

Johan Gielis

The Geometrical Beauty of Plants

The Geometrical Beauty of Plants

Johan Gielis

The Geometrical Beauty of Plants

Johan Gielis Department of Biosciences Engineering University of Antwerp Antwerp Belgium

ISBN 978-94-6239-150-5 DOI 10.2991/978-94-6239-151-2 ISBN 978-94-6239-151-2 (eBook)

Library of Congress Control Number: 2017932536

© Atlantis Press and the author(s) 2017

This book, or any parts thereof, may not be reproduced for commercial purposes in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system known or to be invented, without prior permission from the Publisher.

Printed on acid-free paper

An equation has no meaning for me if it does not express a thought of God.

Ramanujan

"One must study not what is interesting and curious, but what is important and essential".

Pafnuty Lvovich Chebyshev's advice to his students

A special dedication to Walter Liese and Tom Gerats

Preface

In my study of natural shapes, more specifically of bamboo, I started using the superellipses and supercircles of Gabriel Lamé around 1994 to study the shape of certain square bamboos. The first publication was in the Belgian Bamboo Society Newsletter in 1996 followed by a presentation by Prof. Freddy Van Oystaeyen in the same year at a meeting at the University of Louvain organized by the Belgian Plant and Tissue Culture Group and published in the journal *Botanica Scripta Belgica*. Three years later, in 1997, I was able to generalize these curves into what I originally called superformula, as a generalization of supercircles, following joint work with Bert Beirinckx on superellipses. In 1999, I founded a company with the explicit aim to disseminate these ideas in science, technology, and education, with better than expected results.

My first presentation on the more general use of Lamé curves in botany was in 1997 at the Symposium Morphology, Anatomy and Systematics in Leuven, in honor of the great German plant scientist Wilhelm Troll. The symposium was co-organized by the Deutsche Botanische Gesellschaft and by the Botany Department of the University of Louvain. The talk went quite well, and in the closing speech, Erik Smets remarked that it was hoped that I could bring fresh ideas to mathematical botany; the untimely death of the late Aristid Lindenmayer had left a deep gap in that field. On advice of Focko Weberling, one of Troll's students, I was contacted by Springer Verlag that same week to publish a book on my work. In a sense, this book is 20 years overdue, but *pauca sed matura* was Gauss' motto.

In 2003, the first major scientific paper was published in the American Journal of Botany, on invitation by the editor in chief, Karl J. Niklas. The title "A generic geometric transformation which unifies a wide range of natural and abstract shapes" expresses the gist of the matter. This publication attracted a lot of attention, and I still think it was a good timing and (hoped for but unexpected) strategy for dissemination. In the same year, the English version of my book Inventing the Circle was published, two years after the Dutch version in 2001. My journey took me from horticulture and plant biotechnology to geometry. The article "Universal Natural Shapes" with Stefan Haesen and Leopold Verstraelen in 2005 introduced the equation into the field of geometers, and also substituted the name superformula

by the names *Gielis curves, surfaces, (sub-)manifolds, and transformations.* In geometry, a whole new world unveiled before me. This, along with several publications by others ensured the adoption and absorption of the formula in mathematics, science, and education. Two of my main goals, formulated in 1999, have been or are being realized, along various paths.

Technology was my third, long-term goal, and many papers in science and technology have been published using the formula. In many cases (antennas and nanotechnology, for example), the formula allowed to go beyond the classical and canonical shapes, opening many doors. My own passion about technology is this: No matter what field we consider, I (with many others) think our current technology, no matter how advanced, is essentially a bag-of-tricks, aimed at deception (which is perhaps a major feature of our times and culture). We are working toward new applications following my dream of unifying and simplifying, at the same time appreciating complexity.

In this respect, it is important to note that my background is horticulture and plant biotechnology. I have been involved as researcher and research director in plant research for more than 25 years, and methods were developed in our team for mass propagation of plants, in particular temperate and tropical bamboos, the former for ornamental purposes, the latter for reforestation in the tropics. Over the past years, we have produced over 20 million bamboos that have been distributed and planted worldwide. Bamboo is indeed a multipurpose plant, a beautiful plant for our gardens but providing building materials, food, and much more for the poorest one billion humans on this planet.

