Advances in Photosynthesis and Respiration 41 Including Bioenergy and Related Processes

William A. Cramer Toivo Kallas *Editors* 

Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling



### Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling



**Experimental Information Important for Understanding Properties of Photosynthetic Cytochromes.** Along the top are stick diagrams and electron density of pigments involved in light-harvesting – Chl-*a*,  $\beta$ -carotene, and heme of cytochrome *f* with unusual Tyr–His axial ligation (pdb, protein data base code, 4OGQ). This is followed by a flash kinetic trace of cytochrome oxidation-reduction. Along the bottom is a redox difference spectrum of the cytochrome  $b_6 f$  complex, the [2Fe-2S] cluster in the Rieske iron-sulfur protein (pdb 4OGQ), and electron spin resonance spectra showing the unique g = 12 signal for the heme  $b_n$ – $c_n$  couple in the cytochrome  $b_6 f$  complex. In the center is an X-ray diffraction pattern of cytochrome  $b_6 f$  crystals (pdb 4OGQ). **Protein structures** (*left* to *right*); **upper bilayer**: Photosynthetic electron transfer chain – Photosystem II (pdb 2WU2), cytochrome  $b_6 f$  complex (pdb 4OGQ), Photosystem I (pdb 1JB0); **lower bilayer**: Mitochondrial electron transport chain – NDH complex (pdb 4HEA), succinate dehydrogenase (pdb 1NEN), cytochrome  $bc_1$  complex (pdb 3CX5), cytochrome c oxidase (pdb 1V54). The lipid bilayer is a homogeneous DOPC bilayer generated with the CHARMM program. *Abbreviations*: p. n-side, electrochemically positive and negative side of the membrane (drawing by S. Saif Hasan)

### Advances in Photosynthesis and Respiration Including Bioenergy and Related Processes

#### VOLUME 41

Series Editors:

#### **GOVINDJEE\***

(University of Illinois at Urbana-Champaign, IL, U.S.A)

#### **THOMAS D. SHARKEY**

(Michigan State University, East Lansing, MI, U.S.A)

\* Founding Series Editor

Advisory Editors:

Roberta CROCE, University of Amsterdam, The Netherlands Basanti BISWAL, Sambalpur University, Jyoti Vihar, Odisha, India Robert E. BLANKENSHIP, Washington University, St Louis, MO, U.S.A. Ralph BOCK, Max Planck Institute of Molecular Plant Physiology, Postdam-Golm, Germany Julian J. EATON-RYE, University of Otago, Dunedin, New Zealand Guillaume TCHERKEZ, Australian National University, Canberra, Australia Joy K. WARD, University of Kansas, U.S.A. Johannes MESSINGER, Umeå University, Umeå, Sweden Davide ZANNONI, University of Bologna, Bologna, Italy Xinguang ZHU, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China

The book series ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION Including Bioenergy and Related Processes provides a comprehensive and state-of-the-art account of research in photosynthesis, respiration and related processes. Virtually all life on our planet Earth ultimately depends on photosynthetic energy capture and conversion to energy-rich organic molecules. These are used for food, fuel, and fiber. Photosynthesis is the source of almost all bioenergy on Earth. The fuel and energy uses of photosynthesized products and processes have become an important area of study, and competition between food and fuel has led to resurgence in photosynthesis research. This series of books spans topics from physics to agronomy and medicine; from femtosecond processes through season-long production to evolutionary changes over the course of the history of the Earth; from the photophysics of light absorption, excitation energy transfer in the antenna to the reaction centers, where the highly-efficient primary conversion of light energy to charge separation occurs, through the electrochemistry of intermediate electron transfer, to the physiology of whole organisms and ecosystems; and from X-ray crystallography of proteins to the morphology of organelles and intact organisms. In addition to photosynthesis in natural systems, genetic engineering of photosynthesis and artificial photosynthesis is included in this series. The goal of the series is to offer beginning researchers, advanced undergraduate students, graduate students, and even research specialists, a comprehensive, up-to-date picture of the remarkable advances across the full scope of research on photosynthesis and related energy processes. The purpose of this series is to improve understanding of photosynthesis and respiration at many levels both to improve basic understanding of these important processes and to enhance our ability to use photosynthesis for the improvement of the human condition.

For further volumes: www.springer.com/series/5599

# Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling

Edited by

### William A. Cramer

Department of Biological Sciences Hockmeyer Building of Structural Biology Purdue University West Lafayette, Indiana USA

and

### Toivo Kallas

Department of Biology Halsey Science Center University of Wisconsin-Oshkosh Oshkosh, Wisconsin USA



*Editors* William A. Cramer Department of Biological Sciences Hockmeyer Building of Structural Biology Purdue University West Lafayette, Indiana-47917, USA

Toivo Kallas Department of Biology Halsey Science Center University of Wisconsin-Oshkosh Oshkosh, Wisconsin-54901, USA

ISSN 1572-0233 ISSN 2215-0102 (electronic) Advances in Photosynthesis and Respiration ISBN 978-94-017-7479-6 ISBN 978-94-017-7481-9 (eBook) DOI 10.1007/978-94-017-7481-9

Library of Congress Control Number: 2016934058

#### © Springer Science+Business Media Dordrecht 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer Science+Business Media B.V. Dordrecht

## From the Series Editors

### Advances in Photosynthesis and Respiration Including Bioenergy and Related Processes Volume 41: Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling

We are delighted to announce the publication of Volume 41 in this series on Advances in Photosynthesis and Respiration Including Bioenergy and Related Processes. Oxygenic photosynthesis begins with conversion of light energy into chemical energy at two photochemical reaction centers in two separate photosystems (PS) I and II; this is followed by oxidation of water to molecular oxygen, reduction of pyridine nucleotide NADP<sup>+</sup> (nicotinamide adenine dinucleotide phosphate) to NADPH, and synthesis of ATP from ADP and inorganic phosphate by ATP synthase, the latter using the proton motive force produced across the thylakoid membrane during electron transport from water to NADP<sup>+</sup>. Four protein complexes are essential for the completion of the entire process that leads to the formation of O<sub>2</sub>, NADPH, and ATP: (1) Photosystem II (PSII); (2) Photosystem I (PSI); (3) Cytochrome (Cyt)  $b_6 f$  complex; and (4) ATP synthase. Volume 22 in our Series, edited by T. Wydrzynski and K. Satoh and published in 2005, covered in great depth structure and function of PSII (Water-Plastoquinone Oxidoreductase); and volume 24, edited by J.H. Golbeck and published in 2006, did the same for PSI (Plastocyaninferredoxin oxidoreductase). Now, in 2016, we are fortunate to be able to present a complete structure-function description of not only Cyt  $b_6 f$  complex but related complexes from mitochondria as well as from anoxygenic photosynthesis. This book (volume 41), Cvtochrome Complexes: Evo*lution, Structures, Energy Transduction, and Signaling*, was edited by two international authorities in biology, biochemistry, and biophysics: William A. Cramer and Toivo Kallas. In oxygenic photosynthesis, Cyt  $b_6f$ provides the link between PSII and PSI; it takes plastoquinol (PQH<sub>2</sub>) made by PSII and reduces plastocyanin, which, in turn, is the source of electrons to reduce feredoxin (and, thus, NADP<sup>+</sup>) by PSI. In addition, the cytochrome complex functions in the socalled Q cycle that is essential in generating an electrochemical proton gradient sufficient to generate the necessary ATP.

This book starts, appropriately, with a chapter by the late Derek S. Bendall, where he described the historical background of the field as well as the cytochrome notation. The book includes a discussion of the evolution of cytochromes and their functions. Students will benefit by an extensive exposure to both the experiments and the theory underlying electron transfer in proteins, as well as that of the molecular structures of cytochromes and even supercomplexes from both eukaryotes and prokaryotes. Essentially, one has, for the first time, as one would say, "All we wanted to know about cytochromes, but could not bring ourselves to ask." Yes, the book includes authoritative information even on macromolecular assembly, regulation, and signaling via the Cyt  $b_6 f$ complex.

Because volume 41 covers an extensive subset of the cytochrome complexes that are involved not only in oxygenic photosynthesis but also in anoxygenic photosynthesis, as well as in respiration, one is confident that this book will be used in educating undergraduate and graduate students and researchers not only in plant and agricultural sciences but animal sciences as well as in microbiology. And since the book covers in depth the structure and function, the molecular biology, and the biochemistry as well as the biophysics of these cytochrome complexes (see Preface as well as Table of Contents of this book for further details), it can be used by students in molecular & cell biology, biochemistry, chemical biology, and biophysics. Further, one can see its significance in areas of agricultural and chemical engineering and in biotechnology, all of which should contribute to the significance of this book.

#### Authors of Volume 41

We note with great pride that the current volume is truly an international book; it has authors from 13 countries: Finland (1); France (6); Germany (10); Italy (3); Ireland (3); Israel (2); Japan (8); Lithuania (2); Poland (6); Russia (10): Switzerland (1); UK (8); and USA (25).

