A.P. Dimri · Amulya Chevuturi

Western Disturbances - An Indian Meteorological Perspective

Western Disturbances - An Indian Meteorological Perspective

A.P. Dimri • Amulya Chevuturi

Western Disturbances - An Indian Meteorological Perspective

A.P. Dimri School of Environmental Sciences Jawaharlal Nehru University New Delhi, India Amulya Chevuturi School of Environmental Sciences Jawaharlal Nehru University New Delhi, India

ISBN 978-3-319-26735-7 DOI 10.1007/978-3-319-26737-1

ISBN 978-3-319-26737-1 (eBook)

Library of Congress Control Number: 2016930300

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature The registered company is Springer International Publishing AG Switzerland.

Foreword

The Indian subcontinent experiences mainly four seasons. Among them, the Southwest monsoon season (June to September) is the most important season as it contributes 70-90 % of the annual rainfall over the country. However, the northern parts of the country and neighboring Pakistan also experience a wet season during the winter, due to the passage of western disturbances, winter weather systems moving eastwards across the region. This season is very important as it plays an major role in the winter crop (Rabi) production and hydrology over the region. This region has a complex topography due to the Himalayas. The weather systems moving across this region interact with this complex topography and lead to more complexity to the dynamics and predictability of weather systems. The synoptic features and dynamics of these weather systems were not explored in the past due to lack of adequate observations and modeling efforts. Over the years, our understanding of these winter weather systems has improved substantially due to improvement of observational networks over the region and systematic modeling efforts. Better understanding of these systems has also helped to improve weather prediction skills over the region, which is reflected in the operational weather forecasts issued by the India Meteorological Department.

In concert with these developments, this book *Western Disturbances, An Indian Meteorological Perspective* by Prof A.P. Dimri and Dr. Chevuturi will prove to bridge an indispensable knowledge gap for earth scientists at all stages of their careers, from undergraduate students to the professionals. Western disturbances in the context of Indian meteorology are an important weather phenomenon which in the current context of climate change has gained importance due to its influence on the Himalayan snow cover, glaciers, northern Indian river feed, agriculture, etc. This book will provide readers with a broad perspective on development and interpretation of physical, dynamical, and thermodynamical processes associated with winter weather systems over the Indian subcontinent. The description accompanied by numerous illustrations sufficiently provides concise deliberations for established researchers and also policy makers. The book provides most adequate composite integration of available references right from the last decade to the latest.

In the first chapter of the book, updated understanding on structure and evolution of western disturbances is provided. This chapter provides more comprehension than many other treatments on the subject. With the advent of computational facilities, observational reanalysis, and numerical methods, constructing the natural environment became much easier. Simulations of the atmospheric flows/interactions are better understood and explained with such efforts. Chapter 2 dwells into those details and synthesizes efforts carried on this direction with the latest positioning. In the recent decade it is observed that midlatitude westerlies have strengthened their interactions with other seasonal weather systems. Chapter 3 deliberates on factors leading to such interaction and their effect. It is one of the important aspects in the context of recent global changes. In Chap. 4, discussion on western disturbances embedded within large-scale westerlies is provided. In the context of global change, this is one of the most important aspects providing understanding of large-scale flows affecting the life cycle of weather systems. In the fifth chapter, the western disturbances and their impacts and climate change issues are discussed. Prof. Dimri and Dr. Chevuturi have provided here an excellent summary on the Indian winter weather systems at different spatial and temporal scales. I believe this book will be an excellent reference for students, professionals, and policy makers on the winter weather systems over India.

Indian Institute of Tropical Meteorology Pune, India M. Rajeevan

Preface

Meteorology, climatology, and atmospheric sciences have been extensively studied over India. But sometimes, a unified compilation of such an extensive knowledge resource base is lacking, which may result in gaps in the information flow. With India having a vast and heterogeneous geography, it is imperative to have detailed understanding of its intricacies. This book comprehensively reviews a weather phenomenon impacting the Indian subcontinent. Western disturbances (WDs), the wintertime precipitating events, are the focus of this book. This book can be used as a reference by students, professors, and other research scholars to achieve a detailed understanding on the subject. Other than its importance in terms of a meteorological phenomenon, WDs as precipitating events have significant consequences on the ecology and the socioeconomy of the region. Overall this book answers the questions of what/when/why/how about the WDs. This book defines WDs and details the physical and dynamical understanding of their structure and migration. It also includes the causes and impacts with detailed illustrations and various case studies for a clear understanding of the subject.

