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    Chapter 1   
 Epigenetic Mechanisms as an Interface 
Between the Environment and Genome                     

     Zdenko     Herceg    

    Abstract     Recent advances in epigenetics have had tremendous impact on our thinking and under-
standing of biological phenomena and the impact of environmental stressors on complex diseases, 
notably cancer. Environmental and lifestyle factors are thought to be implicated in the develop-
ment of a wide range of human cancers by eliciting epigenetic changes, however, the underlying 
mechanisms remain poorly understood. Epigenetic mechanisms can be viewed as an interface 
between the genome and environmental infl uence, therefore aberrant epigenetic events associated 
with environmental stressors and factors in the cell microenvironment are likely to play an impor-
tant role in the onset and progression of different human malignancies. At the cellular level, aber-
rant epigenetic events infl uence critical cellular events (such as gene expression, carcinogen 
detoxifi cation, DNA repair, and cell cycle), which are further modulated by risk factor exposures 
and thus may defi ne the severity/subtype of cancer. This review summarizes recent progress in our 
understanding of the epigenetic mechanisms through which environmental stressors and endoge-
nous factors may promote tumor development and progression.  

  Keywords     Epigenome   •   Environment   •   DNA methylation   •   Histone modifi cations   •   Noncoding 
RNAs   •   Cancer  

1.1       Introduction 

 Epigenetics represents a rapidly expanding fi eld of cancer research, as epigenetic 
changes have emerged as key mechanisms in cancer development. The term “epi-
genetic” refers to all heritable changes in gene expression and chromatin organiza-
tion that are independent of the  DNA sequence   itself and that can be propagated 
over cell divisions [ 4 ]. The key events associated with cancer development and pro-
gression can be caused not only by genetic changes but also by epigenetic deregula-
tion. The ubiquity and intrinsic reversibility of epigenetic changes, as well as their 

        Z.   Herceg      (*) 
  Epigenetics Group ,  International Agency for Research on Cancer (IARC) ,   Lyon ,  France   
 e-mail: hercegz@iarc.fr  
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early appearance in virtually all types of human cancer, makes them attractive sub-
jects for biomarker discovery and strategies for cancer treatment and prevention. 

 All critical changes  in cancer cells  , such as silencing of tumor suppressor genes, 
activation of oncogenes, and defects in DNA repair, can be induced by deregulated 
epigenetic mechanisms. Therefore, understanding epigenetic mechanisms that pro-
mote cancer onset, progression, and metastasis is fundamental to improving our 
ability to successfully prevent and treat cancer.  

1.2      Epigenetic   Mechanisms 

 There are three distinct classes of epigenetic information that can be inherited over 
cell generations: DNA methylation, histone modifi cations, and RNA-mediated gene 
silencing (Fig.  1 ).

Cancer cellNormal cell

Cell

nc-RNAs

Histone
modifications

DNA methylation

Deregulated
epigenetic states

Normal
epigenetic states

Cell microenvironment

H
IF

-1a activationH
yp

ox
ia

  Fig. 1    Signals that trigger epigenetic  events and mechanisms   of initiation and maintenance of 
epigenetic states. Theoretically, epigenetic initiators and maintainers respond to epigenators 
(external and endogenous signals) resulting in initiation and maintenance of a change in epigenetic 
state. This cascade of events may dictate cellular outcomes by regulating cellular processes such 
as gene transcription, proliferation, and DNA repair. Deregulation of epigenetic mechanisms may 
promote the development of abnormal phenotypes and diseases including cancer       
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     DNA methylation   . Methylation of DNA refers to the covalent addition of a methyl 
group (-CH3) on the cytosine pyrimidine ring in DNA by a number of DNA meth-
yltransferases. It occurs almost exclusively at cytosines that are located 5′ to a gua-
nine in a CpG dinucleotide [ 3 ], although there is growing evidence for the presence 
of methylated cytosine which is not in a CpG confi guration [ 3 ,  10 ,  15 ,  39 ,  42 ,  54 ]. 
DNA methylation is a physiological process that participates in the maintenance of 
gene activity states (imprinting, differentiation) and cell identity as well as in 
genome defence mechanisms, acting against potentially deleterious mobile genetic 
elements. However, unscheduled hypermethylation of small stretches of DNA, 
known as CpG islands, that are often located within the promoter regions of human 
genes and frequently free of DNA methylation in normal cells, tend to be associated 
with aberrant transcriptional inactivation in cancer cells. However, the  precise 
  molecular mechanism by which DNA methylation brings about gene silencing is 
not fully understood. 

