of the file, I was blown away by
the simplicity of the solution yet by the far-reaching impact it would have on data analytics. Since that
first simple beginning, I have seen data projects using Hive go from design to real analytic value built in
weeks, which would take months with traditional approaches. Hive and the greater Hadoop ecosystem is
truly a game-changer for data driven companies and for companies who need answers to critical business
questions.

The purpose of this book is the hope that it will provide to you the same “ah-ha” moment I experienced.
The purpose is to give you the foundation to explore and experience what Hive and Hadoop have to offer
and to help you begin your journey into the technology that will drive innovation for the next decade or
more. To survive in the technology field, you must constantly reinvent yourself. Technology is constantly
travelling forward. Right now there is a train departing; welcome aboard.
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CHAPTER 1

Setting the Stage for Hive: Hadoop .

By now, any technical specialist with even a sliver of curiosity has heard the term Hadoop tossed around

at the water cooler. The discussion likely ranges from, “Hadoop is a waste-of-time,” to “This is big. This will
solve all our current problems.” You may also have heard your company director, manager, or even CIO ask
the team to begin implementing this new Big Data thing and to somehow identify a problem it is meant to
solve. One of the first responses I usually get from non-technical folks when mentioning Big Data is, “Oh, you
mean like the NSA”? It is true that with Big Data comes big responsibility, but clearly, a lack of knowledge
about the uses and benefits of Big Data can breed unnecessary FUD (fear, uncertainty, and doubt).

The fact you have this book in your hands shows you are interested in Hadoop. You may also know
already how Hadoop allows you to store and process large quantities of data. We are guessing that you also
realize that Hive is a powerful tool that allows familiar access to the data through SQL. As you may glean
from its title, this book is about Apache Hive and how Hive is essential in gaining access to large data stores.
With that in mind, it helps to understand why we are here. Why do we need Hive when we already have
tools like T-SQL, PL/SQL, and any number of other analytical tools capable of retrieving data? Aren’t there
additional resource costs to adding more tools that demand new skills to an existing environment? The fact
of the matter is, the nature of what we consider usable data is changing, and changing rapidly. This fast-
paced change is forcing our hand and making us expand our toolsets beyond those we have relied on for the
past 30 years. Ultimately, as we’ll see in later chapters, we do need to change, but we also need to leverage
the effort and skills we have already acquired.

Synonymous with Hadoop is the term Big Data. In our opinion, the term Big Data is slowly moving
toward the fate of other terms like Decision Support System (DSS) or e-commerce. When people mention
“Big Data” as a solution, they are usually viewing the problem from a marketing perspective, not from a tools
or capability perspective. I recalled a meeting with a high-level executive who insisted we not use the term
Big Data at all in our discussions. I agreed with him because I felt such a term dilutes the conversation by
focusing on generic terminology instead of the truly transformative nature of the technology. But then again,
the data really is getting big, and we have to start somewhere.

My point is that Hadoop, as we'll see, is a technology originally created to solve specific problems. It
is evolving, faster than fruit flies in a jar, into a core technology that is changing the way companies think
about their data—how they make use of and gain important insight into all of it—to solve specific business
needs and gain a competitive advantage. Existing models and methodologies of handling data are being
challenged. As it evolves and grows in acceptance, Hadoop is changing from a niche solution to something
from which every enterprise can extract value. Think of it in the way other, now everyday technologies were
created from specialized needs, such as those found in the military. Items we take for granted like duct tape
and GPS were each developed first for specific military needs. Why did this happen? Innovation requires
at least three ingredients: an immediate need, an identifiable problem, and money. The military is a huge,
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complex organization that has the talent, the money, the resources, and the need to invent these everyday
items. Obviously, products the military invents for its own use are not often the same as those that end up

in your retail store. The products get modified, generalized, and refined for everyday use. As we dig deeper
into Hadoop, watch for the same process of these unique and tightly focused inventions evolving to meet the
broader needs of the enterprise.

If Hadoop and Big Data are anything, they are a journey. Few companies come out of the gate
requesting a 1,000-node cluster and decide over happy hour to run critical processes on the platform.
Enterprises go through a predictable journey that can take anywhere from months to years. As you read
through this book, the expectation is that it will help begin your journey and help elucidate particular steps
in the overall journey. This first chapter is an introduction into why this Hadoop world is different and where
it all started. This first chapter gives you a foundation for the later discussions. You will understand the
platform before the individual technology and you will also learn about why the open source model is so
different and disruptive.