The book's visualization and conception came about during our research tenure that focused on the Himalayan climate. Wintertime precipitation over the Himalayas and northern India is a very interesting topic and has not been comprehensively researched. So many research questions on the topic are still unanswered. Further, most of the research is available in older formats that are not easily accessible. Without a review or a textbook understanding of the topic, intensive research on the topic is challenging. Thus, we came to believe that such a book would be a requirement in this field of research, especially from the point of view of young researchers. All of these reasons compelled us as researchers to write this book. During the course of writing, we grew as authors and researchers. Despite our previous experience on the topic, while doing the researching behind this book, our knowledge grew as new information was uncovered. It was a uniquely interesting learning experience for us.

We would like to express gratitude for the scholastic support of the various experts whose peer-reviewed papers and other research work has been used and referred to in this book. Acknowledgment is indeed due to the different sources of observational datasets that have been properly cited within the book. We would also like to thank our editor at Springer Petra van Steenbergen and our publisher Springer for making this book possible. We convey our appreciation for the reviewers for their suggestions and comments that helped us in improving the book. Last but not the least, we would also like to thank our colleagues, friends, and family who supported us in our endeavor and helped us during our journey.

New Delhi, India

A.P. Dimri Amulya Chevuturi

Contents

1	Western Disturbances – Structure	1
	1.1 Introduction	3
	1.2 Origin and Migration of Western Disturbances	5
	1.3 Western Disturbances at a Synoptic Scale	10
	1.4 Structure of Western Disturbances	14
	1.5 Western Disturbances and Linkages with Large-Scale Forcing	19
	References	21
2	Western Disturbances – Dynamics and Thermodynamics	27
	2.1 Dynamics of Western Disturbances	29
	2.2 Modelling Studies Related to Western Disturbances	32
	2.3 Interplay With Himalayan Orography	
	and Land-use – Land-Cover Interactions	45
	References	55
3	Western Disturbances – Indian Seasons	61
	3.1 Winter	63
	3.2 Pre-Monsoon	65
	3.3 Monsoon	67
	3.4 Post-Monsoon	77
	References	79
4	Western Disturbances – Indian Winter Monsoon	83
	4.1 Introduction	84
	4.2 Interannual Variability of the Indian Winter Monsoon	86

	4.3	Sub-seasonal Oscillation Associated	
		with the Indian Winter Monsoon	92
		4.3.1 Wet and Dry Winters over the	
		WH and Its Associated Circulation	93
		4.3.2 Large-Scale Global and Local Forcings	99
	4.4	Intraseasonal Oscillation Associated	
		with the Indian Winter Monsoon	101
	Refe	erences	109
5	Wes	stern Disturbances – Impacts and Climate Change	113
5	Wes 5.1	Stern Disturbances – Impacts and Climate Change	113 113
5	Wes 5.1 5.2	Severe Weather	113 113 116
5	Wes 5.1 5.2 5.3	Stern Disturbances – Impacts and Climate Change Winter Precipitation and Its Impacts Severe Weather Western Disturbances in the Changing Climate	113 113 116 120
5	Wes 5.1 5.2 5.3 5.4	stern Disturbances – Impacts and Climate Change Winter Precipitation and Its Impacts Severe Weather Western Disturbances in the Changing Climate Western Disturbances and Future Research	 113 113 116 120 124
5	Wes 5.1 5.2 5.3 5.4 Refe	stern Disturbances – Impacts and Climate Change Winter Precipitation and Its Impacts Severe Weather Western Disturbances in the Changing Climate Western Disturbances and Future Research erences	 113 113 116 120 124 125
5	Wes 5.1 5.2 5.3 5.4 Refe	Severe Weather	113 113 116 120 124 125

List of Figures

Fig. 1.1	Map of Indian Subcontinent	2
Fig. 1.2	Meteosat satellite image (Channel 2) for a WD	
	travelling towards India. Satellite images of (a-j)	
	are from 06 January 2009 to 15 January 2009 each	
	at 0000 UTC. Red circle marks the migrating WD	8
Fig. 1.3	An asymmetric upper-air trough	
	with closer packing in the rear	11
Fig. 1.4	500h Pa geopotential (×10 ⁻² m; <i>shaded</i>)	
	and wind (m/s; arrow) for 05 February 2002	
	to 09 February 2002 with WRF model simulation	
	(Dimri and Chevuturi 2014)	16
Fig. 1.5	Vertical distribution of geopotential height	
	anomaly averaged over latitude (25°N–40°N)	
	for WD in February 2002	17
Fig. 1.6	Same as Fig. 1.5 but averaged	
	over longitude (65°E–85°E)	18
Fig. 1.7	Conceptual model of WDs (MI: Moisture	
	incursion, PRECIP: Precipitation, SL: Surface low,	
	STWJ: Sub-tropical westerly jet, TA: Westward tilted	
	axis in vertical, WD: Upper air western disturbance)	20
Fig. 2.1	(a) Schematic representation of cascading	
	Himalavan mountain ranges (Pir Panial- Great	
	Himalaya-Zanskar-Ladhak-Karakoram)	
	and western-central-eastern Himalayan region	
	(b) Topographic (×10 ³ m) overview of the Himalayas	28
Fig. 2.2	Reanalysis of sea level pressure at 0000 UTC on	
U	(a) 19 Jan 1997 and (b) corresponding 24 h forecast	
	of sea level pressure in 08 difference model experiments	37
	1 I	