We begin by specifically mentioning here two authors, who are also editors of this volume: William A. Cramer of Purdue University, Indiana, USA, and Toivo Kallas of University of Wisconsin Oshkosh, Wisconsin, USA (see their biographies in this volume). Cramer's theme of research is the structure and function of membrane proteins, with a major focus on photosynthetic energy transduction via the cytochrome  $b_6 f$  protein complex. We recommend that you visit his websites since they provide information on him as well as on his research: https://www. bio.purdue.edu/lab/cramer/; https://www.bio. purdue.edu/People/faculty dm/directory.php ?refID=12 Kallas's theme of research is overall photosynthesis, but in particular, electron transport through the cytochrome  $b_6 f$  complex. His work has often focused on cyanobacteria; his web page is at http://www.uwosh.edu/facstaff/kallas.

There are 80 authors (including the two editors), who are experts in the field of their research, especially cytochromes. Alphabetically (by last names), they are Jean Alric, Eva-Mari Aro, Danas Baniulis, Adrian C. Barbrook, Carl E. Bauer, the late Derek S Bendall, Gabor Bernat, Edward Berry, Wojciech Bialek, Robert E. Blankenship, Elisa Bombarda, Martin Caffrey, William A. Cramer, Fevzi Daldal, Miguel A. De la Rosa, Irene Díaz-Moreno, Antonio Díaz-Quintana, Timothy J. Donohue, Anne-Lise Ducluzeau, Seda Ekici, Robert Ekiert, Lothar Esser, Giovanni Finazzi, Maria Luisa Genova, Patrice Hamel, Shigeharu Harada, S. Saif Hasan, Florian Hilbers, Christopher J. Howe, Li-shar Huang, Saheed Imam, Daniel Ken Inaoka, Giles N. Johnson, Toivo Kallas, Bahia Khalfaoui-Hassani, Kiyoshi Kita, Hans-Georg Koch, Piotr Kolesinski, David Kramer, Lev I. Krishtalik, Genji Kurisu, Giorgio Lenaz, Joseph A. Lyons, Erica L.W. Majumder, Alizée Malnoë, Benjamin May, Yuval Mazor, I. Miliute, Jun Minagawa, Anthony L. Moore, Frank Müh, Lars Mueller, Nathan Nelson, Robert H. Nimmo, Wolfgang Nitschke, Daniel R. Noguera, Artur Osyczka, Jean-David Rochaix, Matthias Rögner, Marcin Sarewicz, Georg Schmetterer, Dirk Schneider, Tomoo Shiba, Toshiharu Shikanai, Namita Shroff, Melanie A. Spero, Andrzej Szczepaniak, Petru-Iulian Trasnea, G. Matthias Ullmann, Marcel Utz, Andreia F. Verissimo, Di Xia, Shinya Yoshikawa, Luke Young, Chang-An Yu, Sébastien Zappa, Fei Zhou, Francesca Zito, and Athina Zouni.

#### **Our Books**

We list below information on the 40 volumes that have been published thus far (see http:// www.springer.com/series/5599 for the series website). Electronic access to individual chapters depends on subscription (ask your librarian) but Springer provides free downloadable Preface, sample pages and Table of Content for nearly all volumes. The available websites of the books in the Series are listed below.

- Volume 40 (2014): Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, edited by Barbara Demmig-Adams, Győző Garab, William W. Adams III, and Govindjee from USA and Hungary. Twenty-eight chapters, 649 pp, Hardcover ISBN 978-94-017-9031-4, eBook ISBN 978-94-017-9032-1 [http://www.springer.com/life+sciences/plant+ sciences/book/978-94-017-9031-4]
- Volume 39 (2014): The Structural Basis of Biological Energy Generation, edited by Martin F. Hohmann-Marriott from Norway. Twenty-four chapters, 483 pp, Hardcover ISBN 978-94-017-8741-3, eBook ISBN 978-94-017-8742-0 [http://www.springer.com/ life+sciences/book/978-94-017-8741-3]
- Volume 38 (2014): Microbial BioEnergy: Hydrogen Production, edited by Davide Zannoni and Roberto De Phillipis, from Italy. Eighteen chapters, 366 pp, Hardcover ISBN 978-94-017-8553-2, eBook ISBN 978-94-017-8554-9 [http://www.springer.com/ life+sciences/plant+sciences/book/978-94-017-8553-2]
- Volume 37 (2014): Photosynthesis in Bryophytes and Early Land Plants, edited by David T. Hanson and Steven K. Rice, from USA. Eighteen chapters, approx. 342 pp, Hardcover ISBN 978-94-007-6987-8, eBook ISBN 978-94-007-6988-5 [http://www.springer.com/life+sciences/plant+ sciences/book/978-94-007-6987-8]
- Volume 36 (2013): Plastid Development in Leaves during Growth and Senescence, edited by Basanti Biswal, Karin Krupinska and Udaya Biswal, from India and Germany. Twenty-eight chapters, 837 pp, Hardcover ISBN 978-94-007-5723-33, eBook ISBN 978-94-007-5724-0 [http://www.springer.com/ life+sciences/plant+sciences/book/978-94-007-5723-3]
- Volume 35 (2012): Genomics of Chloroplasts and Mitochondria, edited by Ralph Bock and Volker Knoop, from Germany. Nineteen chapters, 475 pp, Hardcover ISBN 978-94-007-2919-3 eBook ISBN 978-94-007-2920-9 [http://www.springer.com/life+sciences/plant+sciences/book/978-94-007-2919-3]

- Volume 34 (2012): Photosynthesis Plastid Biology, Energy Conversion and Carbon Assimilation, edited by Julian Eaton-Rye, Baishnab C. Tripathy, and Thomas D. Sharkey, from New Zealand, India, and USA. Thirtythree chapters, 854 pp, Hardcover, ISBN 978-94-007-1578-3, eBook ISBN 978-94-007-1579-0 [http://www.springer.com/ life+sciences/plant+sciences/book/978-94-007-1578-3]
- Volume 33 (2012): Functional Genomics and Evolution of Photosynthetic Systems, edited by Robert L. Burnap and Willem F.J. Vermaas, from USA. Fifteen chapters, 428 pp, Hardcover ISBN 978-94-007-1532-5, Softcover ISBN 978-94-007-3832-4, eBook ISBN 978-94-007-1533-2 [http://www. springer.com/life+sciences/book/978-94-007-1532-5]
- Volume 32 (2011): C<sub>4</sub> Photosynthesis and Related CO<sub>2</sub> Concentrating Mechanisms, edited by Agepati S. Raghavendra and Rowan Sage, from India and Canada. Nineteen chapters, 425 pp, Hardcover ISBN 978-90-481-9406-3, Softcover ISBN 978-94-007-3381-7, eBook ISBN 978-90-481-9407-0 [http://www.springer.com/life+sciences/plant+ sciences/book/978-90-481-9406-3]
- Volume 31 (2010): The Chloroplast: Basics and Applications, edited by Constantin Rebeiz (USA), Christoph Benning (USA), Hans J. Bohnert (USA), Henry Daniell (USA), J. Kenneth Hoober (USA), Hartmut K. Lichtenthaler (Germany), Archie R. Portis (USA), and Baishnab C. Tripathy (India). Twenty-five chapters, 451 pp, Hardcover ISBN 978-90-481-8530-6, Softcover ISBN 978-94-007-3287-2, eBook ISBN 978-90-481-8531-3 [http://www.springer.com/ life+sciences/plant+sciences/book/978-90-481-8530-6]
- Volume 30 (2009): Lipids in Photosynthesis: Essential and Regulatory Functions, edited by Hajime Wada and Norio Murata, both from Japan. Twenty chapters, 506 pp, Hardcover ISBN 978-90-481-2862-4, Softcover ISBN 978-94-007-3073-1 eBook ISBN 978-90-481-2863-1 [http://www.springer.com/ life+sciences/plant+sciences/book/978-90-481-2862-4]

- Volume 29 (2009): Photosynthesis in Silico: Understanding Complexity from Molecules, edited by Agu Laisk, Ladislav Nedbal, and Govindjee, from Estonia, The Czech Republic, and USA. Twenty chap-525 Hardcover **ISBN** ters, pp, 978-1-4020-9236-7, Softcover **ISBN** 978-94-007-1533-2, eBook ISBN 978-1-4020-9237-4 [http://www.springer.com/ life+sciences/plant+sciences/book/978-1-4020-9236-7]
- Volume 28 (2009): The Purple Phototrophic Bacteria, edited by C. Neil Hunter, Fevzi Daldal, Marion C. Thurnauer and J. Thomas Beatty, from UK, USA and Canada. Fortyeight chapters, 1053 pp, Hardcover ISBN 978-1-4020-8814-8, eBook ISBN 978-1-4020-8815-5 [http://www.springer.com/ life+sciences/plant+sciences/book/978-1-4020-8814-8]
- Volume 27 (2008): Sulfur Metabolism in Phototrophic Organisms, edited by Christiane Dahl, Rüdiger Hell, David Knaff and Thomas Leustek, from Germany and USA. Twenty-four chapters, 551 pp, Hardcover ISBN 978-4020-6862-1, Softcover ISBN 978-90-481-7742-4, eBook ISBN 978-1-4020-6863-8 [http://www.springer.com/ life+sciences/plant+sciences/book/978-1-4020-6862-1]
- Volume 26 (2008): Biophysical Techniques Photosynthesis, Volume II, edited by Thijs Aartsma and Jörg Matysik, both from The Netherlands. Twenty-four chapters. Hardcover, ISBN 548 pp, 978-1-4020-8249-8, Softcover ISBN 978-90-481-7820-9, eBook ISBN 978-1-4020-8250-4 [http://www.springer.com/life+sciences/plant+ sciences/book/978-1-4020-8249-8]
- Volume 25 (2006): Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications, edited by Bernhard Grimm, Robert J. Porra, Wolfhart Rüdiger, and Hugo Scheer, from Germany and Australia. Thirty-seven chapters, 603 pp, Hardcover, ISBN 978-1-40204515-8, Softcover ISBN 978-90-481-7140-8, eBook ISBN 978-1-4020-4516-5 [http://www.springer.com/life+sciences/plant+ sciences/book/978-1-4020-4515-8]