Key to this was focused in-depth research using molecular markers and high-throughput determination of plant hormones, but never losing sight of the end goal: plant production. The same procedure of combining science with technology, we use now in the development of antennas, where optimization is an ongoing activity. We are now able to produce very powerful antennas, at costs which could be up to ten times less than existing ones, optimizing margin, while delivering the highest possible quality and efficiency. In all my (scientific and engineering) activities, this combination of wide interests, a generalist (rather than myopic) view, and stamina has always led to remarkable results.

Always keep focused on what you want to achieve. The current book is a combination of such focus, combining wide interests (nature and science) and a generalist (rather than specialist) attitude, inspired by the vision of natural scientists and philosophers from a long gone era. Along the way, I learned many other things, which one cannot learn but by a constant drive and strive to understand. My scientific education continues daily.

I wish to convey my sincere gratitude to my parents and all teachers, botanists, mathematicians, and engineers who played an enormously important role in my personal scientific development and the various developments described in this book: These include my teachers in high school Fred Verstappen (Greek) and Gerard Bodifée (sciences); in my professional horticultural and plant biotechnological life: Pierre Debergh (University of Ghent), Walter Liese (University of Hamburg, Germany), Tom Gerats (Radboud University, The Netherlands), and

Paul Goetghebeur (University of Ghent, Belgium); in mathematics and geometry: Freddy Van Oystaeyen (University of Antwerp), Leopold Verstraelen (University of Louvain, Belgium), Paolo Emilio Ricci (La Sapienza University, Rome), and Ilia Tavkhelidze (Tbilisi State University, Georgia). During the past two decades, fantastic collaborations developed with Bert Beirinckx, with Diego Caratelli (Antenna Company, University of Tomsk, Russia), Yohan Fougerolle (University of Dijon, France), Dishant Pandya (India), and with Shi Peijian, Yulong Ding, and the team at Nanjing Forestry University. I must also thank all collaborators in Genicap Beheer BV and Antenna Company.

Special thanks for their important contributions and advice in various chapters of this book are due to Yohan Fougerolle, Diego Caratelli, Dishant Pandya, Paolo Emilio Ricci, and Ilia Tavkhelidze. The results of the collaborations with all four are fundamental to this book. Many thanks also to Albert Kiefer for graphics to Violet for help on references, corrections and pictures, and to Arjen Sevenster and the Atlantis and Springer teams.

Many thanks to my whole family, past-present-future, for their continuous support. With a most special dedication and many, many thanks to my wife and soul mate Christel, and our children, Violet and Fabian, for making my life complete.

Antwerp, Belgium December 2016 Johan Gielis

About the Book

This book focuses on the origin of the Gielis curves, surfaces, and transformations in the plant sciences. It is shown how these transformations, as a generalization of the Pythagorean theorem, play an essential role in plant morphology and development. New insights show how plants can be understood as developing mathematical equations, which opens the possibility of directly solving analytically any boundary value problem (stress, diffusion, vibration...). This book illustrates how form, development, and evolution of plants unveil as a musical symphony. The reader will gain insight in how the methods are applicable in many diverse scientific and technological fields.

Contents

Part Ι Πρότασις-Propositio

1	Universal Natural Shapes	3
	Conic Sections at the Core, Once More	3
2	Towards a Geometrical Theory of Morphogenesis	7
	Biology Versus Physics	7
	Commensurability, Symmetry and Euclidean Geometry	9
	Mathematical Theories Versus Theories of Everything	11
	Quantities of O-Type.	13
	Quantities of M-Type for Natural Shapes	16
	Objective Reality, Mathematics and the Mind's Eye	17
	A New Pair of Glasses	19

Part II Εκθεσις—Expositio

3	-1, -2, -3, Understand the Legacy	23
	On Arithmetic and Geometric Means	23
	On Derivatives and Nomograms for Means	25
	Geometric Means and Pascal's Triangle	27
	Geometrically: A Game of Cubes and Beams	29
	The Decimal Principle and Fluxions	32
	The Geometry of Parabolas and Allometric Laws	35
	Monomiality Principle for Polynomials	37
	A Way of Thinking	38
	-1, -2, -3, Understand the Legacy	40
4	Lamé Curves and Surfaces	43
	On Landscapes and Maps	43
	Lamé Curves and Surfaces	45