   Histone modifi cations   . Histone modifi cations include a variety of posttranslational 
modifi cations of the histones (specialized proteins associated with genomic DNA 
forming the chromatin, a DNA– protein   complex). Histone modifi cations include 
acetylation, phosphorylation, ubuiquitination, and methylation of histone proteins 
at specifi c amino-acid residues. Previous studies have suggested that different his-
tone marks may act in a combinatorial fashion to regulate cellular processes and 
consistently dictate the outcome, a concept known as the “histone code” [ 25 ]. 

   Noncoding RNAs    .  Noncoding RNAs, found in the form of small RNAs (microR-
NAs) or long noncoding RNAs (lncRNAs), represent the most recent epigenetic 
mechanism playing an important role in the regulation of the gene transcription [ 7 ]. 
Deregulation of noncoding RNA expression has been associated with human dis-
eases, including cancer [ 34 ]. 

 Recent studies have provided evidence that different epigenetic mechanisms 
work together to establish and maintain gene activity states over many cell genera-
tions and that deregulation of one may cross-infl uence other  epigenetic   mechanism 
[ 66 ] (Fig.  1 ).  

1.3     Epigenetic Changes  in Cancer   

 A wealth of evidence indicates that all three classes of epigenetic modifi cations are 
profoundly altered in human malignancies. Deregulation of DNA methylation is 
found in two distinct forms: global hypomethylation and promoter-specifi c hyper-
methylation. Global hypomethylation refers to a total loss of 5-methyl cytosine that 
is found in virtually all human cancers [ 29 ]. This consistent, although relatively 
moderate, demethylation is caused by the loss of methyl-cytosine in the regions of 
the genome containing transposons and repetitive sequences. Although it has been 
proposed that global hypomethylation may act through the induction of chromo-
somal instability and activation of cellular proto-oncogenes, the precise mechanism 
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by which the global loss of DNA methylation contributes to the oncogenic transfor-
mation and tumor development remains unknown [ 14 ]. 

 DNA hypermethylation occurs at CpG islands in the promoter regions of large 
numbers of genes and is usually associated with gene inactivation [ 14 ,  30 ]. A large 
number of human genes, including tumor suppressor genes and other cancer- 
associated genes, have been found hypermethylated and epigenetically silenced in 
most, if not all, human malignancies. However, with the advent of new epigenomic 
tools that allow high-resolution and cost-effective profi ling of DNA methylation the 
list of genes targeted by aberrant hypermethylation is likely to grow steadily. 
Although it is well established that the predominant consequence of methylation is 
transcriptional silencing, it is less clear whether this is mediated through a direct or 
indirect mechanism [ 66 ]. Direct inhibition of transcription may be through blocking 
transcription factors from binding to promoters containing methylated CpG sites, 
while indirect repression may involve proteins that bind to methylated DNA via a 
methyl-CpG-binding domain.  