- Volume 24 (2006): Photosystem I: The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase, edited by John H. Golbeck, from USA. Forty chapters, 716 pp, Hardcover ISBN 978-1-40204255-3, Softcover ISBN 978-90-481-7088-3, eBook ISBN 978-1-4020-4256-0 [http://www.springer.com/ life+sciences/plant+sciences/book/978-1-4020-4255-3]
- Volume 23 (2006): The Structure and Function of Plastids, edited by Robert R. Wise and J. Kenneth Hoober, from USA. Twenty-seven chapters, 575 pp, Softcover, ISBN: 978-1-4020-6570–6; Hardcover ISBN 978-1-4020-4060-3, Softcover ISBN 978-1-4020-6570-5, eBook ISBN 978-1-4020-4061-0 [http://www.springer.com/ life+sciences/plant+sciences/book/978-1-4020-4060-3]
- Volume 22 (2005): Photosystem II: The Light-Driven Water: Plastoquinone Oxidoreductase, edited by Thomas J. Wydrzynski and Kimiyuki Satoh, from Australia and Japan. Thirty-four chapters, 786 pp, Hardcover ISBN 978-1-4020-4249-2, eBook ISBN 978-1-4020-4254-6 [http://www.springer.com/life+sciences/plant+ sciences/book/978-1-4020-4249-2]
- Volume 21 (2005): Photoprotection, Photoinhibition, Gene Regulation, and Environment, edited by Barbara Demmig-Adams, William W. Adams III and Autar K. Mattoo, from USA. Twenty-one chapters, 380 pp, Hardcover ISBN 978-14020-3564-7, Softcover ISBN 978-1-4020-9281-7, eBook ISBN 978-1-4020-3579-1 [http://www.springer.com/life+sciences/plant+ sciences/book/978-1-4020-3564-7]
- Volume 20 (2006): Discoveries in Photosynthesis, edited by Govindjee, J. Thomas Beatty, Howard Gest and John F. Allen, from USA, Canada and UK. One hundred and eleven chapters, 1304 pp, Hardcover ISBN 978-1-4020-3323-0, eBook ISBN 978-1-4020-3324-7 [http://www.springer.com/ life+sciences/plant+sciences/book/978-1-4020-3323-0]
- Volume 19 (2004): Chlorophyll *a* Fluorescence: A Signature of Photosynthesis, edited by George C. Papageorgiou and Govindjee,

from Greece and USA. Thirty-one chapters, 820 pp, Hardcover, ISBN 978-1-4020-3217-2, Softcover ISBN 978-90-481-3882-1, eBook ISBN 978-1-4020-3218-9 [http://www. springer.com/life+sciences/biochemistry+%26 +biophysics/book/978-1-4020-3217-2]

- Volume 18 (2005): Plant Respiration: From Cell to Ecosystem, edited by Hans Lambers and Miquel Ribas-Carbo, from Australia and Spain. Thirteen chapters, 250 pp, Hardcover ISBN978-14020-3588-3, Softcover ISBN 978-90-481-6903-0, eBook ISBN 978-1-4020-3589-0 [http://www.springer.com/ life+sciences/plant+sciences/book/978-1-4020-3588-3]
- Volume 17 (2004): Plant Mitochondria: From Genome to Function, edited by David Day, A. Harvey Millar and James Whelan, from Australia. Fourteen chapters, 325 pp, Hardcover, ISBN: 978-1-4020-2399-6, Softcover ISBN 978-90-481-6651-0, eBook ISBN 978-1-4020-2400-9 [http://www.springer.com/life+sciences /cell+biology/book/978-1-4020-2399-6]
- Volume 16 (2004): Respiration in Archaea and Bacteria: Diversity of Prokaryotic Respiratory Systems, edited by Davide Zannoni, from Italy. Thirteen chapters, 310 pp, Hardcover ISBN 978-14020-2002-5, Softcover ISBN 978-90-481-6571-1, eBook ISBN 978-1-4020-3163-2 [http://www.springer.com/ life+sciences/plant+sciences/book/978-1-4020-2002-5]
- Volume 15 (2004): Respiration in Archaea and Bacteria: Diversity of Prokaryotic Electron Transport Carriers, edited by Davide Zannoni, from Italy. Thirteen chapters, 350 pp, Hardcover ISBN 978-1-4020-2001-8, Softcover ISBN 978-90-481-6570-4 (no eBook at this time) [http://www.springer.com/ life+sciences/biochemistry+%26+biophysics/ book/978-1-4020-2001-8]
- Volume 14 (2004): Photosynthesis in Algae, edited by Anthony W. Larkum, Susan Douglas and John A. Raven, from Australia, Canada and UK. Nineteen chapters, 500 pp, Hardcover ISBN 978-0-7923-6333-0, Softcover ISBN 978-94-010-3772-3, eBook ISBN 978-94-007-1038-2 [http://www.springer.com/life+sciences/plant+ sciences/book/978-0-7923-6333-0]

- Volume 13 (2003): Light-Harvesting Antennas in Photosynthesis, edited by Beverley R. Green and William W. Parson, from Canada and USA. Seventeen chapters, 544 pp, Hardcover ISBN 978-07923-6335-4, Softcover ISBN 978-90-481-5468-5, eBook ISBN 978-94-017-2087-8 [http://www.springer.com/life+sciences/plant+sciences/book/978-0-7923-6335-4]
- Volume 12 (2003): Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism, edited by Christine H. Foyer and Graham Noctor, from UK and France. Sixteen chapters, 304 pp, Hardcover ISBN 978-07923-6336-1, Softcover ISBN 978-90-481-5469-2, eBook ISBN 978-0-306-48138-3 [http://www.springer.com/ life+sciences/plant+sciences/book/978-0-7923-6336-1]
- Volume 11 (2001): Regulation of Photosynthesis, edited by Eva-Mari Aro and Bertil Andersson, from Finland and Sweden. Thirtytwo chapters, 640 pp, Hardcover ISBN 978-0-7923-6332-3, Softcover ISBN 978-94-017-4146-0, eBook ISBN 978-0-306-48148-2 [http://www.springer.com/life+sciences/plant+ sciences/book/978-0-7923-6332-3]
- Volume 10 (2001): Photosynthesis: Photobiochemistry and Photobiophysics, edited by Bacon Ke, from USA. Thirtysix chapters, 792 pp, Hardcover ISBN 978-0-7923-6334-7, Softcover ISBN 978-0-7923-6791-8, eBook ISBN 978-0-306-48136-9 [http://www.springer.com/life+sciences/plant+ sciences/book/978-0-7923-6334-7]
- Volume 9 (2000): Photosynthesis: Physiology and Metabolism, edited by Richard C. Leegood, Thomas D. Sharkey and Susanne von Caemmerer, from UK, USA and Australia. Twenty-four chapters, 644 pp, Hardcover ISBN 978-07923-6143-5, Softcover ISBN 978-90-481-5386-2, eBook ISBN 978-0-306-48137-6[http://www.springer.com/life+sciences/plant+sciences/book/978-0-7923-6143-5]
- Volume 8 (1999): The Photochemistry of Carotenoids, edited by Harry A. Frank, Andrew J. Young, George Britton and Richard J. Cogdell, from USA and UK. Twenty chapters, 420 pp, Hardcover ISBN 978-0-7923-5942-5, Softcover ISBN

978-90-481-5310-7, eBook ISBN 978-0-306-48209-0 [http://www.springer.com/ life+sciences/plant+sciences/book/978-0-7923-5942-5]