	From Barrow to Lamé	47
	The Immortal Works of Gabriel Lamé	49
	From Lamé to Square Bamboos	51
	Lamé Surfaces and Superquadrics	53
5	Gielis Curves, Surfaces and Transformations	57
	Lamé Curves in Polar Coordinates	57
	Generalized Pythagorean Theorems	59
	From Lamé to Gielis Curves	60
	Superpolygons and Regular Polygons	62
	Polygrams and Generic Symmetries	63
	Gielis Transformations	66
	Continuous Transformations	68
	Invariance Properties of Supershapes	70
	Gielis Surfaces and Volumes.	71
	Generalized Möbius-Listing Surfaces and Bodies	75
	Analytic Representations or Transformations?	81
	✓ 1	

Part III Διορισμός—Determinatio

6	Pythagorean-Compact.	87
	A Zillion More	87
	k-Type Curves and a Generalization of Fourier Series	91
	Pythagorean Trees, L-Systems and Fractals	93
	R-Functions and Supershapes	96
	Complex Shapes and Self-intersections	100
	R-Functions and Co-bordism.	102
	Shape Complexity and Oligomials	104
	All Gielis Curves Are Equally Simple.	107
	Pythagorean-Compact and Pythagorean-Simple	108
7		
7	Generalized Intrinsic and Extrinsic Lengths in Submanifolds	109
7	Generalized Intrinsic and Extrinsic Lengths in Submanifolds Embedded and Immersed	109 109
7	Generalized Intrinsic and Extrinsic Lengths in Submanifolds Embedded and Immersed Rigid and Semi-rigid Geometry	109 109 109
7	Generalized Intrinsic and Extrinsic Lengths in Submanifolds Embedded and Immersed Rigid and Semi-rigid Geometry Lorentz Transformations and SRT	109 109 109 111
7	Generalized Intrinsic and Extrinsic Lengths in Submanifolds Embedded and Immersed Rigid and Semi-rigid Geometry Lorentz Transformations and SRT A Theorem of Gauss and a Remarkable Year	109 109 109 111 114
7	Generalized Intrinsic and Extrinsic Lengths in Submanifolds Embedded and Immersed Rigid and Semi-rigid Geometry. Lorentz Transformations and SRT. A Theorem of Gauss and a Remarkable Year. FRLM Geometry and FRLW Metrics	109 109 109 111 114 115
7	Generalized Intrinsic and Extrinsic Lengths in Submanifolds Embedded and Immersed Rigid and Semi-rigid Geometry. Lorentz Transformations and SRT. A Theorem of Gauss and a Remarkable Year. FRLM Geometry and FRLW Metrics Representing Dimensions	109 109 109 111 114 115 117
7	Generalized Intrinsic and Extrinsic Lengths in Submanifolds Embedded and Immersed Rigid and Semi-rigid Geometry. Lorentz Transformations and SRT. A Theorem of Gauss and a Remarkable Year. FRLM Geometry and FRLW Metrics Representing Dimensions Transformations in Euclidean Geometry	109 109 109 111 114 115 117 118
7	Generalized Intrinsic and Extrinsic Lengths in Submanifolds Embedded and Immersed Rigid and Semi-rigid Geometry. Lorentz Transformations and SRT. A Theorem of Gauss and a Remarkable Year. FRLM Geometry and FRLW Metrics Representing Dimensions Transformations in Euclidean Geometry Unveiling the Secrets of Grandi Curves	109 109 109 111 114 115 117 118 119

Part IV Κατασκευή—Constructio

8	(Meta)Harmony	127
	Harmonic and Metaharmonic Solutions	127
	The Mathematical Physics Project of Fourier	130
	Solving BVP with Fourier Series	131
	The Dirichlet Problem for the Laplace Equation	132
	Numerical Results	135
	Flower and Plate Vibrations	135
	Fourier-Bessel Solution for the Helmholtz Equation	137
	Metaharmony	141
	R-Functions Revisited	142
9	Natural Curvature Conditions	145
,	Curvature the Central Notion in Geometry	145
	Moving in Space.	146
	Moving on Curves on Surfaces.	147
	Natural Curvature Conditions and Ideal Submanifolds	149
	Constant Mean Curvature Surfaces and Conic Sections	152
	Curvature Defined by Lamé and Gielis Curves	154
	The Inverse Square Law Generalized	156
	Sectional Curvature of Riemannian Manifolds	157
	Curvature Diagrams	158
	Flowers as Analytical Method for Studying Curvature	159
	Circles and Spirals	160
	Going with and Going Against the Flow	162
	Applying Gielis Transformations to the Basic Shapes	165
	Determinatio and Constructio	166
Par	t V Απόδειξις—Demonstratio	