An Elephant Is Born

In 2003 Google published an inconspicuous paper titled “The Google Filesystem” (http://static.
googleusercontent.com/media/research.google.com/en/us/archive/gfs-sosp2003.pdf). Not many
outside of Silicon Valley paid much attention to its publication or the message it was trying to convey. The
message it told was directly applicable to a company like Google, whose primary business focused on
indexing the Internet, which was not a common use case for most companies. The paper described a storage
framework uniquely designed to handling the current future technological demands Google envisioned for
its business. In the spirit of TL&DR, here are its most salient points:

e  Failures are the norm

e Files arelarge

e  Files are changed by appending, not by updating
e  Closely coupled application and filesystem APIs

If you were a planning to become a multi-billion dollar Internet search company, many of these
assumptions made sense. You would be primarily concerned with handling large files and executing long
sequential reads and writes at the cost of low latency. You would also be interested in distributing your
gigantic storage requirements across commodity hardware instead of building a vertical tower of expensive
resources. Data ingestion was of primary concern and structuring (schematizing) this data on write would
only delay the process. You also had at your disposal a team of world-class developers to architect the
scalable, distributed, and highly available solution.

One company who took notice was Yahoo. They were experiencing similar scalability problems along
Internet searching and were using an application called Nutch created by Doug Cutting and Mike Caffarella.
The whitepaper provided Doug and Mike a framework for solving many problems inherent in the Nutch
architecture, most importantly scalability and reliability. What needed to be accomplished next was a re-
engineering of the solution based on the whitepaper designs.

Note Keep in mind the original GFS (Google Filesystem) is not the same as what has become Hadoop. GFS
was a framework while Hadoop become the translation of the framework put into action. GFS within Google
remained proprietary, i.e., not open source.
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When we think of Hadoop, we usually think of the storage portion that Google encapsulated in the
GFS whitepaper. In fact, the other half of the equation and, arguably more important, was a paper Google
published in 2004 titled “MapReduce: Simplified Data Processing on Large Clusters” (http://static.
googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdio4.pdf). The
MapReduce paper married the storage of data on a large, distributed cluster with the processing of that same
data in what is called an “embarrassingly parallel” method.

Note We’ll discuss MapReduce (MR) throughout this book. MR plays both a significant role as well as an
increasingly diminishing role in interactive SQL query processing.

Doug Cutting, as well as others at Yahoo, saw the value of GFS and MapReduce for their own use cases
at Yahoo and so spun off a separate project from Nutch. Doug named the project after the name of his son’s
stuffed elephant, Hadoop. Despite the cute name, the project was serious business and Yahoo set to scale it
out to handle the demands of its search engine as well as its advertising.

Note There is an ongoing joke in the Hadoop community that when you leave product naming to
engineering and not marketing you get names like Hadoop, Pig, Hive, Storm, Zookeeper, and Kafka. |, for one,
love the nuisance and silliness of what is at heart applications solving complex and real-world problems. As far
as the fate of Hadoop the elephant, Doug still carries him around to speaking events.

Yahoo's internal Hadoop growth is atypical in size but typical of the pattern of many current
implementations. In the case of Yahoo, the initial development was able to scale to only a few nodes but after
a few years they were able to scale to hundreds. As clusters grow and scale and begin ingesting more and
more corporate data, silos within the organization begin to break down and users begin seeing more value
in the data. As these silos break down across functional areas, more data moves into the cluster. What begins
with hopeful purpose soon becomes the heart and soul or, more appropriately, the storage and analytical
engine of an entire organization. As one author mentions:

By the time Yahoo spun out Hortonworks into a separate, Hadoop-focused software
company in 2011, Yahoo'’s Hadoop infrastructure consisted of 42,000 nodes and hundreds
of petabytes of storage (http://gigaom.com/2013/03/04/the-history-of-hadoop-from-4-
nodes-to-the-future-of-data/).

Hadoop Mechanics

Hadoop is a general term for two components: storage and processing. The storage component is the
Hadoop Distributed File System (HDFS) and the processing is MapReduce.