- Volume 7 (1998): The Molecular Biology of Chloroplasts and Mitochondria in *Chlamydomonas*, edited by Jean David Rochaix, Michel Goldschmidt-Clermont and Sabeeha Merchant, from Switzerland and USA. Thirty-six chapters, 760 pp, Hardcover ISBN 978-0-7923-5174-0, Softcover ISBN 978-94-017-4187-3, eBook ISBN 978-0-306-48204-5 [http://www.springer.com/ life+sciences/plant+sciences/book/978-0-7923-5174-0]
- Volume 6 (1998): Lipids in Photosynthesis: Structure, Function and Genetics, edited by Paul-André Siegenthaler and Norio Murata, from Switzerland and Japan. Fifteen chapters, 332 pp. Hardcover ISBN 978-0-7923-5173-3, Softcover ISBN 978-90-481-5068-7. eBook ISBN 978-0-306-48087-4 [http://www.springer.com/ life+sciences/plant+sciences/book/978-0-7923-5173-3
- Volume 5 (1997): Photosynthesis and the Environment, edited by Neil R. Baker, from UK. Twenty chapters, 508 pp, Hardcover ISBN 978-07923-4316-5, Softcover ISBN 978-90-481-4768-7, eBook ISBN 978-0-306-48135-2 [http://www.springer.com/ life+sciences/plant+sciences/book/978-0-7923-4316-5]
- Volume 4 (1996): Oxygenic Photosynthesis: The Light Reactions, edited by Donald R. Ort and Charles F. Yocum, from USA. Thirty-four chapters, 696 pp, Hardcover ISBN 978-0-7923-3683-9, Softcover ISBN 978-0-7923-3684–6, eBook ISBN 978-0-306-48127-7 [http://www.springer.com/life+sciences/plant+ sciences/book/978-0-7923-3683-9]
- Volume 3 (1996): Biophysical Techniques in Photosynthesis, edited by Jan Amesz and Arnold J. Hoff, from Netherlands. Twenty-four chapters, The 426 pp, Hardcover ISBN 978-0-7923-3642-6, Softcover ISBN 978-90-481-4596-6, eBook ISBN 978-0-306-47960-1

[http://www.springer.com/life+sciences/plant+ sciences/book/978-0-7923-3642-6]

- Volume 2 (1995): Anoxygenic Photosynthetic Bacteria, edited by Robert E. Blankenship, Michael T. Madigan and Carl E. Bauer, from USA. Sixty-two chapters, 1331 pp, Hardcover ISBN 978-0-7923-3682-8, Softcover ISBN 978-0-7923-3682-2, eBook ISBN 978-0-306-47954-0 [http://www.springer.com/life+sciences/plant+ sciences/book/978-0-7923-3681-5]
- Volume 1 (1994): The Molecular Biology of Cyanobacteria, edited by Donald R. Bryant, from USA. Twenty-eight chapters, 916 pp, Hardcover, ISBN 978-0-7923-3222-0, Softcover ISBN 978-0-7923-3273-2, eBook ISBN 978-94-011-0227-8 [http://www.springer.com/ life+sciences/plant+sciences/book/978-0-7923-3222-0]

Further information on these books and ordering instructions is available at http:// www.springer.com/series/5599. Contents of volumes 1–28 can also be found at < http://www.life.uiuc.edu/govindjee/ photosynSeries/ttocs.html>.

Special 25 % discounts are available to members of the International Society of Photosynthesis Research, ISPR http://www. photosynthesisresearch.org/. See http://www. springer.com/ispr.

#### Future Advances in Photosynthesis and Respiration and Other Related Books

The readers of the current series are encouraged to watch for the publication of the forthcoming books (not necessarily arranged in the order of future appearance):

- Canopy Photosynthesis: From Basics to Applications (Editors: Kouki Hikosaka, Ülo Niinemets and Niels P.R. Anten); it is already available; see < http://www.springer.com/us/ book/9789401772907>
- *Photosynthesis and Climate Change* (working title) (Editor: Joy K. Ward)

- *Cyanobacteria* (Editor: Donald Bryant)
- *Leaf Photosynthesis* (Editors: William W. Adams III and Ichiro Terashima)
- *Photosynthesis in Algae* (Editors: Anthony Larkum and Arthur Grossman)
- Plant Respiration (Editor: Guillaume Tcherkez)

In addition to the above contracted books, the following topics are under consideration:

- · Algae, Cyanobacteria: Biofuel and Bioenergy
- Artificial Photosynthesis
- ATP Synthase: Structure and Function
- Bacterial Respiration II
- · Carotenoids II
- Evolution of Photosynthesis
- Green Bacteria and Heliobacteria
- Interactions between Photosynthesis and other Metabolic Processes
- Limits of Photosynthesis: Where do we go from here?
- · Photosynthesis, Biomass and Bioenergy
- Photosynthesis under Abiotic and Biotic Stress

If you have any interest in editing/coediting any of the above listed books, or being an author, please send an e-mail to Tom Sharkey (tsharkey@msu.edu) and/or to Govindjee (gov@illinois.edu). Suggestions for additional topics are also welcome.

Instructions for writing chapters in books in our series are available by sending e-mail requests to one or both of us; they may also be downloaded from Govindjee's website http://www. life.illinois.edu/govindjee as the fourth item under "Announcements" on the main page.

#### Acknowledgments

We take this opportunity to thank and congratulate William A. Cramer and Toivo Kallas for their outstanding editorial work; they have indeed done a fantastic job, not only in editing but also in organizing this book for all of us, and for their highly professional dealing with the reviewing process. We thank all the 81 authors of this book (see the list given earlier); without their authoritative chapters, there would be no such volume. We give special thanks to S. Koperundevi of SPi Global, India, for directing the typesetting of this book; her expertise has been crucial in bringing this book to completion. We owe Jacco Flipsen, Andre Tournois, and Ineke Ravesloot (of Springer) thanks for their friendly working relation with us that led to the production of this book.

#### March 15, 2016

#### Govindjee

Department of Plant Biology Department of Biochemistry and Center of Biophysics & Quantitative Biology University of Illinois at Urbana-Champaign, Urbana IL 61801, USA gov@illinois.edu

**Thomas D. Sharkey** 

Department of Biochemistry and Molecular Biology Michigan State University East Lansing, MI 48824, USA tsharkey@msu.edu

# Series Editors



Govindjee is the founding series editor of Advances in Photosynthesis, as it was called then, with volume 1 (The Molecular Biology of Cvanobacteria, 1994). In addition to being co-series editor (with Tom Sharkey) since volume 31 (The Chloroplast: Basics and Applications, 2010), he has coedited (1) Volume 19 (Chlorophyll a Fluorescence: A Signature of Photosynthesis, 2004); (2) Volume 20 (Discoveries in Photosynthesis, 2006); (3) Volume 29 (Photosynthesis In Understanding Complexity from Silico: Molecules to Ecosystems, 2009); and (4) Volume 40 (Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, 2014).

Govindjee, who uses one name only, has been Professor Emeritus of Biochemistry, Biophysics, and Plant Biology at the University of Illinois at Urbana- Champaign (UIUC), since 1999. His short evolving biography can be found in each volume of *Advances in Photosynthesis and Respiration*, and other information on him and his activities is available at his website http://www.life.illinois.edu/govindjee. An interview for Annual Reviews Inc., by Don Ort, is available at https://www.youtube. com/watch?v=cOzuL0vxEi0. His recent publications are listed at http://www.life. illinois.edu/govindjee/recent\_papers.html, and earlier publications since 1955 are at http://www.life.illinois.edu/govindjee/ pubschron.html.

Govindjee was trained in Plant Physiology (1952-1956) by Shri Ranjan (a student of Felix Frost Blackman of UK), in Biology and Biochemistry of Photosynthesis (1956-1958) by Robert Emerson (a student of the Nobel laureate Otto Warburg), and in Biophysics of Photosynthesis (1958-1961) by Eugene Rabinowitch (a postdoc student of the Nobel laureate James Franck). After his Ph.D. in Biophysics in 1960 from the UIUC, he has learned many concepts and techniques from many others including Louis N.M. Duysens (Leiden, The Netherlands); C. Stacy French (Stanford, California, USA); Herbert S. Gutowsky (Urbana, Illinois, USA); Bessel Kok (Baltimore, Maryland, USA); Jean Lavorel (Gif-syur-Yvette, France); Gregorio Weber (Urbana, Illinois); and Horst Witt (Berlin, Germany).

Govindjee's discoveries, with his coworkers and graduate students, include the participation of chlorophyll (Chl) a (in what we now call Photosystem (PS) II); proof of the existence of two light reactions in NADP reduction, and in Chl a fluorescence; temperature dependence of excitation energy transfer down to 4° K in algae and cyanobacteria; molecular understanding of both the fast and slow Chl a fluorescence (both prompt and delayed) changes-that includes participation of membrane potential, pH gradient, "traffic jam" in PSI, and the so-called state changes; first picosecond measurements on the primary photochemistry of PSI and PSII; unique role of bicarbonate in electron transfer and protonation events at the Q<sub>B</sub> binding site; first comprehensive theory of thermoluminescence in plants; and the first use of lifetime of Chl a fluorescence measurements in understanding photoprotection in plants.