10	Bamboo Leaves and Tree Rings	169
	Shape Analysis with the Superformula	169
	Plant Leaves	171
	46 Bamboo Species, 1000 Leaves, 1 Equation	172
	A Two-Parameter Model	173
	Superelliptical Tree Rings and Bamboo Stems and Rhizomes	179
	Stems, Petioles and Cells	182
11	Snowflakes and Asclepiads	187
	Soap Bubbles, Culcita Novaeguineae and Ammonoids	187
	Equilibrium Shapes for Far-from-Equilibrium Conditions	189
	Fusion as Driving Force in the Evolution of Angiosperms	192
	Inter and Intrawhorl Fusion in Flowers	193
	Orchids and Asclepiads	194

Corolla Shapes in Asclepiad Flowers	196
A Three-Element System for Fusion in Corolla	198
A Highly Stable Corolla	199
Fast Forward Evolution: Combining Stochastic and Deterministic	
Techniques	201
Beyond Asclepiads	202

Part VI Συμπέρασμα—Conclusio

12	The Pythagorean Theorem for the Third Millenium	207
	Preserving the Pythagorean Theorem	207
	With Elementary Mathematics	209
	Preserving Euclidean Geometry.	209
	What if?	210
	Deterministic and Structurally Stable.	211
	Plants at the Core of Our Worldview	212
	Physis-Centered Worldviews	213
	Human-Centered Worldviews	213
	The Sixfold Way	214
	An Open Invitation to Mathematicians and Students of Nature	215

List of Figures

Figure 1.1	Universal natural shapes	4
Figure 2.1	Nature's grand symphony	14
Figure 2.2	A snowflake with short and long sides and the water fern	
-	Marsilea	15
Figure 2.3	Some natural shapes as Gielis transformations	
	of a circle	16
Figure 2.4	Observing and understanding is a human endeavour	17
Figure 2.5	Uniting mathematics, science and philosophy	20
Figure 3.1	Combinatorial means: Blue is AM; light Green is GM,	
-	Pink is HM, dark green is subcontrary to GM,	
	orange is subcontrary to HM	24
Figure 3.2	Division of an interval $[a, b]$ into three parts	
	according to AM or GM	26
Figure 3.3	Graphical construction of the harmonic	
-	mean H for $n = 3$	26
Figure 3.4	First rows of Pascal's triangle	27
Figure 3.5	Binomial expansion	30
Figure 3.6	Simon Stevin's Geometric numbers	31
Figure 3.7	Sine function for increasing number of terms	
	in partial sums	33
Figure 3.8	From Newton's Principia [55]	34
Figure 3.9	The equal spacing of consecutive Fibonacci numbers	
	in logarithmic scale and the geometry of super- and	
	subparabola in the interval [1; 1] [56]	34
Figure 3.10	Kepler's law of equal areas (<i>left</i>) and law of periods	36
Figure 3.11	Annual growth G_T is related to total biomass M_T ,	
	over a wide range of plant species and growth types	36
Figure 3.12	Chebyshev polynomials $T_n(x)$ for $n = 0,, 5,, 5$	37
Figure 3.13	Parallel or crossing lines, with direct correspondence	
	to the constructions for AM and HM	40
Figure 4.1	Lamé's supercircles	46

