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Preface

In the past 20 years we have witnessed revolutionary technological development in
the fields of biology/genetics and computing. This has enabled the success of the
Human Genome Project and the sequencing of a huge proportion of the human
genome. However, this achievement has not reduced the number of questions
related to the influence of genes on a multitude of traits and the general well-being
of living organisms, although the availability of new tools has enabled us to identify
complicated genetic mechanisms, such as DNA methylation or gene–gene
regulation.

The systematic increase in the availability of good quality genetic data has aided
efforts toward a more complete description of the genetic background of complex
traits, i.e., those that are determined by many genes, often interacting with each
other. Research in this area is rapidly expanding, since, apart from extending
knowledge in the field of biology, it addresses many socially/economically
important problems. Marker (gene) assisted selection is currently widely applied to
identify promising individuals for breeding programs among domesticated animals,
leading to increased efficiency in production or enhancing the quality of food
products such as milk or meat. In the context of human genetics, the identification
of influential genes allows us to evaluate an individual’s susceptibility to certain
diseases, design tools for early diagnosis, and produce new efficient medicines or
personalized therapies.

As a result of this technological breakthrough, bioinformatics has appeared as a
new scientific discipline, where the most effective research is performed by col-
laboration between biologists, computer scientists, and statisticians. While search
through large and rapidly expanding genetic databases enables the identification of
new genetic effects, it also creates a multitude of computational and statistical
problems. Concerning statistical issues, the large dimension of statistical data often
results in an erroneous description of reality when oversimplified statistical tools are
used for their analysis. A full understanding of the properties of
statistical/bioinformatics methods in such a high-dimensional setting is needed to
accelerate progress in this field and requires further intensive research.
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Understanding the properties of various methods for analyzing high-dimensional
data requires advanced mathematical tools, while the development of efficient
computational methods requires advanced knowledge in computer science.
Therefore, the main intended audience of this book is students/researchers with a
background in mathematics or computer science, who would like to learn about
problems in the field of statistical genetics and statistical issues related to the
analysis of high-dimensional data. Thus, we expect that readers possess some
mathematical or computer science skills. On the other hand, the genetic material is
explained starting at a basic level. For those who are not totally familiar with the
fundamentals of statistics, an extensive statistical appendix is presented for
reference.

While bioinformatics and statistical genetics deal with a variety of complex
questions in the field of genetics, in this book we concentrate on methods for
locating influential genes. Thus, we mainly discuss methods of identifying the
associations between the genotypes of genetic markers and interesting traits (phe-
notypes). Also, we do not discuss methods based on pedigree analysis or family
relationships, often applied in studies on humans or domesticated animals. Instead,
we cover in detail methods of gene mapping in experimental crosses, as well as
genome wide association studies, which are based on a random sample of indi-
viduals from outbred populations (e.g., from general human populations). We
summarize classical and modern methods for gene mapping and point toward
related statistical and computational challenges. We believe that the knowledge
contained in our monograph forms an excellent starting point for becoming
involved in the exciting world of this field of research and hope that at least some of
our readers decide to take this invitation and participate in the ongoing journey to
develop a better understanding of the role of genetics in the biology of living
organisms.

Vienna Florian Frommlet
Wrocław Małgorzata Bogdan
August 2015 David Ramsey
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Chapter 1
Introduction

The advances in the field of genetics over the past two generations have been
astounding. The double helix structure of DNA, the genetic basis of life and repro-
duction in humans and many other species, was first described in print in 1953 [1].
In the little over 60years that have passed since then, we have developed genome
sequencers which can read the whole human genome composed of approximately
3.2 billion nucleotide bases. On the one hand, these advances have enabled us to
answer questions regarding the evolutionary relationship between species and given
us a greater understanding of a large number of diseases which have a genetic source,
e.g., cystic fibrosis [2]. On the other hand, this rapid development has raised many
new questions to be answered. Many diseases have both genetic and environmental
factors, in particular cancers [3]. In such cases, the mechanisms underlying the sus-
ceptibility of an individual to a condition and triggers determining whether, and if
so when, such an individual will develop that condition often involve a network of
genes, as well as environmental effects [4].