Fig. 2.3	500 hPa Geopotential height (m) after 48 h model	
	forecast valid at 0000 UTC on 23 Jan 1999	
	over flat (\mathbf{a} , \mathbf{b} and \mathbf{c}) and normal topography	20
F ' 0 ($(\mathbf{d}, \mathbf{e} \text{ and } \mathbf{f})$ with different model horizontal resolutions	39
F1g. 2.4	Precipitation (cm/24 h) after 48 h model	
	forecast valid at 0000 UTC on 23 Jan 1999	
	over flat $(\mathbf{a}, \mathbf{b} \text{ and } \mathbf{c})$ and normal topography	
	(d , e and f) with different model horizontal resolutions	40
Fig. 2.5	500 hPa wind (m/s; <i>arrow</i>); geopotential height	
	(m; red contour) and wind speed above 22 m/s	
	(grey shed) in (a) model, (b) MERRA	
-	and (c) NCEP-NNRPII on 07 Feb 2002 0000 UTC	41
Fig. 2.6	Spatial distribution of model simulated maximum	
	(a) CAPE (J/kg) and (b) CIN (J/kg)	
	on 07 Feb 2002 0000 UTC	42
Fig. 2.7	Longitude-pressure cross section (at the line	
	across preak precipitation spatial distribution	
	of the storm) at 1700 UTC 17 Jan 2013	
	for geopotential height anomaly (shaded)	
-	and perturbation geopotential height (m; <i>contour</i>)	43
Fig. 2.8	Time-pressure cross section (area averaged	
	over the grid around NCR) for CAPE	
	(J/kg; <i>shaded</i>), temperature (°C; <i>black contours</i>)	
-	and specific humidity (g/kg; <i>blue contours</i>)	44
Fig. 2.9	Vertical cross section of vorticity (×10 ⁵ s ⁻¹ , <i>shaded</i>),	
	model precipitation (cm/day; green line)	
	and observed precipitation (cm/day; <i>purple line</i>)	10
F 0 10	along 33°N for the WD case studied	48
Fig. 2.10	Lon-pressure cross section vertical distribution	
	at 34°N latitude of model simulated meridional	
	wind (ms^{-1}) (continuous <i>black contour</i>) and air	
	specific humidity (×1e-3) (broken <i>red contour</i>)	
	at 0000 UTC during active WD (a) 21 Jan 1999	
	(b) 22 Jan 1999 (c) 23 Jan 1999 (<i>Left hand side</i>	
	vertical axis corresponds to the pressure distribution	
	and right hand side vertical axis corresponds	-
E : 0 44	to the topography $\times 10^2$ m)	50
F1g. 2.11	Twenty-four hour cumulative precipitation	
	on 22 December 2006 in (a) observational data $(A \text{ DUDOD})$	
	(APHRODITE) and (b) the corresponding REMO	
	simulated field, and geopotential height (m; <i>shade</i>)	
	and vector wind (m/s; <i>arrow</i>) in the REMO	
	simulation at (c) 850 hPa on 20 December 2006,	
	(d) 500 hPa on 20 December 2006,	
	and (e) 500 hPa on 20 December 2006	51