Figure 4.2	Lamé-curves for $n = 3$ and $n = 4$
Figure 4.3	Superelliptical stems of Phlomis, Verbena, teak
C	and Euphorbia
Figure 4.4	Gabriel Lamé, superellipses combine the advantages
e	of rectangle and ellipse, and cross section of supershaped
	stem or tube
Figure 4.5	Chimonobambusa quadrangularis, Dendrocalamus
C	giganteus culm, and Silphium perfoliatum
	(flower and stem)
Figure 4.6	Hydrangea sepals arranged in a square
Figure 4.7	Polyhedral superspheres
Figure 5.1	From Pythagoras and the circle,
C	to Lamé's supercircles 58
Figure 5.2	The symmetry parameter m increases from 1 to 8
C	for $n_{2,3} < 2$ [103]
Figure 5.3	Supershapes in continuous color gradients [104] 61
Figure 5.4	Regular superpolygons
Figure 5.5	Polygrams with $m = 5/2$; 5/3 and 8/3
Figure 5.6	Phyllotactic patterns in plants [1]
Figure 5.7	Choripetalous five-petalled flowers with the
C	corresponding constraining superpolygons
Figure 5.8	$\rho(\vartheta) = e^{0.2\vartheta}$ with b $m = 4$ and $n_1 = n_2 = n_3 = 100$
-	and c $m = 10$ and $n_1 = n_2 = n_3 = 5$
Figure 5.9	Superspirals in nature
Figure 5.10	Morphing a circle into a starfish. The value of $m = 5$
-	in all cases
Figure 5.11	Variations in starfish can be quantified precisely
Figure 5.12	Distances, area and polar moment of inertia I_p
-	are conserved for changing <i>m</i> for fixed exponents
	(here all exponents $n = 1$)
Figure 5.13	3D shapes
Figure 5.14	Fluid mechanics and patterns as supertori
Figure 5.15	Cacti and stapeliads as generalized cylinders
-	with supershaped cross sections
Figure 5.16	Future Fossils [113, 114] 76
Figure 5.17	Modern Architecture
Figure 5.18	Architon GML
Figure 5.19	Knots and links after cutting GML ribbons 80
Figure 5.20	Goethe's rose grown through 80
Figure 6.1	<i>Vinca major</i>
Figure 6.2	Some new shapes
Figure 6.3	New shapes with higher periodicity 89

Figure 6.4	"Brilliant! Off the charts in terms	00
		90
Figure 6.5	Leaf shapes as transformations of a cardioid [132]	91
Figure 0.0	Lear shapes as variations on a superformular	01
F. (7	theme [133]	91
Figure 6.7	A racecar in less than 900 bytes [139]	93
Figure 6.8	Architon in the Geometry Garden	94
Figure 6.9	Spiral of Theodorus (<i>left</i>) and Romanesco broccoli	95
Figure 6.10	Pythagorean trees.	95
Figure 6.11	Koch snowflake of order 3 (<i>left</i>) and 6 (<i>center</i>),	
	and Sierpinski gasket	96
Figure 6.12	Conjunction (<i>left</i>); disjunction (<i>center</i>) and relative complement of two sets	97
Figure 6.13	Fichera domain (<i>left</i>) and superfractal (<i>right</i>)	98
Figure 6.14	R_{μ} (x y) R_{μ} (x y) and R^0 (x y) for R-disjunction	20
I iguie 0.1	All have a constant sign in each quadrant [144]	99
Figure 6.15	Rear axis of truck all in supershapes and turbine	//
I iguie 0.15	of windmill with cross section displaying	
	the potential fields	100
Figure 6.16	RGC as multivalued functions	101
Figure 6.17	Examples of the Boolean differences between	101
I iguie 0.17	consecutive layers	102
Figure 6.18	Strings and real things	102
Figure 6.19	Tree rings in teak. The central ones are I amé curves	103
Figure 6 20	Supershapes with same complexity as a torus	105
Figure 6.21	Different shapes of leaves of maples, <i>Hydrangea</i>	105
	petiolaris and H. quercifolia	106
Figure 7.1	Unit circles based on rigid and semi-rigid rulers.	
	For illustrative purposes the observer is depicted	
	as a two-dimensional square, but one has to consider	
	the one-dimensional line, originating from a common	
	center for each angle	111
Figure 7.2	Application of areas to halfchords	113
Figure 7.3	Clelia curves developed onto supershapes	120
Figure 7.4	From Pythagoras to Gielis transformations and back	123
Figure 8.1	Spatial distribution and boundary values of the partial	
-	sum $u_{N(x,y)}$ approximating the solution of the interior	
	Dirichlet problem for the Laplace equation	
	in a flying bird domain	136
Figure 8.2	Spatial distribution (<i>left</i>) and boundary values (<i>right</i>)	
c	of the partial sum $u_{N(x,y)}$ of order $N = 20$ approximating	
	the solution of the interior Dirichlet problem for the	
	Helmholtz equation in a corolla shaped domain	140