Such problems are by their nature interdisciplinary. Communication and coop-
eration between scientists are required even to start answering many of these ques-
tions. Insights from geneticists and bioinformaticians continue to be necessary to
develop the technological software which is now available. None of these advances
would have been possible without the incredible acceleration in computing speed and
memory. Insights from geneticists and statisticians are necessary to build models.
Bioinformaticians and statisticians are needed to analyze data, but require geneticists
and biologists to explain the mechanisms underlying the patterns seen in the data.
Many recent advances in statistical theory have been in response to the emergence of
“big data”, i.e., huge data sets, in particular genetic data. However, as always, these
advances are part of the continuing journey that underlies scientific progress and we
are far from understanding many of the issues presented by such data sets.

This book aims to be a guidebook to part of this journey. Specifically, we look
at developments in the studies of genetic association. The title of the book “Phe-
notypes and Genotypes” reflects this. Studies of genetic association aim to eluci-
date how our genetic code (genotypes) influence the traits we possess (phenotypes).
This a relatively new and rapidly expanding field. Overall, the aims of the book
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are to present the theoretical background to studies of genetic association (both
genetic and statistical), indicate how the field has advanced in recent years, give a
snapshot of the most commonly used methods at present, together with their advan-
tages and shortcomings, and finally indicate some of the problems that remain to
be solved in the future. Since the authors are statisticians, stress will naturally be
placed on the statistical models and methods involved. But by necessity, in order to
understand the statistical models, one must first understand the biological concepts
underlying the statistical models.

More specifically, Chap.2 gives an overview of the concepts from genetics
required to be able to interpret and develop statistical models of genetic associa-
tion. The ideas of phenotype and genotype are fundamental. A phenotype is any
observable trait of an organism. In particular, here we will be interested in dichoto-
mous traits (i.e., only two states are possible, for example, the presence or absence
of a disease) and continuous traits (these are traits which are measured according to
some scale, e.g., height, weight, milk yield).

We then give an overview of the genome. This is the genetic information which
is found in each cell of an organism. The theory will concentrate on diploid organ-
isms. Genetic information in such organisms is contained in pairs of chromosomes,
humans have 23 such pairs. One chromosome of each pair is inherited from an indi-
vidual’s mother and the other comes from the father. In many organisms, including
humans, one of these pairs is associated with the sex of an individual. The other pairs
of chromosomes are called homologous, since the genetic information found at a
pair of corresponding loci on such chromosomes combines to form an individual’s
genotype. In practice, we observe the genotype of an individual at a given locus, but
we do not know which information came from the mother and which from the father.

Suppose for simplicity that two simple traits, say eye color and blood group, are
each coded by a single gene. If these genes are located on different chromosome pairs,
then the information passed on by a parent regarding one trait is independent of the
information passed on regarding the second trait (in each case the information comes
from the maternal chromosome with probability 0.5 and otherwise comes from the
paternal chromosome). However, if the genes for these two traits are located close to
each other on the same chromosome pair, then it is likely that the information passed
on by a parent very likely comes from the same chromosome (either the maternal or
the paternal). In this case, the genes for these traits are said to be linked, or equivalently
that the two corresponding loci are linked. We consider the genetic distance between
two loci, whose definition is based on the probability that the information passed on
by a parent at two loci comes from the same chromosome. This is one minus the
probability of a so-called crossover, which occurs when the information passed on
at two loci on the same chromosome originally came from different chromosomes.
The possibility of crossover results from the recombination of genetic material on
homologous chromosomes before it is passed on to offspring. The closer two loci
are on a chromosome, the less likely crossover is. Some probabilistic models linking
genetic distance to the actual physical distance between loci are presented.

In general, the relation between traits (phenotypes) and genotypes is far more
complex than the determination of eye color. For example, sex obviously has an
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influence on the height of humans, but the height of individuals of a particular sex
follows a normal distribution. From the Central Limit Theorem, it would seem that
height is affected by a large number of factors. Studies have shown that height
depends on both environmental factors and various genetic loci [5]. For species with
a short life span, experimental populations have been produced by the associative
breeding of lines, where within each line individuals share a (distinct) set of simple
traits and differing values of a given quantitative trait, e.g., one line of tall individuals
and one line of short individuals. We know the location of many genes which define
simple traits. Such loci are called markers. By appropriately crossing inbred lines,
it is possible to create experimental populations, which can be used to discover
associations between simple traits and the value of quantitative traits. Thesemethods:
backcross, intercross, and recombinant inbred lines are also discussed in Sect. 2.2.1.
Suppose, as a result of such an experiment, a quantitative trait is strongly associated
with a simple trait. This indicates that a gene that strongly affects the quantitative trait
is located very close to the gene responsible for the simple trait. Such problems and
statistical methods for locating quantitative trait loci (QTL mapping) are considered
in more detail in Chap.4.