Govindjee's activities include, besides research on "Light Reactions of Photosynthesis," honoring others (Robert Blankenship; Bob Buchanan; Andre Jagendorf; Wolfgang Junge; Hartmut Lichtenthaler; George Papageorgiou; William Ogren: Vladimir Shuvalov; and Diter Von Wettstein; see Govindjee's website) in the field, as well as participating in writing and editing obituaries and tributes (Lou Duysens; Colin Wraight; Al Bassham; Rene Marcelle; V.S.R. Rama Das; Prasanna Mohanty; Jalal Aliyev; Al Frenkel; and Andy Benson). In addition, he enjoys lecturing on the history of photosynthesis research and in teaching photosynthesis by having students act as molecules and demonstrating the path of electrons in photosynthesis by having them enact a drama. He has had many honors, but he cherishes five of them dearly: 2006 Lifetime Achievement Award of the Rebeiz Foundation for Basic Biology; 2007 Communication Award of the International Society of Photosynthesis Research; 2008 Liberal Arts & Sciences Lifetime Achievement Award of UIUC; 2015 Dr. B.M. Johri Memorial Award for Excellence in Plant Biology, from the Society of Plant Research, India; and a 2016 Distinguished Alumnus Award from his High School (Colonelganj Inter College) in Allahabad. In addition, he has enjoyed what others have written on him at his 75th and 80th birthdays (see Photosynth Res 93:1-5 (2007); 94: 153-178 (2007); 100: 49-55 (2009); 116: 107-110; 111-144 (2013); **122**: 113-119); also see <https://www.linkedin.com/pulse/govindjeeliving-legend-i-met-dr-ravi-sharma>. (To see this site, click on "living-legend".) A rather useful effort in teaching others is through the article "Photosynthesis Web Resources" <http://www.life.illinois.edu/ govindjee/photoweb/>. Also see a collection of education books at http://www.life. illinois.edu/govindjee/g/Books.html. He is always delighted to respond to questions on both photosynthesis research and education (e-mail: gov@illinois.edu).



Thomas D. (Tom) Sharkey obtained his Bachelor's degree in Biology in 1974 from Lyman Briggs College, a residential science college at Michigan State University, East Lansing, Michigan, USA. After 2 years as a research technician, Tom entered a Ph.D. program in the Department of Energy Plant Research Laboratory at Michigan State University under the mentorship of Klaus Raschke and finished in 1979. Postdoctoral research was carried out with Graham Farquhar at the Australian National University, in Canberra, where he coauthored a landmark review on photosynthesis and stomatal conductance. For 5 years he worked at the Desert Research Institute, Reno, Nevada. After Reno, Tom spent 20 years as Professor of Botany at the University of Wisconsin in Madison. In 2008, Tom became Professor and Chair of the Department of Biochemistry and Molecular Biology at Michigan State University. Tom's research interests center on the exchange of gases between plants and the atmosphere and carbon metabolism of photosynthesis. The biochemistry and biophysics underlying carbon dioxide uptake and isoprene emission from plants form the two major research topics in his laboratory. Among his contributions are measurement of the carbon dioxide concentration inside leaves, an

exhaustive study of short-term feedback effects in carbon metabolism, and a significant contribution to elucidation of the pathway by which leaf starch breaks down at night. In the isoprene research field, Tom is recognized as the leading advocate for thermotolerance of photosynthesis as the explanation for why plants emit isoprene. In addition, his laboratory has cloned many of the genes that underlie isoprene synthesis and he has published many important papers on the biochemical regulation of isoprene synthesis. Tom's work has been cited over 21,000 times according to Google Scholar in 2015. He has been named an Outstanding Faculty member by Michigan State University and in 2015, he was honored, and named as a University Distinguished Professor. Tom has coedited three books, the first on trace gas emissions from plants in 1991 (with Elizabeth Holland and Hal Mooney), volume 9 of this series (with Richard Leegood and Susanne von Caemmerer) on the Physiology of Carbon Metabolism of Photosynthesis in 2000, and volume 34 (with Julian Eaton-Rye and Baishnab C. Tripathy) entitled Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation. Tom has been co-series editor of this series since volume 31.

# Contents

| From the Series Editors | v    |
|-------------------------|------|
| Series Editors          | xiii |
| Preface                 | xxix |
| Editors                 | хххі |
| Remembrances            | xxxv |
| Contributors            | xli  |

### Part I: Diversity and Evolution

| 1 | Keilin, Cytochrome and Its Nomenclature<br>Derek S. Bendall (deceased)                                                                                          | 3–11                                   |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|   | Summary<br>I. The Cytochromes and History<br>References                                                                                                         | 3<br>3<br>10                           |
| 2 | When Did Hemes Enter the Scene of Life? On the Natural<br>History of Heme Cofactors and Heme-Containing<br>Enzymes<br>Anne-Lise Ducluzeau and Wolfgang Nitschke | 13–24                                  |
|   | Summary<br>I. Introduction<br>II. Hemes in LUCA; Pros and Cons<br>III. An Alternative Scenario<br>IV. Why All the Fuzz?<br>Acknowledgments<br>References        | 13<br>14<br>15<br>19<br>21<br>22<br>22 |
| 3 | The Diversity of Photosynthetic Cytochromes<br>Erica LW. Majumder and Robert E. Blankenship                                                                     | 25–50                                  |
|   | Summary<br>I. Introduction<br>II. Cytochromes in Anoxygenic Photosynthetic Electron Transpo                                                                     | 25<br>26<br>rt                         |
|   | Chains                                                                                                                                                          | 26                                     |

|   | III. Cytochromes in Oxygenic Photosynthetic Electron Transport             |       |
|---|----------------------------------------------------------------------------|-------|
|   | Chains                                                                     | 40    |
|   | IV. Conclusions                                                            | 44    |
|   | Acknowledgments                                                            | 44    |
|   | References                                                                 | 44    |
| 4 | Evolution of Photosynthetic NDH-1: Structure<br>and Physiological Function | 51–70 |
|   | Toshiharu Shikanai and Eva-Mari Aro                                        |       |
|   | Summary                                                                    | 51    |
|   | I. Introduction                                                            | 52    |
|   | II. Function and Structure of Cyanobacterial NDH-1                         | 53    |
|   | III. Chloroplast NDH-1 and Cyclic Electron Transport Around PSI            | 57    |
|   | IV. Structure of Chloroplast NDH-1                                         | 58    |
|   | V. Evolution of Chloroplast NDH-1 in Land Plants                           | 60    |
|   | VI. Physiological Reason for Evolutionary Increase in Complexity           |       |
|   | of Chloroplast NDH-1                                                       | 63    |
|   | VII. The Origin of Photosynthetic NDH-1                                    | 64    |
|   | VIII. Concluding Remarks                                                   | 64    |
|   | Acknowledgements                                                           | 65    |
|   | References                                                                 | 65    |
|   |                                                                            |       |

### Part II: Theoretical Aspects of Electron Transfer

| 5 | Fundamentals of Electron Transfer in Proteins<br>Lev I. Krishtalik                                                                                                | 73–98  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|   | Summary                                                                                                                                                           | 73     |
|   | I. Introduction                                                                                                                                                   | 74     |
|   | II. The General Theory of Charge Transfer Reactions in Polar                                                                                                      |        |
|   | Media: An Outline                                                                                                                                                 | 74     |
|   | III. Proteins as Specific Structured Polar Media                                                                                                                  | 83     |
|   | IV. Equilibrium Energies of Electron Transfer                                                                                                                     | 85     |
|   | V. Reorganization Energy and Activation Energy                                                                                                                    | 90     |
|   | VI. Long-Range Electron Transfer                                                                                                                                  | 93     |
|   | References                                                                                                                                                        | 95     |
| 6 | Theoretical Analysis of Electron Transfer in Proteins:<br>From Simple Proteins to Complex Machineries<br>G. Matthias Ullmann, Lars Mueller,<br>and Elisa Bombarda | 99–127 |
|   | Summary                                                                                                                                                           | 99     |
|   | I. Introduction                                                                                                                                                   | 100    |
|   | II. Theoretical Description of Electron Transfer Reactions                                                                                                        | 102    |
|   | III. Electrostatic Methods for Estimating Reaction Free Energies                                                                                                  | 5      |
|   | and Reorganization Energies                                                                                                                                       | 108    |

| IV. Complex Electron Transfer Proteins | 120 |
|----------------------------------------|-----|
| V. Conclusions                         | 122 |
| Acknowledgements                       | 125 |
| References                             | 125 |