Figure	8.3	Spatial distribution of the partial sum $u_{N(x,y)}$ of order N approximating the solution of the interior Dirichlet problem for the Helmholtz equation in the flower-shaped	
		domain. Left $\alpha = 0.1$; Right $\alpha = 0.4$. $N = 20$	
		for both cases	141
Figure	8.4	Patterns on Mollusk shells	142
Figure	8.5	Asclepiads and the various patterns of color	
		and epidermal hairs structures	142
Figure	9.1	Tangent, normal and binormal vectors and planes	147
Figure	9.2	Curvature of surfaces	148
Figure	9.3	Examples of Wulff shapes and associated catenoids	154
Figure	9.4	Oscullating starfish and chains along the curve	155
Figure	9.5	Curvature diagrams for constant mean, Gaussian,	
		Casorati and Lamé curvature	159
Figure	9.6	Circular and spiral tendencies in developing flowers	
		and inflorescences	162
Figure	9.7	Spiral and D'Arcy Thompson	163
Figure	9.8	Universal natural shapes	165
Figure	10.1	A variety of plant leaves	171
Figure	10.2	Sasa palmata	173
Figure	10.3	Leaf shape and size parameters n , L , l are related	
		$L = (1 + 2^{-1/2n}) \cdot l \dots \dots$	175
Figure	10.4	Comparison between scanned leaf profile and predicted	
		leaf profile from the simplified Gielis equation	176
Figure	10.5	Leaf lengths of 42 species.	177
Figure	10.6	Leaf shape parameter n for 46 species of bamboo.	
		Color codes are used for different genera;	
		numbering in Table 10.1	178
Figure	10.7	Young stems of teak and cross section of teak stem	179
Figure	10.8	Superelliptical tree rings in softwoods. Clockwise	
		from upper left Jack pine (Pinus banksiana Lamb),	
		red pine (Pinus resinosa Aiton), tamarack	
		(Larix laricinia (Du Roi) K. Koch and	
		white cedar (Thuja occidentalis L.)	180
Figure	10.9	Quantification of spirality in softwood trees	181
Figure	10.10	Observed culm wall rings and pith cavity rings	
		(black solid lines) and the predicted rings	
		(red solid lines) of eight bamboo species	
		show excellent correspondence [215]	182
Figure	10.11	Philodendron melinonii with green petiole	
		and <i>P. melinonii</i> "Rubescens" with red petioles	183

List of Figures

Figure 10.12	Series of sections of petioles of <i>Philodendron</i> melinonii	183
Figure 10.13	Stems of bamboo, petioles of tree ferns, the square basis of an oak and the stem of <i>Impatiens glandulifera</i> ,	184
Figure 10.14	Wood anatomy: <i>Upper row</i> bamboo parenchyma with starch (<i>left and right</i>) and bamboo fibres. (<i>center left and</i> <i>center right</i>). <i>Lower row</i> fibres of rattan (<i>left and left</i> <i>center</i>) and softwoods (<i>right center and right</i>)	185
Figure 111	Culcita novaeguineae	188
Figure 11.2	Left and center left fossil and reconstruction of living Entogonites saharensis, Center rightParawocklumeria.	100
	<i>Right</i> a discovery from the supershape universe	188
Figure 11.3	Plant Pollen.	189
Figure 11.4	Capped column snow flake and CAMC catenoid	191
Figure 11.5	Sand dollars and curvature	191
Figure 11.6	Spiral phyllotaxy (upper row) and whorled phyllotaxy	193
Figure 11.7	Petunia hybrida, Petunia Maewest, Wild type WT	
-	and Pink Ice	194
Figure 11.8	Tridentia gemmiflora	195
Figure 11.9	Formation of Asclepiad flower	196
Figure 11.10	Increasing fusion of petals	197
Figure 11.11	a . Caralluma frerei, b . Fusion of DF and CF,	
	c. Huernia recondita, d. constraining superpolygon	197
Figure 11.12	Black-eyed Susan (Thunbergia alata)	199
Figure 11.13	Spatial distribution of the partial sum $u_N(x,y)$	
	of order N approximating the solution of the interior	
	Dirichlet problem for the Helmholtz equation in the	
	flower-shaped domain with fusion parameter	200
Figure 11.14	Flowers are key to understanding nature	203
Figure 12.1	Fatal attraction in Universal Natural Shapes	216

List of Tables

Table 5.1	Superpolygons and regular polygons	63
Table 5.2	Spherical product of two superpolygons	73
Table 9.1	From conicsections to CMC surfaces.	153
Table 10.1	46 Species of bamboo [210]	174
Table 11.1	Various means in numbers, surfaces and flowers	199
Table 12.1	Allometry simplified	213

Part Ι Πρότἄσις—Propositio

Chapter 1 Universal Natural Shapes

The geometrical description of curves and surfaces and the shapes that are derived via Gielis-transformations, describe and determine in a uniform and universal way an enormous diversity of natural shapes.