Obviously, in the case of many species, particularly humans, it is impossible
to create such experimental populations. However, the emergence of genome wide
sequencers has led to the possibility of carrying out so-called Genome Wide Asso-
ciation Studies (GWAS). The general concepts behind the design of such studies are
outlined in Sect. 2.2.3. In such studies, the number of genetic variables considered
is generally much greater than in QTL mapping, and so the statistical problem of
multiple testing becomes much more serious. This problem arises from the fact that
applying classical procedures of hypothesis testing, i.e., using a fixed significance
level, very often leads to a large number of false discoveries.

It should be noted that the classical probability and statistical theory, which form
the basis for Chaps. 3–5, are described in the Appendix. Readers who are not familiar
with this theory should first read the Appendix, before proceeding to Chaps. 3–5.
Other readers should use the Appendix as a source of reference when necessary.

Chapter 3 is split into twomain sections. Section3.1 describes statistical approac-
hes to solving the multiple testing problem and the relationship between such pro-
cedures and Bayesian decision theory. Section3.2 deals with methods of model
selection.

Consider a simple situation in which we have m markers on one chromosome and
we wish to test whether there is a QTL on the same chromosome. In order to do this,
we might carry out a set of m tests where the null hypothesis of the i-th test states
that the i-th marker is not associated with the quantitative trait in question and the
alternative is that the i-th marker is associated with the quantitative trait. One might
carry out all these tests at a significance level of 5% and conclude that there exists a
QTL on the same chromosome if and only if the null hypothesis is rejected at least
once. One obvious problem with this approach is that as m increases, the probability
of accepting that there is a QTL on the same chromosome also increases. In such a
case, controlling the familywise error rate (FWER) rate is an appropriate criterion
to ensure that the probability of any false detection (i.e., concluding there is a QTL
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on that chromosome, when there is none) remains low, regardless of the number of
markers used. The classical approach to this problem would be to use the Bonferroni
procedure, which involves dividing the nominal significance level (here 5%) by the
number of markers. This ensures that the FWER does not exceed 5%. Refinements
of the Bonferroni procedure are also considered.

When the number of tests used is very large, procedures based on the Bonferroni
procedure tend to be very conservative, i.e., for m large, very often we fail to detect a
real association. This is particularly crucial when the goal is not to test an overriding
hypothesis (i.e., the hypothesis that there is no QTL on chromosome versus the
alternative that there is a QTL), but to discover which loci are associated with a
given trait (i.e., the individual hypotheses are important in themselves). In such
cases, an appropriate criterion for multiple testing procedures is to control the false
discovery rate (FDR). Use of such a procedure ensures that the expected proportion
of discovered associations that are not real associations is at most 100α%. The
Benjamini–Hochberg (BH) procedure controls the FDR. The BH procedure is also
less conservative than the Bonferroni procedure, particularly when there are a large
number of real associations, and thus detects real associations more often than the
Bonferroni procedure.

In general, we expect that only a small proportion of loci are real factors in
determining a trait. Such cases are known as sparse. Bayesian decision theory can
be applied to such problems by assigning the same, small a priori probability to a
locus being associated with a trait. Based on this and the data, we can define the
posterior probability of a locus being associated with a trait. One can then infer that
a locus is associated with a trait if and only if the posterior probability of it being
associated with that trait is at least 0.5. Assume that the number of tests is very
large (e.g., we have data from a very large number of loci). Two types of sparsity
are considered. Under extreme sparsity, the number of loci associated with a trait
does not increase, even when the number of loci increases. Under standard sparsity,
the number of loci associated with a trait increases at a lower rate than the total
number of loci considered. Given a large number of tests under the assumption of
extreme sparsity, inference based on the Bonferroni procedure is almost equivalent to
inference based on Bayesian decision theory. Similarly, the BH procedure is almost
equivalent to inference based on Bayesian decision theory under either extreme or
standard sparsity. In addition, these testing procedures have the advantage of not
needing (or having to infer) information regarding the proportion of loci that are
actually associated with a trait. Hence, these testing procedures have very desirable
properties in the statistical problems associated with GWAS, where a very large
number of loci are considered and generally a very small proportion of loci are real
factors.