### Part III: Molecular Structures and Functions of Cytochrome Complexes

| Α. | Photosynthetic Reaction Centers and Linked Cytochromes (Chapters 7 and 8)                                                                                                                                                                                                                                                                            |                                               |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 7  | Higher Plant and Cyanobacterial Photosystem I:<br>Connected Cytochrome Pathways131Yuval Mazor and Nathan Nelson                                                                                                                                                                                                                                      | -142                                          |
|    | <ul> <li>Summary</li> <li>Introduction</li> <li>II. Cytochrome <i>bc</i> Complex and Its Central Role in Photosynthetic<br/>and Respiratory Electron Transport Chains</li> <li>III. Oceanic Photosynthesis</li> <li>IV. Interactions Between Photosystem I and Small Electron Donors</li> <li>V. Phage Encoded PSI Complex<br/>References</li> </ul> | 131<br>132<br>132<br>133<br>134<br>139<br>140 |
| 8  | Cytochrome b559 in Photosystem II143Frank Müh and Athina Zouni                                                                                                                                                                                                                                                                                       | -175                                          |
|    | Summary<br>I. Introduction<br>II. Structure<br>III. Redox Properties<br>IV. Function of Cytochrome b <sub>559</sub><br>V. Conclusions and Outlook<br>Acknowledgements<br>References                                                                                                                                                                  | 144<br>146<br>158<br>167<br>169<br>170<br>170 |
| в. | Structure-Function of Cytochrome <i>bc</i> <sub>1</sub> and <i>b</i> <sub>6</sub> <i>f</i> Complexes (Chapters 9, 10, 11, 12, 13, 14 and 15)                                                                                                                                                                                                         |                                               |
| 9  | Structure-Function of the Cytochrome <i>b</i> <sub>6</sub> <i>f</i> Lipoprotein<br>Complex<br>William A. Cramer and S. Saif Hasan                                                                                                                                                                                                                    | -207                                          |
|    | SummaryI.IntroductionII.Historical PerspectiveIII.Cytochrome $b_6f$ and $bc_1$ Complexes; General AspectsIV.Structure-Function of the Cyt $b_6f$ ComplexV.Lipids in the $b_6f$ Lipoprotein Complex                                                                                                                                                   | 178<br>179<br>179<br>180<br>180<br>190        |

|                       | VI. Pathways of Cyclic Electron Transport (CET)                                                                                                                                                 | 191<br>ort                |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                       | <ul> <li>VIII. Pathway; the Q Cycle</li> <li>VIII. Quinone-Mediated H<sup>+</sup> Transfer Pathways; n-Side to Quinor</li> </ul>                                                                | 194<br>19                 |
|                       | Binding Site: Heme $c_n$ ; p-Side PEWY Exit Pathway<br>with Invaginated H <sub>2</sub> O Pocket<br>IX. The Cvtochrome $b_{s}f$ Complex as a Hetero-Oligomeric                                   | 197                       |
|                       | Membrane Lipoprotein<br>Acknowledgements<br>References                                                                                                                                          | 200<br>200<br>200         |
| 10 Structu<br>of Anor | re-Function Studies of the Cytochrome <i>bc</i> <sub>1</sub> Comple<br>xygenic Photosynthetic Purple Bacteria                                                                                   | <mark>x</mark><br>209–235 |
| and                   | d Di Xia                                                                                                                                                                                        |                           |
|                       | Summary<br>I. Introduction                                                                                                                                                                      | 210<br>211                |
|                       | <ul> <li>II. The Mechanism of Electron Transfer (ET)-Coupled Proton<br/>Translocation Function of Cyt bc1 Complexes</li> <li>III. Comparison of Crystal Structures Between Bacterial</li> </ul> | 215                       |
|                       | and Mitochondrial Cyt <i>bc</i> <sub>1</sub> Complexes                                                                                                                                          | 216                       |
|                       | V. Experimental Verification of the Bifurcated ET Mechanism VI. The Mechanisms of Proton Uptake at the $Q_N$ Site and Exit                                                                      | 222<br>225                |
|                       | at the Q <sub>P</sub> Site                                                                                                                                                                      | 227                       |
|                       | Acknowledgements<br>References                                                                                                                                                                  | 229<br>230<br>230         |
| 11 Rieske             | Iron-Sulfur Protein Movement and Conformational                                                                                                                                                 |                           |
| Change<br>Li-s        | es in Cytochrome bc–bf Complexes<br>shar Huang and Edward Berry                                                                                                                                 | 237–251                   |
|                       | Summary<br>I. Introduction                                                                                                                                                                      | 237<br>237                |
|                       | II. Requirement for Movement of the ISP Extrinsic Domain to Shuttle Electrons                                                                                                                   | 238                       |
|                       | III. Classification and Depiction of Different Positions of the ISP                                                                                                                             | ED 238                    |
|                       | IV. Conformational Changes in the ISP Hinge Region                                                                                                                                              | 243<br>248                |
|                       | Acknowledgements<br>References                                                                                                                                                                  | 249<br>249                |
| 12 Structu            | Iral Perspective of Ferredoxin NAD(P)H Reductase                                                                                                                                                |                           |
| Reactic<br>Ge         | ons with Cytochrome b <sub>6</sub> f Complexes<br>enji Kurisu                                                                                                                                   | 253–264                   |
|                       | Summary                                                                                                                                                                                         | 253                       |
|                       | I. The Perspective                                                                                                                                                                              | 253                       |
|                       | References                                                                                                                                                                                      | 263                       |

| 13 | Alternative Rieske Iron-Sulfur Subunits and Small<br>Polypeptides of Cyanobacterial Cytochrome <i>b</i> <sub>6</sub> <i>f</i>                                                                                                                                                                                                           | 5 270                                           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|    | Gábor Bernát, Dirk Schneider, and Matthias Rögner                                                                                                                                                                                                                                                                                       | 5-279                                           |
|    | Summary<br>I. Introduction<br>II. Multiple Rieske-Proteins and Cytochrome $b_6f$ Heterogeneity<br>III. Small <i>bona fide</i> Cytochrome $b_6f$ Subunits<br>IV. Loosely Bound Subunits<br>Acknowledgements<br>References                                                                                                                | 265<br>266<br>268<br>272<br>273<br>275<br>275   |
| 14 | Inter-Monomer Electron Transfer in Cytochrome <i>bc</i><br>Complexes 28<br>Marcin Sarewicz, Robert Ekiert, and Artur Osvozka                                                                                                                                                                                                            | 1–294                                           |
|    | Summary<br>I. Introduction                                                                                                                                                                                                                                                                                                              | 281<br>282                                      |
|    | II. Implications from Structures for Inter-Monomer Electron<br>Transfer                                                                                                                                                                                                                                                                 | 282                                             |
|    | <ul> <li>Electron Transfer</li> <li>IV. Experimental Evidence for Inter-Monomer Electron Transfer</li> <li>V. Mechanistic Consequences of Inter-Monomer Electron Transfer</li> <li>VI. Physiological Significance of Inter-Monomer Electron Transfer</li> <li>VII. Conclusions</li> <li>Acknowledgements</li> <li>References</li> </ul> | 283<br>285<br>r 288<br>289<br>290<br>291<br>291 |
| 15 | Heme <i>c</i> <sub>i</sub> or <i>c</i> <sub>n</sub> of the Cytochrome <i>b</i> <sub>6</sub> <i>f</i> Complex, A Short<br>Retrospective 29                                                                                                                                                                                               | 5–306                                           |
|    | Francesca Zito and Jean Alric                                                                                                                                                                                                                                                                                                           |                                                 |
|    | Summary<br>I. Introduction                                                                                                                                                                                                                                                                                                              | 295<br>296                                      |
|    | II. Early Evidence: Herne $c_i$ of the Cytochrome $D_6 r$ Complex,<br>A Functional Retrospective<br>III. Tridimensional Structure<br>IV. Heme $c_i/Q_i$ Site Directed Mutants                                                                                                                                                           | 297<br>300<br>301                               |
|    | <ul> <li>V. NQNO, A Not-So-Good Inhibitor of the Q<sub>i</sub> Site of the Cytochrom</li> <li>b<sub>6</sub>f Complex</li> <li>VI. Complex</li> </ul>                                                                                                                                                                                    | e<br>303                                        |
|    | VI. Concluding Remarks<br>Acknowledgements<br>References                                                                                                                                                                                                                                                                                | 303<br>304<br>305                               |

#### C. Cytochrome Oxidases (Chapters 16, 17, 18 and 19)

| 16 | Structure and Function of Bacterial Cytochrome <i>c</i><br>Oxidases<br>Joseph A. Lyons, Florian Hilbers,<br>and Martin Caffrey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 307–329                                                                                        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|    | Summary<br>I. Introduction<br>II. Respiratory Chain<br>III. Heme Copper Oxidases<br>IV. Pathways Within HCO<br>V. Electron Transfer<br>VI. Oxygen Channel<br>VII. The Catalytic Cycle<br>VIII. Side Reactions in CcO<br>IX. Conclusions<br>Acknowledgements<br>References                                                                                                                                                                                                                                                                                                                                                                                                          | 307<br>308<br>309<br>315<br>319<br>320<br>321<br>323<br>324<br>324<br>324                      |
| 17 | The Respiratory Terminal Oxidases (RTOs)<br>of Cyanobacteria<br>Georg Schmetterer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 331–355                                                                                        |
|    | <ul> <li>Summary</li> <li>Introduction</li> <li>Types of RTOs Occurring in Cyanobacteria and Definitions</li> <li>Genes Encoding Putative Subunits of Cyanobacterial RTOS</li> <li>Mitochondrial-Type Cytochrome <i>c</i> Oxidases (Cox)</li> <li>Alternate Respiratory Terminal Oxidases (ARTOs)</li> <li><i>cbb</i><sub>3</sub> Type Cytochrome <i>c</i> Oxidases</li> <li>Homologs of Cytochrome <i>bd</i> Quinol Oxidases</li> <li>Homologs of Cytochrome <i>bd</i> Quinol Oxidases</li> <li>Plastidic-Type Terminal Oxidases (Ptox)</li> <li>Cellular Location of Cyanobacterial RTOs</li> <li>Regulation of Expression of Cyanobacterial RTOs</li> <li>References</li> </ul> | 331<br>332<br>332<br>341<br>342<br>343<br>343<br>345<br>346<br>347<br>348<br>349<br>351<br>351 |
| 18 | XFEL Studies on Bovine Heart Cytochrome c Oxidase<br>Shinya Yoshikawa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 357–373                                                                                        |
|    | -<br>Summary<br>I. Introduction<br>II. Properties of the Resting Oxidized Form of Bovine Heart Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 357<br>358<br>0 359                                                                            |