Fig. 2.12	Lon-pressure cross section vertical distribution at 34°N latitude of model simulated	
	geopotential height (m: <i>continuous black contour</i>)	
	and air specific humidity (x1e-3: <i>shaded</i>)	
	at 0000 UTC during active WD (a) 20 Dec 2006	
	(b) 21 Dec 2006 (c) 22 Dec 2006 (<i>Left hand side</i>)	
	vertical axis corresponds to the pressure distribution	
	and right hand side vertical axis corresponds	
	to the topography $\times 10^2$ m)	53
Fig. 2.13	Lon–pressure distribution of vorticity (x1e-5/s: <i>shade</i>).	00
8	relative humidity (%, <i>broken contour</i>).	
	and topography ($\times 10^3$ m: shaded bar) on	
	(a) 19 December 2006, (b) 20 December 2006,	
	(c) 21 December 2006. (d) 22 December 2006.	
	(e) 23 December 2006, and (f) 24 December 2006	
	at 35°N Lat in the REMO simulation	54
-		-
F1g. 3.1	Kalpana satellite images for (a) 15 June 2013	
	$(0600 \text{ UTC}), (\mathbf{b}) 16 \text{ June } 2013 (0600 \text{ UTC})$	
	and (c) 17 June 2013 (0600 UTC). (\mathbf{d} - \mathbf{f}) is same	- 1
E: 2.2	as $(\mathbf{a}-\mathbf{b})$ but with INSAI-3A with thermal infrared band	71
Fig. 3.2	Geopotential height anomaly (shaded)	
	and perturbation geopotential height	
	$(\times 10^2 \text{ m/s}; contour)$ over the axis normal	70
F ' 2.2	to the formation of TCS for different time periods	13
F1g. 3.3	Conceptual model of the PEM towards Himalayas	75
Fig. 4.1	(a) Topography (\times 1e–3 m; <i>shaded</i>) and ratio of 0.05°	
•	grids for stations (%; contour) over the western	
	Himalayas. The area of 30°N, 72°E to 37°N, 82°E	
	is considered in the present chapter; (b) winter season	
	precipitation climatology (mm/DJF) based	
	on APHRODITE precipitation observed data reanalysis	85
Fig. 4.2	(a) The monthly (Dec, Jan, and Feb) and seasonal	
	(DJF) precipitation (mm/d) anomaly in APHRODITE	
	observational reanalysis and (b) difference	
	in 3-month (Dec, Jan, and Feb) average wet-	
	and dry-year composites precipitation (shaded)	
	and region with 99 % confidence level (within contour)	87
Fig. 4.3	Difference between 03 (DJF) month average wet	
	and dry composites of wind (m/s; contour; winds	
	above 99 % significant level are <i>plotted</i>) and geopotential	
	height (m; shaded; region within contour corresponds	
	to 99 % significant level) at (a) 200 hPa (b) 500 hPa	
	and (c) 850 hPa	88

Fig. 4.4	Seasonal anomalous velocity potential (×1e–6 m ² /s;	
	wind (m/s: <i>arrow</i>) at $\sigma = 0.1682$ and anomalous	
	outgoing longwave radiation $(W/m^2; shade)$	
	for (\mathbf{a}) wet and (\mathbf{b}) dry year composites and seasonal	
	anomalous stream function ($\times 1e-6$ m ² /s: <i>contour</i>)	
	with corresponding anomalous rotational wind	
	(m/s: <i>arrow</i>) at $\sigma = 0.1682$ and anomalous	
	$(1115, 41707)$ at $c^{-1}(1002)$ and (11071) and $c^{-1}(1002)$	
	for (\mathbf{c}) wet and (\mathbf{d}) dry year composites	90
Fig 45	Correlation between 28 years (1980–2007) area	20
1 19. 1.0	averaged winter precipitation $-D(-1)IF(0) - (mm/d)$	
	with sea surface temperature (°C) during (a) $D(-2)$ [F(-1)	
	(b) $MAM(-1)$ (c) $IIA(-1)$ (d) $SON(-1)$ and (e) $D(-1)IF(0)$	
	(Figures in bracket correspond to sea surface temperature	
	with previous and corresponding seasons) Region	
	within <i>contour</i> corresponds to 99 % significant level	91
Fig 46	Correlation between seasonal (DIF) and monthly	71
1 15. 4.0	(Dec. Ian. and Feb) interannual precipitation	
	variability based on APHRODITE	92
Fig 47	Cumulative average monthly anomalous precipitation	12
1 15. 4.7	(mm/month) during wet composites of (a) Dec	
	(b) Ian and (c) Feb and for dry composites of (d) Dec	
	(e) Ian and (f) Feb Masking with 10 mm/month	
	was employed	94
Fig 48	Monthly difference in (wet_dry) anomaly for 200 hPa	74
1 15. 4.0	geopotential height (hPa <i>contour</i>) and wind vector	
	$(ms^{-1} arrow)$ for (a) Dec. (b) Ian and (c) Feb. The	
	hatched region corresponds to >95% Similarly only	
	winds with 95 % significance and above are shown	95
Fig 49	Same as Fig. 4.8 but for outgoing longwave))
1 lg. 4.)	radiation (W/m ² : shaded)	97
Fig 4 10	Longitude_pressure vertical cross section at 30°N)
1 lg. 4.10	of the anomalous meridional moisture flux (kg/m/s)	
	during wet $((a), (b), and (c))$ and dry $((d), (a)$	
	and (f) composites of Dec. Ian and Eeb respectively	08
Fig 4 11	Area-averaged (30°N 72°E to 37°N 82°E) vertical	70
1 lg. 4 .11	cross-sectional distribution of anomalous air	
	temperature $\binom{0}{1}$ in (a) wet and (b) dry composites	
	for Dec (black line) Ian (red line) and Feb (arean line)	
	and area-averaged (30°N 72°E to 37°N 82°E) anomalous	
	$2_{\rm m}$ surface-air temperature (black line: °C)	
	and anomalous precipitation (mm/d) during (c) wet and	
	(d) dry year composites of Dec. Ian and Feb	100
	(u) ary year composites of Dec, Jan, and recommendation	100