In the case of model selection, the goal is not just to find which loci are associated
with a given trait, but describe how those loci are associated with that trait. Again,
when there are a large number of variables (loci), classical statistical methods (e.g.,
regression) tend to include more variables in the model than they should. Also, in
many cases, regression methods may not even work, since in many problems from
genetics, the number of loci is greater than the number of individuals.Anygoodmodel
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should possess the following two characteristics: (i) give an accurate description of
the data, (ii) be relatively simple (parsimonious). Akaike’s Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) are based on maximizing a
function given by the log-likelihood of the data given the model (a measure of how
the model fits the data) minus a penalty function based on the number of variables
included in the model (a measure of the complexity of a model). The specific goals
of these approaches are discussed. AIC is specifically designed to produce accurate
predictions, while BIC is specifically designed to infer what variables are associated
with the trait of interest. However, under the assumption of sparsity, BIC tends to
include too many variables in the model. Hence, we consider adaptations of BIC
to such scenarios. Section3.2 also considers the LASSO, elastic net, and SLOPE
methods of model selection. These approaches can be thought of as adaptations of
AIC andBIC, since they can be defined in terms ofmaximizing a penalized likelihood
function. However, under these three approaches, the penalty function depends on
the magnitudes of effects of the variables included in the model, and not just on their
number.

Chapter 4 concentrates on QTL mapping. Section4.1 considers single marker
tests, i.e., tests which choose between one of the following two hypotheses: (i) the
null hypothesis that a locus is not associated with a quantitative trait and (ii) the
alternative hypothesis that a locus is associated with a quantitative trait. Classically,
in such tests we have information regarding the genotypes of n individuals at m
markers. In general, a QTL will not be located at the same position as the marker.
However, a strong association between the genotype of a marker and a quantitative
trait indicates that it is very likely that a QTL is located close to that marker. As
we are usually dealing with a number of markers, we should adopt a procedure to
take multiple testing effects into account. For example, if we suspect that there is a
single QTL on a particular chromosome, then we can apply the Bonferroni procedure
to control FWER. The Bonferroni procedure makes no assumption regarding the
correlation between test statistics. However, intuitively these test statistics will be
naturally correlated, since if there exists an association between the genotype of
a marker and the quantitative trait in question, then we should expect a similar
association between the genotype of a neighboring marker and the quantitative trait.
Hence, we also consider improvements to the standard Bonferroni procedure based
on the correlation between the test statistics and compare the results from applying
these procedures.

Section4.2 considers more advanced methods of QTL mapping. The first is inter-
val mapping, which estimates the position of a QTL that maximizes the likelihood
of the data (the fit to the data) on the basis of an experimental population. Suppose
a QTL is located between two markers. Given the genotypes at the markers, we can
calculate the probabilities of the possible genotypes at the QTL based on the proba-
bility of crossover occurring. The distribution of the trait in the population can thus be
interpreted as a mixture of conditional distributions given the genotype at this QTL.
Using an iterative procedure, we can then calculate the likelihood of the data given
that there is a QTL at a given position. Maximizing this likelihood function gives
us an estimate of the location of a QTL. The second method is regression interval
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mapping. Using this approach, the genotype at each marker is coded numerically
and standard regression can be used to test whether there is a QTL at the site of the
marker. At sites that do not correspond to a marker, we can derive the expected value
of such a numerical code for the genotype given the genotypes at the neighboring
markers. In this case, the estimate of the position of the QTL corresponds to the
largest realization of the test statistic for the presence of a QTL at a given position.
This approach ismuch simpler to implement than interval mapping, but a comparison
of the two approaches shows that they give very similar results.