III.Redox Properties of the Resting Oxidized Bovine Heart CcO360IV.Resonance Raman Analysis of the Resting Oxidized CcO362VX-ray Structural Analyses of the Besting Oxidized CcO Using

| V. | X-ray Structural Analyses of the Resting Oxidized CcO Using |     |
|----|-------------------------------------------------------------|-----|
|    | Third Generation Synchrotron Radiation Facilities           | 362 |

| VI. X-ray Structural Analyses of the Resting Oxidized CcO Obtained |     |
|--------------------------------------------------------------------|-----|
| at an XFEL Facility                                                | 366 |
| VII. Picobiology                                                   | 368 |
| Acknowledgements                                                   | 371 |
| References                                                         | 372 |

#### 19 Structure and Mechanism of Action of the Alternative Quinol Oxidases 375–394

Luke Young, Benjamin May, Tomoo Shiba, Shigeharu Harada, Daniel Ken Inaoka, Kiyoshi Kita, and Anthony L. Moore

| Summary                                                           |     |
|-------------------------------------------------------------------|-----|
| I. General Introduction                                           | 376 |
| II. Overall Structure of the Alternative Oxidases                 | 377 |
| III. Mechanism of Di-oxygen Reduction by the Alternative Oxidases |     |
| IV. Concluding Remarks                                            | 391 |
| Acknowledgements                                                  |     |
| References                                                        |     |

### Part IV: Superoxide Generation in Cytochrome bc Complexes

| 20 | Mechanisms of Superoxide Generation and Signaling<br>in Cytochrome bc Complexes<br>Danas Baniulis, S. Saif Hasan, Inga Miliute,<br>and William A. Cramer                                                                                                                                                                                | 397–417                                          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|    | Summary<br>I. Introduction                                                                                                                                                                                                                                                                                                              | 397<br>398                                       |
|    | Complexes<br>III. Signaling Function of ROS Produced by Cytochrome <i>bc</i>                                                                                                                                                                                                                                                            | 400                                              |
|    | Complexes<br>References                                                                                                                                                                                                                                                                                                                 | 405<br>410                                       |
|    |                                                                                                                                                                                                                                                                                                                                         |                                                  |
| 21 | Electron Transfer Reactions at the Q <sub>o</sub> Site of the Cytochro<br>bc <sub>1</sub> Complex: The Good, the Bad, and the Ugly<br>Nicholas Fisher, Michael K. Bowman, and David M. Kram                                                                                                                                             | <mark>me</mark><br>419–434<br>her                |
| 21 | Electron Transfer Reactions at the Q <sub>o</sub> Site of the Cytochro<br>bc <sub>1</sub> Complex: The Good, the Bad, and the Ugly<br>Nicholas Fisher, Michael K. Bowman, and David M. Kram<br>Summary<br>I. Introduction                                                                                                               | me<br>419–434<br>ner<br>419<br>420               |
| 21 | Electron Transfer Reactions at the Q <sub>o</sub> Site of the Cytochro<br>bc <sub>1</sub> Complex: The Good, the Bad, and the Ugly<br>Nicholas Fisher, Michael K. Bowman, and David M. Kram<br>Summary<br>I. Introduction<br>II. Superoxide Production by the bc <sub>1</sub> Complex and the Question<br>of SQ <sub>o</sub> Reactivity | me<br>419–434<br>her<br>419<br>420<br>ion<br>421 |

### Part V: Cytochrome Complexes, Signaling, and Regulation

| 22 | The Cytochrome <i>b</i> <sub>6</sub> <i>f</i> Complex: A Regulatory Hub Controllin<br>Electron Flow and the Dynamics of Photosynthesis? | <mark>ig</mark><br>437–452 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|    | Giovanni Finazzi, Jun Minagawa,                                                                                                         |                            |
|    | and Giles N. Johnson                                                                                                                    |                            |
|    | Summary                                                                                                                                 | 437                        |
|    | I. Introduction                                                                                                                         | 438                        |
|    | II. $H^+/e^-$ Coupling in the Cytochrome $b_6 f$ Complex and Its Ro                                                                     | le                         |
|    | in Photosynthetic Control                                                                                                               | 440                        |
|    | III. A Redox Kinetic Control of Cytochrome <i>b</i> <sub>6</sub> <i>f</i> ?                                                             | 443                        |
|    | IV. Linear Versus Cyclic Electron Flow                                                                                                  | 445                        |
|    | V. Role of Cytochrome $b_6 f$ in State Transitions                                                                                      | 446                        |
|    | VI. Conclusions                                                                                                                         | 449                        |
|    | Acknowledgements                                                                                                                        | 449                        |
|    | References                                                                                                                              | 449                        |
| 23 | A Supercomplex of Cytochrome <i>bf</i> and Photosystem I                                                                                |                            |
| 20 | for Cyclic Electron Flow                                                                                                                | 453–462                    |
|    | Jun Minagawa                                                                                                                            |                            |
|    | Summary                                                                                                                                 | 453                        |
|    | I. Introduction                                                                                                                         | 454                        |
|    | II. Cvclic Electron Flow Is Essential                                                                                                   | 454                        |
|    | III. Cyclic Electron Flow and the Redox Status of the Chloroplas                                                                        | t 456                      |
|    | IV. A Supercomplex in Charge of Cyclic Electron Flow                                                                                    |                            |
|    | in Chlamydomonas                                                                                                                        | 456                        |
|    | V. Perspectives                                                                                                                         | 460                        |
|    | Acknowledgements                                                                                                                        | 461                        |
|    | References                                                                                                                              | 461                        |
| 24 | State Transition Kineses and Padex Signal Transduction                                                                                  |                            |
| 24 | in Chloroplasts                                                                                                                         | 463–477                    |
|    | Jean-David Rochaix                                                                                                                      |                            |
|    | Summary                                                                                                                                 | 463                        |
|    |                                                                                                                                         | 464                        |
|    | II The Bole of the Stt7/STN7 Protein Kinase in State Transition                                                                         | 466                        |
|    | III Mobility and Location of LHCI                                                                                                       | 468                        |
|    | IV How Is the Stt7/STN7 Kinase Activated?                                                                                               | 469                        |
|    | V Involvement of Stt7/STN7 in the Long Term Response                                                                                    | 470                        |
|    | VI. Relationship Between Stt7/STN7 and Cyclic Electron Flow                                                                             | 471                        |
|    | VII. Conclusions and Perspectives                                                                                                       | 473                        |
|    | Acknowledgements                                                                                                                        | 474                        |
|    | References                                                                                                                              | 474                        |

| 25 | Regulating Synthesis of Cytochromes<br>Sébastien Zappa and Carl E. Bauer                                                                                                                                                                                                                                                    | 479–498                                              |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|    | <ul> <li>Summary</li> <li>Introduction</li> <li>II. The Bi- and Tri-furcated Tetrapyrrole Pathway</li> <li>III. Regulating Heme Biosynthesis</li> <li>IV. Regulating Cytochrome Apoprotein Synthesis</li> <li>V. Metal Homeostasis and Cytochrome Regulation</li> <li>VI. Concluding Remarks</li> <li>References</li> </ul> | 479<br>480<br>481<br>482<br>487<br>490<br>493<br>493 |
| Pa | rt VI: Assembly of Cytochrome Complexes<br>and Super-Complexes                                                                                                                                                                                                                                                              |                                                      |
| 26 | <b>Cofactor Assembly of Cytochrome bc<sub>1</sub>-b<sub>6</sub>f Complexes</b><br>Sara Guenthner Cline, Stéphane Thierry Gabilly,<br>Nitya Subrahmanian, and Patrice Paul Hamel                                                                                                                                             | 501–525                                              |
|    | Summary<br>I. Introduction<br>II. Prosthetic Groups in $bc_1$ and $b_6 f$<br>III. Pathways for the Covalent Attachment of Heme<br>Acknowledgements<br>References                                                                                                                                                            | 502<br>502<br>503<br>505<br>517<br>517               |
| 27 | Biogenesis of Cytochrome c Complexes: From Insertion<br>of Redox Cofactors to Assembly of Different Subunits<br>Bahia Khalfaoui-Hassani, Andreia F. Verissimo,<br>Namita P. Shroff, Seda Ekici, Petru-Iulian Trasnea,<br>Marcel Utz, Hans-Georg Koch, and Fevzi Daldal                                                      | 527–554                                              |
|    | Summary<br>I. Introduction<br>II. The <i>cbb</i> <sub>3</sub> -Cox<br>Acknowledgements<br>References                                                                                                                                                                                                                        | 527<br>528<br>530<br>546<br>546                      |
| 28 | Assembly of Transmembrane <i>b</i> -Type Cytochromes<br>and Cytochrome Complexes<br>Hans-Georg Koch and Dirk Schneider                                                                                                                                                                                                      | 555–584                                              |
|    | Summary<br>I. Introduction<br>II. Transmembrane <i>b</i> -Type Cytochromes in Respiratory                                                                                                                                                                                                                                   | 555<br>556                                           |
|    | and Photosynthetic e <sup>-</sup> -Transfer Chains<br>III. Targeting and Membrane Insertion of <i>b</i> -Type Apo-Cytochron                                                                                                                                                                                                 | 559<br>mes 559                                       |