Note The environment is changing as this is written. MapReduce has now become only one means of
processing Hive on HDFS. MR is a traditional batch-orientated processing framework. New processing engines such
as Tez are geared more toward near real-time query access. With the advent of YARN, HDFS is becoming more and
more a multitenant environment allowing for many data access patterns such as batch, real-time, and interactive.
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When we consider normal filesystems we think of operating systems like Windows or Linux. Those
operating systems are installed on a single computer running essential applications. Now what would
happen if we took 50 computers and networked them together? We still have 50 different operating systems
and this doesn’t do us much good if we want to run a single application that uses the compute power and
resources of all of them.

For example, I am typing this on Microsoft Word, which can only be installed and run on a single
operating system and a single computer. If I want to increase the operational performance of my Word
application I have no choice but to add CPU and RAM to my computer. The problem is I am limited to the
amount of RAM and CPU I can add. I would quickly hit a physical limitation for a single device.

HDFS, on the other hand, does something unique. You take 50 computers and install an OS on each
of them. After networking them together you install HDFS on all them and declare one of the computers a
master node and all the other computers worker nodes. This makes up your HDFS cluster. Now when you
copy files to a directory, HDFS automatically stores parts of your file on multiple nodes in the cluster. HDFS
becomes a virtual filesystem on top of the Linux filesystem. HDFS abstracts away the fact you're storing data
on multiple nodes in a cluster. Figure 1-1 shows a high level view of how HDES abstracts multiple systems
away from the client.

Figure 1-1 is simplistic to say the least (we will elaborate on this in the section titled “Hadoop High
Availability”). The salient point to take away is the ability to grow is now horizontal instead of vertical.
Instead of adding CPU or RAM to a single device, you simply need to add a device, i.e., a node. Linear
scalability allows you to quickly expand your capabilities based on your expanding resource needs. The
perceptive reader will quickly counter that similar advantages are gained through virtualization. Let’s take a
look at the same figure through virtual goggles. Figure 1-2 shows this virtual architecture.

N

HDFS

Figure 1-1. Simplistic view of HDFS
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Administrators install virtual management software on a server or, in most cases, a cluster of servers. The
software pools resources such as CPU and memory so that it looks as if there is a single server with a large
amount of resources. On top of the virtual OS layer we had guests and divide the available pool of resources
to each guest. The benefits include maximization of IO resources, dynamic provisioning of resources, and
high availability at the physical cluster layer. Some problems include a dependency on SAN storage, inability
to scale horizontally, as well as limitations to vertical scaling and reliance on multiple OS installations. Most
current data centers follow this pattern and virtualization has been the primary IT trend for the past decade.

Note Figure 1-2 uses the term ESX. We certainly don’t intend to pick on VMWare. We show the
virtualization architecture only to demonstrate how Hadoop fundamentally changes the data center paradigm
for unique modern data needs. Private cloud virtualization is a still a viable technology for many use cases and
should be considered in conjunction with other architectures like appliances or public cloud.

SX

900000

Figure 1-2. Virtualization architecture

Other advantages include reduced power consumption and reduced physical server footprint and
dynamic provisioning. Hadoop has the unenviable task of going against a decade-long trend in virtual
architecture. Enterprises have for years been moving away from physical architecture and making significant
headway in diminishing the amount of physical servers they support in their data center. If Hadoop only
provided the ability to add another physical node when needed to expand a filesystem, we would not be
writing this book and Hadoop would go the way of Pets.com. There’s much more to the architecture to make
it transformative to businesses and worth the investment in a physical architecture.
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Data Redundancy

Data at scale must also be highly available. Hadoop stores data efficiently and cheaply. There are mechanisms built
into the Hadoop software architecture that allow us to use inexpensive hardware. As stated in the GFS whitepaper,
the original design assumed nodes would fail. As clusters expand horizontally into the 100s, 1,000s, or even 10s of
thousands, we are left with no option but to assume at least a few servers in the cluster will fail at any given time.