Section4.3 presentsmethods ofmodel selection. The approaches described imme-
diately above essentially assume that there is oneQTL on a given chromosome. How-
ever, often we have data from different chromosomes, there can be several QTLs on
a single chromosome and there may be interactions between various QTLs (i.e., the
effect of a set of QTLs is not simply the sum of the individual effects). Hence, in
practical situations the number of potential regressor variables will be very large
(often larger than the number of individuals). Hence, in such problems, we should
adapt procedures based on the adaptations of BIC considered in Sect. 3.2.

Section4.4 shows that logic regression can apply the theory of logical expressions
to express interactions in a simpler and more intuitive way than standard approaches
based on linear regression. Although the number of possible models increases when
such an approach is used, the increased power obtained using such an approach is
sufficiently large to outweigh any possible losses from the need to control the false
discovery rate.

Section4.5 briefly describes howmodifications of the Bayes information criterion
can be applied in a Bayesian approach to statistical inference.

Section5 presents GenomeWide Association Studies (GWAS). Such studies have
come into prominence due to the data available from genome sequencers, which read
the nucleotidesmaking up an individual’sDNAsequence.GWASuse the information
from so-called single nucleotide polymorphisms (SNPs), which are positions in the
sequence at which various nucleotides are observed within a single population. At
such positions, in general, two variants are observed within a population. In this case,
the genotype of an individual is given by the pair of variants observed. Denoting the
two variants by a and A, the possible genotypes are aa, aA and AA. The processes
involved in genome sequencing are stochastic; Sect. 5.1 presents the concepts behind
inferring the genotype present at a given locus.

GWAS analyze the association between traits (which can be discrete or continu-
ous) and the genotypes at SNPs. In general, the number of SNPs observed is much
larger than both the number of individuals observed and the number of markers
observed in QTL mapping. This implies that the problems inherent in multiple test-
ing are much more apparent in GWAS. In Sect. 5.2, we consider single marker tests.
Adopting such an approach, we carry out a series of m tests, where the null hypoth-
esis in the i-th test is that the i-th SNP is not associated with the trait in question
and the alternative is that the i-th SNP is associated with that trait. Various models
of genetic association are considered. For example, it is possible that variant a domi-
nates variant A, so that when considering the association between the genotype and a
given trait, those of genotype aA do not differ on average from those of genotype aa,
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but do differ from those of genotype AA. Various tests of association are considered,
including the standard χ2 test of association which makes no assumptions regarding
the form of any association and tests based on three different types of genetic asso-
ciation. In addition, we consider a single test based on a combination of these three
tests.

Corrections for the effects of multiple testing are obviously of prime importance.
Very often, GWAS are carried out in two stages. In the first stage, a very large number
of SNPs from across the genome are considered. Testing is used to choose a set of
SNPs for further investigation. Since such a two-step procedure is adopted, it is often
sensible to use a more liberal correction procedure to avoid the loss of power which
would result from adopting an essentially stricter procedure.

One problem associated with an approach based on single marker tests is that,
in non-experimental populations, the observed frequency of the rare variant at an
SNP may be very small. In such cases, the power of single marker tests to detect
associations will be very small, especially when correction is made for the effects
of multiple testing. One way of dealing with this problem is to group information
from neighboring SNPs. We discuss possible ways of doing this and the problems
involved with such an approach.

GWAS is often applied to non-experimental populations, in particular, human
populations. However, such a population may have a structure, i.e., individuals are
more likely to pair with those from the same subpopulation. Subpopulations may be
based, e.g., on class and/or ethnicity. An approach to correcting test statistics due
to population structure is described, together with a brief description of a method
for analyzing population structure based on principal component analysis. Since
phenotypes can depend on such factors as age and sex, we consider how such factors
can be included into models describing a phenotype.

Since genes may interact in determining traits, carrying out single marker tests is
a simplistic approach to GWAS and thus in Sect. 5.3 we consider model selection.
In particular, the effects of individual genes may be relatively small and thus single
marker tests will very often fail to detect a real effect. Hence, we consider more
general models for a quantitative trait based on genetic (and possibly demographic)
information. In such cases, the number of possible models is huge. Also, when there
are a number of SNPs affecting a trait, the random associations between these SNPs
and variants observed at other SNPs can often lead to an inflated false discovery
rate, even when appropriate procedures are used. Three software packages for the
analysis of GWAS are described are compared: HYPERLASSO, GWASelect, and
MOSGWA.