|    | IV.<br>V.<br>VI.<br>VII.<br>Ack<br>Ref        | Structural Features Determining Heme Binding<br>to Membrane-Bound Apo-Cytochromes<br>Assembly of Individual Transmembrane Holo-Cytochromes<br>Naturally Occurring and Designed Transmembrane Four-He<br>Bundle <i>b</i> -Type Cytochromes<br>Assembly of Cytochrome <i>b</i> -Containing Membrane Protein<br>Complexes<br>mowledgements<br>erences | 567<br>569<br>1ix<br>574<br>576<br>578<br>578 |
|----|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 29 | Respiratory<br>Giorgio                        | Cytochrome Supercomplexes                                                                                                                                                                                                                                                                                                                          | 585–628                                       |
|    | Sun<br>I.<br>II.<br>III.<br>IV.<br>V.<br>Refe | nmary<br>Introduction<br>Distribution and Composition of Respiratory Supercomplexes<br>Structure of Supercomplexes<br>Functions of Respiratory Supercomplexes<br>A Role of Supercomplexes in Cell Physiology<br>erences                                                                                                                            | 585<br>586<br>589<br>592<br>600<br>616<br>617 |

### Part VII: Branched Pathways and Cryptic Cytochromes

| 30 | The Interaction Between Cytochrome <i>f</i> and Plastocyanin<br>or Cytochrome <i>c</i> <sub>6</sub><br>Derek S. Bendall (deceased) and<br>Christopher J. Howe                                                                                                                                                                                                                    | 631–655                                                            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|    | <ul> <li>Summary</li> <li>Introduction</li> <li>Evolution of Plastocyanin and Cytochrome c<sub>6</sub></li> <li>Structure of Cytochrome f</li> <li>Structure of Plastocyanin and Cytochrome c<sub>6</sub></li> <li>Structure of Specific Complexes</li> <li>Dynamics of Interaction</li> <li>VIII. The Reaction In Vivo</li> <li>Acknowledgements</li> <li>References</li> </ul> | 631<br>632<br>633<br>635<br>636<br>637<br>639<br>646<br>649<br>649 |
| 31 | <b>Cytochrome c<sub>6</sub> of Cyanobacteria and Algae: From</b><br><b>the Structure to the Interaction</b><br><i>Irene Díaz-Moreno, Antonio Díaz-Quintana,</i><br><i>and Miguel A. De la Rosa</i>                                                                                                                                                                               | 657–677                                                            |
|    | SummaryI.IntroductionII.Cytochrome $c_6$ Structure and PropertiesIII. $Cc_6$ -Involving Photosynthetic Complexes                                                                                                                                                                                                                                                                 | 657<br>658<br>658<br>662                                           |

| <ul> <li>IV. Cc<sub>6</sub>-Involving Respiratory Complexes</li> <li>V. Conclusions and Perspectives</li> <li>Acknowledgements</li> <li>References</li> </ul>                                                                                                                                                                                     | 667<br>671<br>671<br>671                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| <b>32 Electron Partitioning in Anoxic Phototrophic Bacteria</b><br>Melanie A. Spero, Saheed Imam, Daniel R. Noguera,<br>and Timothy J. Donohue                                                                                                                                                                                                    | 79–700                                                             |
| Summary<br>I. Introduction<br>II. Competition for Electrons of the Quinone Pool<br>III. The Bole of Ottenhamia "Electron Sinke" During                                                                                                                                                                                                            | 680<br>680<br>681                                                  |
| <ul> <li>III. The Role of Cytoplasmic "Electron Sinks" During<br/>Photoheterotrophic Growth</li> <li>IV. Recycling Reducing Power Captured in Pyridine Nucleotides</li> <li>V. Modeling the Metabolism of Photosynthetic Organisms</li> <li>VI. Concluding Remarks and Future Directions</li> <li>Acknowledgements</li> <li>References</li> </ul> | 685<br>688<br>692<br>694<br>694<br>695                             |
| <b>33</b> Cytochrome c <sub>6A</sub> of Chloroplasts 7<br>Christopher J. Howe, Robert H. Nimmo, Adrian C. Barbroc<br>and Derek S. Bendall (deceased)                                                                                                                                                                                              | 01–712<br>k,                                                       |
| Summary<br>I. Introduction<br>II. The Protein<br>III. 'Omics Studies<br>IV. Distribution Outside the Green Plant Lineage<br>V. Possible Functions<br>VI. Evolution of Cytochrome $c_{6A}$<br>VII. General Conclusions<br>Acknowledgements<br>References                                                                                           | 701<br>702<br>703<br>706<br>707<br>708<br>709<br>710<br>711<br>711 |
| <ul> <li>34 Cryptic c<sub>6</sub>-Like and c<sub>M</sub> Cytochromes of Cyanobacteria 7</li> <li>Wojciech Bialek, Andrzej Szczepaniak, Piotr Kolesinski, and Toivo Kallas</li> </ul>                                                                                                                                                              | 13–734                                                             |
| SummaryI.IntroductionII.Discovery of the $c_6$ -Like and $c_M$ CytochromesIII.Cytochromes $c_{6C}$ and $c_{6B}$ IV.Cytochrome $c_M$ V.Possible Functions of $c_6$ -Like and $c_M$ CytochromesVI.Concluding RemarksAcknowledgementsReferences                                                                                                      | 713<br>714<br>715<br>722<br>725<br>729<br>730<br>730               |
| Index 73                                                                                                                                                                                                                                                                                                                                          | 35–739                                                             |

#### xxvii

# Preface

Why study cytochrome complexes? An answer is provided by the range of subtopics in the book, "evolution, structures, energy, and signaling," which are described in the book title. Studies on the cytochrome family of proteins encompass a uniquely wide area of basic and applied research. Research in this field utilizes a range of theoretical and computational approaches, as well as a broad cross section of experimental techniques. Understanding obtained on the structure and function of the cytochromes and cytochrome complexes utilizes an extraordinary range of experimental approaches, including computational biology, genetics, macromolecular biochemistry, molecular biology, physics of charge transfer reactions, structure analysis using x-ray and electron diffraction, and ultrafast spectroscopy.

As reflected in the book title, the information and understanding gained in the field has an influence on a wide range of subjects, including evolution, mechanisms of membrane-based respiratory and photosynthetic energy transduction, theory of charge transfer in proteins, structure-function of large hetero-oligomeric membrane proteins, including lipid-protein interactions, and transmembrane signaling.

A special aspect of cytochromes, cytochrome complexes, as well as other proteins involved in bioenergetics and charge transfer is that they allow function to be quantitatively analyzed. Thus, in this group of proteins, it is possible to determine that a protein or protein complex is functional before committing a large amount of time to crystallization and analysis of structure. Dating back to the 1988 Nobel Prize in Chemistry, given to J. Deisenhofer, H. Michel, and R. Huber for determination of the crystal structure of the bacterial photosynthetic reaction center, the majority of the crystal structures of heterooligomeric membrane proteins obtained in the subsequent 10 years were of energytransducing proteins. Of these, a substantial fraction involved cytochrome complexes.

The Logic of the Collection The book starts with an Introduction by Derek Bendall describing cytochrome notation, which is connected to the history of the field, focusing on research in England in the pre-World War II era. An ab initio "start with the beginning" logic then leads to a discussion of the evolution of cytochromes and hemes. Before presentation of the many individual cytochrome systems, the fundamentals of the theory of electron transfer in proteins are presented, followed by an extensive description of the molecular structures of cvtochromes and cvtochrome complexes from eukaryotic and prokaryotic sources, including those derived from photosynthetic reaction centers. The presentation of atomic structure information has a major role in these discussions, including the relatively new subject of "supercomplexes." This structure information has a major niche in the broad field of membrane structurefunction. Expanding the perspective beyond structure-function applied to charge transfer and energy storage, the problems of protein and macromolecule assembly, regulation, and signaling, including transmembrane signaling, which have conceptual connections to central areas of biochemistry, biophysics, and cell biology, are considered. Regarding subjects related to cutting-edge areas of biology and plant biology, the up-to-date presentation of the topics of Regulation and Signaling is noted here.

The broad extent of fundamental intellectual and research areas that are represented in this book makes it a useful resource for teaching of academic courses and presentation of seminars on fundamental and