1.4     Epigenators, Initiators, and Maintainers 

 The vast majority of epigenetics and epigenomics studies have focused on the anal-
ysis of epigenetic states in  different   cell types (including normal and tumor tissues) 
and pathophysiologic conditions. While these studies have provided important 
information on the maintenance and heritability of epigenetic patterns, they have 
had a limited impact on our understanding of the mechanisms involved in the initia-
tion of epigenetic changes. Also, little is known on the agents and conditions that 
trigger epigenetic events. Three types  of   signals (known as epigenators, initiators, 
and maintainers) are thought to participate in triggering and establishing epigenetic 
states that are transmitted over cell generations [ 2 ]. Epigenators are defi ned as the 
signals originating from the cell’s external environment that trigger an intracellular 
pathway leading to epigenetic change. In contrast to plants, the role of epigenators 
in human tissues  and   how their deregulation promotes human diseases is largely 
unknown [ 2 ,  57 ]. For example, cell–cell and cell–extracellular matrix changes 
induced by environmental exposures and endogenous cues could be considered as 
epigenators. However, further studies are needed to determine the identity of epi-
genators and elucidate the mechanisms involved in the initiation of epigenetic 
states. Application of new epigenomics tools combined with appropriate experi-
mental models may prove valuable in providing important information on epigena-
tors and their mode of action. 

 It has been proposed that an epigenetic initiator responds to an epigenator signal 
and defi nes the location of the epigenetic change on the chromosome [ 2 ]. DNA 
binding proteins and  noncoding RNAs (ncRNAs)   can be considered epigenetic ini-
tiators. In this respect, lncRNAs have been shown to play an important role in deter-
mining how chromatin modifi cations are distributed along chromosomes. For 
example, HOTAIR (a long noncoding RNA) was shown to participate in silencing a 
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chromosomal region by binding to the RNA binding domain of Polycomb repres-
sive complex, thereby dictating epigenetic silencing through Polycomb-mediated 
deposition of repressive histone marks [ 17 ]. Because ncRNAs have been implicated 
in the mechanisms underlying silencing of large chromatin regions (heterochroma-
tin) this class of epigenetic modifi cations may be a bridge between initiator signals 
and epigenetic maintainers. lncRNAs are currently under intensive research and the 
near future is likely to provide information on the role of ncRNAs as epigenetic 
initiators. 

 In contrast  to   epigenators and epigenetic initiators, a great deal is known about 
the molecules involved in maintaining epigenetic states. This is particularly true for 
DNA methylation and histone modifi cations.    Epigenetic maintainers are defi ned as 
molecules and complexes that respond to initiators and ensure the maintenance of 
epigenetic states [ 2 ]. DNA methylation and histone modifi cations are carriers of 
epigenetic signals through cell division, and can thus be considered epigenetic 
maintainers.    Deregulation of epigenetic maintainers has been found in complex 
human diseases, notably cancer; however, the identity of the epigenators and initia-
tor signals that presumably precede and promote maintaining aberrant epigenetic 
states remains to be established. Screening for potential epigenators, initiators, and 
maintainers in parallel in the same model system combined with focused functional 
studies may prove informative in identifying possible interactions and interdepen-
dencies between epigenators, initiators, and maintainers in physiological and patho-
logical conditions.  

1.5     Epigenome as an Interface Between the Environment 
 and Genetic Code   

 Epigenetic modifi cations are considered an interface between genotype and pheno-
type [ 4 ,  13 ,  20 ,  24 ]; however, the epigenome could also be viewed as an interface 
between the environment and the genome (Fig.  1 ). This epigenetic interface may 
“buffer” the impact of environmental exposures on the genome. It also modulates 
the response of the genome to environmental cues. The implications of this concept 
are twofold: fi rst, defects in the epigenetic interface components may deregulate key 
cellular processes (such as gene transcription or DNA repair and replication) 
following environmental exposure, which may result in cell death or oncogenic 
transformation. Second, environmental factors may leave “exposure sequelae” on 
the epigenetic interface that could be exploited in biomarker discovery. 