Leopold Verstraelen

Conic Sections at the Core, Once More

In the book *Inventing the Circle* [1] it was shown how one generic geometric description, a generalization of Pythagoras and Lamé, allows for the description of many natural shapes, illustrated with many pictures and illustrations. The same ideas were published in the American Journal of Botany in April 2003 [2]. In 2004 this generic geometric transformation was named Gielis Transformations, giving rise to the class of Gielis curves and surfaces, by the geometer Leopold Verstraelen, who understood that this transformation allows for a broadening of some crucial concepts in geometry. Its actions on classic curves could describe a wide range of shapes in nature [3]: "The basic shapes of the highly diverse creatures, objects and phenomena, as they are observed by humans, either visually or with the aid of sophisticated apparatus, can essentially, either singular or in combination, be considered as derived from a limited number of special types of geometric figures. From Greek science up to the present this is probably the most important subject of natural philosophy... The geometrical description of curves and surfaces and the shapes that are derived via Gielis-transformations, describe and determine in a uniform and universal way an enormous diversity of natural shapes".

Because of this wide applicability—the Gielis Formula describes shapes at nano, micro, macro and gigascale—the idea of Universal Natural Shapes was born, providing for a uniform description of natural shapes (Fig. 1.1). T. Philips of the Courant Institute wrote [4]: "A botanical Kepler awaiting his Newton". Obviously, this waiting can take a while. In the meantime we have deepened our understanding of its applicability to study natural shapes and broadening of concepts in geometry and mathematics. This book describes some of these developments, and shows how

[©] Atlantis Press and the author(s) 2017

J. Gielis, The Geometrical Beauty of Plants,

DOI 10.2991/978-94-6239-151-2_1

Fig. 1.1 Universal Natural Shapes. Copyright Johan Gielis/Martin Heigan

it connects various ideas and fields, starting from the principles developed by Ancient Greek mathematicians.

Like *Inventing the Circle* this book is one of ideas, rather than technical. It can be considered as the second part of a trilogy. *Inventing the Circle* introduced the new transformations, and provided many examples of such shapes in nature. In this book we will focus on some of the underlying geometrical aspects based on the subtitle of the first book: *The geometrical beauty of nature*.

We will follow the universal scheme of building arguments as developed by the ancient Greeks [5], the Demonstratio artis geometriae.

Πρότάσις or Propositio exposes what needs to be shown, namely that beyond the mere analogy, we can develop a rigorous geometrical and mathematical approach to study natural shapes based on Lamé-Gielis curves and surfaces.

 $E\kappa\theta\epsilon\sigma\iota\varsigma$ or Expositio describes what we have to start with. From elementary notions in mathematics that are at work in every field of mathematics and its applications in the natural sciences, we derive Lamé-Gielis curves and surfaces.

Διορισμός: in this Determinatio step we investigate "whether what is sought is possible or impossible, and how far it is practicable and in how many ways". It will be shown how the shapes and their combinations can be easily combined with many existing concepts in geometry and mathematics. This wide applicability applies to a wide variety of natural shapes, Universal Natural Shapes.

Kατασκευή or Constructio: Observations from botany open the door for understanding many key concepts and their connections and allow for analytical solutions of boundary value problems, using classical 19th century methods, thereby broadening various concepts (Gielis is an acronym) and analytical methods. What we can learn from flowers and plants can be applied in virtually all fields of science and technology.

 $A\pi \delta \delta \epsilon_1 \xi_1 \zeta$ or Demonstratio: in the final chapters it is demonstrated how Lamé and Gielis curves provide better models for studying various natural shapes, and how they can help understanding evolutionary and developmental aspects in biology, based on geometrical considerations.

Συμπέρασμα: This then leads to the conclusion that many of the suggestions made in the original book and articles in the period 1999–2005 have been validated. Description always precedes understanding the connections between mathematics and nature. Moreover, Lamé-Gielis curves and Gielis transformations have opened the door for many new developments, among others for a geometrical theory of shape and morphogenesis.