To have a few server failures jeopardize the health and integrity of the entire cluster would defeat any
other benefits provided by HDFS, not to mention the Hadoop administrator turnover rate due to lack of
sleep. Google and Yahoo engineers faced the daunting task of reducing cost while increasing uptime. The
current HA solutions available were not capable of scaling out to their needs without burying the companies
in hardware, software, and maintenance costs. Something had to change in order to meet their demands.
Hadoop became the answer but first we need to look at why existing tools were not the solution.

Traditional High Availability

When we normally think of redundancy, we think in terms of high availability (HA). HA is an architecture
describing how often you have access to your environment. We normally measure HA in terms of nines. We
might say our uptime is 99.999, or five nines. Table 1-1 shows the actual downtime expected based on the HA

percentage (http://en.wikipedia.org/wiki/High availability).

Table 1-1. HA Percentage Summary

Availability Percent

Downtime Per Year

Downtime Per Month

Downtime Per Week

90% (“one nine”)

95%

97%

98%

99% (“two nines”)
99.5%

99.8%

99.9% (“three nines”)
99.95%

99.99% (“four nines”)
99.995%

99.999% (“five nines”)
99.9999% (“six nines”
99.99999% (“seven nines”

36.5 days
18.25 days
10.96 days
7.30 days

3.65 days

1.83 days
17.52 hours
8.76 hours
4.38 hours
52.56 minutes
26.28 minutes
5.26 minutes
31.5 seconds

3.15 seconds

72 hours

36 hours

21.6 hours
14.4 hours
7.20 hours
3.60 hours
86.23 minutes
43.8 minutes
21.56 minutes
4.32 minutes
2.16 minutes
25.9 seconds
2.59 seconds

0.259 seconds

16.8 hours

8.4 hours

5.04 hours
3.36 hours
1.68 hours
50.4 minutes
20.16 minutes
10.1 minutes
5.04 minutes
1.01 minutes
30.24 seconds
6.05 seconds
0.605 seconds
0.0605 seconds

Cost is traditionally a ratio of uptime. More uptime means higher cost. The majority of HA solutions
center on hardware though a few solutions are also software dependent. Most involve the concept of a set
of passive systems sitting in wait to be utilized if the primary system fails. Most cluster infrastructures fit this
model. You may have a primary node and any number of secondary nodes containing replicated application
binaries as well as the cluster specific software. Once the primary node fails, a secondary node takes over.


http://en.wikipedia.org/wiki/High_availability

CHAPTER 1 * SETTING THE STAGE FOR HIVE: HADOOP

Note You can optionally set up an active/active cluster in which both systems are used. Your cost is still
high since you need to account for, from a resource perspective, the chance of the applications from both
systems running on one server in the event of a failure.

Quick failover minimizes downtime and, if the application running is cluster-aware and can account
for the drop in session, the end user may never realize the system has failed. Virtualization uses this model.
The physical hosts are generally a cluster of three or more systems in which one system remains passive in
order to take over in the event an active system fails. The virtual guests can move across systems without
the client even realizing the OS has moved to a different server. This model can also help with maintenance
such as applying updates, patches, or swapping out hardware. Administrators perform maintenance on the
secondary system and then make the secondary the primary for maintenance on the original system. Private
clouds use a similar framework and, in most cases, have an idle server in the cluster primarily used for
replacing a failed cluster node. Figure 1-3 shows a typical cluster configuration.

Primary Standby
=
S
Shared Storage

Figure 1-3. Two-node cluster configuration with shared storage

The cost for such a model can be high. Clusters require shared storage architecture, usually served
by a SAN infrastructure. SANs can store a tremendous amount of data but they are expensive to build and
maintain. SANs exist separate from the servers so data transmits across network interfaces. Furthermore,
SANs intermix random IO with sequential IO, which means all IO becomes random. Finally, administrators
configure most clusters to be active/passive. The passive standby server remains unused until a failure
event. In this scenario hardware costs double without doubling your available resources.

Storage vendors use a number of means to maintain storage HA or storage redundancy. The most
common is the use of RAID (Redundant Array of Independent Disks) configurations. Table 1-2 shows a quick
overview of the most common RAID configurations.

Table 1-2. The Most Common RAID Levels

RAID Level  Description Fault Tolerance

RAID 0 Stripe array None

RAID 1 Mirror array One disk

RAID 5 Stripe with parity ~ One disk

RAID 1+0 Striped mirrors Multiple disks from one mirror