 A number of agents in the environment have been suggested to alter epigenetic 
states [ 20 ]. Evidence is accumulating that environmental agents may affect cellular 
functions through their impact on DNA methylation, histone modifi cations and 
noncoding RNAs. Several recent studies suggest that  the   hypermethylation and 
unscheduled silencing of several key cellular genes in lung cancer are  associated 
  with exposure to tobacco smoke [ 1 ,  48 ,  65 ]. Therefore, tobacco smoke may, in addition 
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to inducing gene mutations, contribute to oncogenic transformation by inactivating 
key cancer-associated genes through epigenetic disruption. Environmental toxins, 
such as arsenic and nickel, may also deregulate epigenetic states (including chroma-
tin modifi cations and DNA methylation) [ 9 ,  33 ,  59 ,  60 ,  73 ,  74 ], and promote cancer 
development through epigenetic mechanisms. 

 Biological agents, such as viruses, like  Human papillomavirus (HPV)  ,  Epstein- 
Barr virus (EBV)  , and  Human hepatitis virus (HBV)  , and bacteria may also alter 
the expression of host genes via an epigenetic strategy [ 11 ,  20 ,  37 ,  41 ,  67 ]. 
Epigenetic mechanisms including DNA methylation, chromatin modifi cations, and 
RNA- mediated gene silencing are believed to be important in protecting against 
viral genomes [ 3 ,  20 ,  24 ]. However, viruses also use epigenetic mechanisms to 
regulate expression of their own genes [ 75 ]. Importantly, previous studies have 
shown that HBV infection and integration of viral genomes may lead to epigenetic 
changes at the level of both viral and host genomes [ 20 ]. Therefore, epigenetic 
changes associated with viral infection and integration of viral genomes may trig-
ger aberrant events that lead to oncogenic transformation and cancer development. 
In other words, different viruses may abrogate cellular defence systems and induce 
silencing of host genes through epigenetic deregulation; however, the role of epi-
genetic events associated with viral infection and their role in cancer remains 
largely unknown. In particular, it is unclear whether viral infections promote carci-
nogenesis directly through deregulation of key genes and pathways or indirectly, 
through infl ammatory processes. For example, chronic production of cytokines 
during infl ammation may alter epigenetic states in affected cells. Alternatively, low 
oxygenation (hypoxia) that commonly occurs in infl amed tissue may induce 
 Hypoxia- Induced Factors (HIFs)   that may have an impact on histone modifi cations 
[ 5 ,  51 ] (Fig.  1 ). 

 In addition to viruses, bacterial infection (such as that induced by  H. pylori ) has 
been associated with aberrant epigenetic states (DNA methylation) in human gastric 
cancer.  H. pylori  infection appears to induce DNA methylation changes  in   promot-
ers of many key genes in gastric mucosa, thus promoting the development and pro-
gression of gastric cancer [ 41 ]. Although, the mechanism by which  H. pylori  
infection induces changes in DNA methylation remains poorly understood, chronic 
infl ammation and cell proliferation associated with bacterial infection, rather than 
the presence of bacterial agents, may trigger aberrant hypermethylation [ 23 ,  61 ,  68 ]. 
For example, the suppression of gene expression in the host genome, a phenomenon 
frequently observed in tissues affected by infl ammation, may promote aberrant 
DNA methylation [ 12 ,  22 ,  45 ,  58 ].  

1.6      Dietary Factors   and One-Carbon Metabolism 

 Diet infl uences DNA methylation levels in cells in several ways, but mainly via the 
one-carbon metabolism pathway. The DNA methylation reaction involves the use of 
methyl groups, therefore the establishing and maintaining of DNA methylation 
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relies on dietary methyl donors [ 63 ]. In a DNA methylation reaction, the fi nal 
methyl donor produced by one-carbon metabolism, S-adenosylmethionine (SAM), 
is used. The primary methyl donors and key mediators of one-carbon metabolic 
pathways are dietary folates, although choline and other cofactors such as vitamins 
B6 and B12 represent important methyl donors [ 72 ]. For the production of tetrahy-
drofolate (THF), a precursor for homocysteine conversion to methionine, cells use 
methyl-THF which serves as a methyl group donor. In cells, methionine is converted to 
SAM by methionine adenosyltransferase, whereas SAM serves as the principal 
methyl donor [ 35 ]. Therefore, conversion of SAM to  S-adenosylhomocysteine 
(SAH)   is critical for the methylation process. Because SAH is a potent competitive 
inhibitor of methylation reactions, disruption of the SAH/SAM ratio, through an 
increase in SAH or a decrease in SAM, leads to inhibition of methylation reactions. 
The SAM:SAH ratio is regulated via inhibition of SAM by 5,10-methylene-
THF reductase (MTHFR), and  of   GNMT by folate compounds [ 16 ]. Therefore, 
intake of dietary folates is important for reactions in one-carbon metabolism, and 
low dietary intake of folate and choline may decrease concentrations of SAM, 
potentially triggering DNA hypomethylation. 