Section5.4 takes a slightly closer look at a situation where the population has
a very specific structure. In recent times, many human populations which had been
previously separated have becomemixed. The genetic makeup of such populations is
somewhat similar to that of experimentally produced crosses. Admixture mapping is
an approach which uses this structure to search more effectively for SNPs associated
with a particular trait.

Section5.5 looks at the problem of detecting interaction between SNPs in their
effect on a phenotype. Since considering the possibility of interaction greatly
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increases the number of possible models in the case of QTL mapping, in the case of
GWAS, the number of possible models is simply huge. This section briefly considers
application of the classical approach of analysis of variance and logic regression,
also considered previously in Chap.4, to the detection of such interactions. When a
phenotype is dichotomous, one natural approach to detecting interactions between
SNPs is to split combinations of genotypes into “high risk” and “low risk” categories,
thus reducing the dimensionality of the problem. This approach is known as Multi-
factor Dimensionality Reduction (MDR). It should be noted that this approach can
be adapted to the analysis of continuous phenotypes.

Section5.6 gives a comparison of several methods for analyzing genetic effects
on a dichotomous phenotype. Nearly all of the methods considered are adaptions of
models considered in this book. However, the approach that has the greatest power to
detect interactions, while still retaining reasonable power to detect individual effects,
is different in its nature. It is specifically designed to analyze the joint distribution
of a large number of discrete variables. However, the method used to select the
appropriate model is very strongly embedded in the ideas that run through the whole
book. In statistical genetics, just as in any other kind of research, cross fertilization
of ideas is a key to scientific advance. This section ends with some brief thoughts on
how GWAS will evolve in the near future.
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Chapter 2
A Primer in Genetics

2.1 Basic Biology

2.1.1 Phenotypes and Genotypes

A phenotype is any observable characteristic of an organism. Phenotypes of interest
could be, for example, height, weight, blood pressure, blood type, eye color, disease
status, the size of a plant’s fruits, or the amount of milk given by a cow. Typically, one
observes quite a large amount of variety in phenotypes between individuals of the
same species. Phenotypes are influenced by both genetic and environmental factors.
A great proportion of current biological research consists of trying to get a better
understanding of the genetic factors involved.

In eukaryotes (organisms composedof cellswith a nucleus andorganelles), includ-
ing plants, animals, or fungi, most of the genetic material is contained in the cell
nucleus. This material is organized in deoxyribonucleic acid (DNA) structures
called chromosomes. DNA consists of two long polymers of simple units called
nucleotides. One element of a nucleotide is the so-called nucleobase (nitrogenous
base). There are four primary DNA-bases: cytosine, guanine, adenine, and thymine,
abbreviated as C, G, A, and T, respectively. Pairs of DNA strands are joined together
by hydrogen bonds between complementary bases: A with T, and C with G. There-
fore, the sequence of nucleotides in one strand can be determined by the sequence of
nucleotides in the other (complementary) strand. The backbone of a DNA strand is
made from phosphates and sugars joined by ester bonds between the third and fifth
carbon atoms of adjacent sugar rings. The corresponding ends of DNA strands are
called the 5′ (five prime) and 3′ (three prime) ends. Such a pair of DNA strands
are orientated in opposite directions, 3′–5′ and 5′–3′. Therefore, they are called
antiparallel.

A pair of DNA strands form a structure known as the double helix, illustrated in
Fig. 2.1. However, for the purpose of many statistical and bioinformatical analyses,
chromosomes are simply represented as sequences, where each element is the letter
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Fig. 2.1 An illustration of
the double helix structure
and two antiparallel
sequences of nucleobases

corresponding to the nuclear base (C, G, A, or T) at the corresponding position in
one of the strands.

In the process of transcription, some sections of DNA, called genes, are tran-
scribed into complementary copies of ribonucleic acid (RNA). Since RNA is single
stranded, only one strand of DNA is used in the transcription process. The resulting
RNA strand is complementary and antiparallel to the “parental” DNA strand, with
thymine (T) being replaced by uracil (U). As a result, the RNA sequence is identical
(except for T being replaced by U) to the complementary sequence of the parental
DNA strand.

If a gene encodes a protein, then the resulting messenger RNA (mRNA) is used
to create that protein through the process of translation. Proteins can be viewed
as chains of amino acids, where certain triplets of mRNA are translated into spe-
cific amino acids. In eukaryotes there is a further modification of RNA between the
processes of transcription and translation, which is called splicing. Here, parts of the
RNA, so-called introns, are removed and the remaining parts, called exons, become
attached to each other. After splicing, the mRNA consists of a sequence of triplets,
which directly translate into the amino acids forming the protein expressed by the
gene in question.

The DNA sequence corresponding to an mRNA sequence is called a sense strand.
Thus, as explained above, a sense DNA sequence is complementary to the corre-
sponding parental (antisense) DNA sequence. Both strands of DNA can contain
sense and antisense sequences. Antisense RNA sequences are also produced, but
their function is not yet well known. Proteins, as well as functional RNA chains,
created via transcription and translation play an important role in biological systems
and influence many phenotypes.

The process of gene expression depends not only on the coding region, but also
on the regulatory sequences that direct and regulate the synthesis of gene products.
Cis-regulatory sequences are located in the close vicinity of the corresponding
gene. They are typically binding sites for transcription factors (usually proteins),
which regulate gene expression. Trans-regulatory elements are DNA sequences
that encode these transcription factors and are not necessarily close to the gene in
question. They may even be found on different chromosomes.

The DNA sequences of different individuals from a given species are almost iden-
tical. For example, in humans 99.9% of all DNA-bases match. However, there still
exist a large number of polymorphic loci, at which differences between individ-
uals from a given species can be observed. The variants observed at such a locus
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are called alleles, where the most prominent examples of such genetic variation are
single nucleotide polymorphisms (SNPs) and copy number variations (CNVs).
SNPs refer to specific positions in a chromosome where different nucleobases are
observed, the result of a so-called point mutation. Copy number variation refers to
relatively long stretches of DNA which are repeated a different number of times
in various individuals. In particular, insertions, deletions, and duplications of DNA
stretches are classified asCNVs. If theDNAsection corresponding to aCNV includes
a gene, it will result in different gene expression patterns. Microsatellites are also
classical examples of genetic polymorphisms, where very short DNA patterns are
repeated a number of times, and the number of repetitions varies between individuals.

The number of homologous chromosomes, which at a given locus contain genes
corresponding to the same characteristic, varies between different species. Haploid
organisms, such as male bees, wasps, and ants, have just one set of chromosomes
(i.e., just one copy of each gene). The majority of all animals, including humans, are
diploid, i.e., they have two sets of chromosomes, one set inherited from each parent.
In diploid organisms an individual’s genotype at a given locus is defined by the pair
of alleles residing at this locus on the two homologous chromosomes. For example,
consider a biallelic locus with alleles A and a. Then there exist three possible geno-
types: AA, Aa, and aa. An individual carrying two identical alleles at a given locus
is called homozygous at this locus, whereas an individual with two different alleles
is heterozygous. There also exist many organisms which are polyploid, meaning
that they have more than two homologous chromosomes. Polyploid organisms are
common among plants, e.g., the potato, cabbage, strawberry, and apple. In this book,
we will mainly focus on methods for localizing genes in diploid organisms.

A haplotype is an ordered sequence of nucleobases appearing on the same chro-
mosome. For example, a haploid organism inherits a maternal haplotype and a pater-
nal haplotype, which together define the genotypes at the corresponding loci. When
an individual is genotyped, generally we do not know which parent each allele came
from. In this case, we say that the genotypes are unphased. Hence, it might be nec-
essary to infer the haplotypes from the genotype data (in other words, determine the
phase). One of themost popular algorithms for phasing is FASTPHASE [113], which
applies maximum likelihood methods to predict haplotypes. In this book, we will
mainly focus on statistical methods whichmake use of genotype data, althoughmany
of the statistical methods described in Chap. 5 can be extended to phased haplotype
data. For illustrative purposes, Table2.1 gives a simple example of unphased geno-
types at 10 markers, and two phased haplotypes corresponding to these genotypes.

Table 2.1 Unphased genotypes and phased haplotypes for 10 markers

Unphased aA BB cC dD ee ff gG hH iI JJ

From father A B c d e f G H i J

From mother a B C D e f g H I J
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