 Consistent with the essential role of dietary folate in DNA methylation, defi cien-
cies in folate, methionine, and vitamin B6 have been associated with an increased 
risk of cancer at different sites. Recent studies suggested that serum levels of one- 
carbon metabolites are associated with cancer risk [ 28 ] and DNA methylation states 
in blood cells [ 69 ]. These results support the notion that dietary intake of folates, 
and subsequently plasma levels of one-carbon metabolites and B vitamins, could 
infl uence the methylation level of key cellular genes; however, the precise mecha-
nism underlying the modulation of DNA methylation levels by one-carbon metabo-
lites and B vitamins remains to be established.  

1.7     DNA Demethylation 

 DNA methylation has long been considered as a highly stable epigenetic modifi ca-
tion. However, recent studies suggest that cycles of DNA methylation and demeth-
ylation may take place during the life of a cell, arguing that DNA methylation mark 
may be more dynamic than previously thought. For example, Kangaspeska et al. 
reported a  cyclical pattern   of DNA methylation and demethylation at a set of 
promoters during the initial cycle of transcription, and again after the second cycle 
of productive transcription [ 32 ]. Another study also demonstrated that cyclical 
DNA methylation occurs at several CpG sites and that this process may be strand 
specifi c, with only the transcribed strand being demethylated after the fi rst cycle of 
transcription [ 43 ]. Consistent with these observations,  DNMT enzymes   were found 
at the active promoter and their recruitment coincides with both phases of DNA 
methylation and demethylation. These intriguing results argue that DNMTs may be 
involved in both the addition and removal of methyl groups. Furthermore, DNA 
methyltransferases DNMT3A and DNMT3B were found capable of deaminating 
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methylated cytosines, thereby generating mismatches that are cleaved by a glyco-
sylase and repaired by machinery involved in the base-excision repair [ 43 ]. 

 These studies, together with those showing a rapid wave of DNA demethylation 
of the paternal genome after fertilization [ 36 ], argue that the mechanism of DNA 
demethylation is operational in mammalian cells. One of the proposed mechanisms 
involves passive DNA demethylation through rounds of DNA replication, brought 
about by inhibition of DNMT1. This process can be chemically induced by 5-Aza- 
2′-deoxycytidine, an inhibitor of DNMT, which blocks DNMT1 activity, compro-
mising the maintenance of the DNA methylation mark through cell division [ 49 , 
 71 ]. However, a passive mechanism for DNA demethylation may not be the only 
mechanism and active DNA demethylation might exist. There are several possible 
active mechanisms of DNA demethylation that may operate in mammalian cells. 
These include the direct removal of the methyl group via hydrolytic attack, oxidation, 
or a DNA demethylase enzyme [ 55 ]. Removal of  methyl groups   from cytosines is 
considered unlikely, arguing that alternative pathways involving DNA glycosylases 
and deaminases may operate in mammalian cells [ 38 ,  56 ,  64 ], although many 
reported DNA demethylase activities have been challenged [ 19 ,  26 ,  47 ] and it is not 
clear which protein(s) may function as an active DNA demethylase in mammals [ 6 ]. 

 Recent studies suggested that the  Tet family   of proteins may be involved in active 
DNA demethylation. The capacity of Tet proteins to hydrolyse methyl cytosines 
(producing 5-hydroxymethylcytosine, 5hmC) and to act on fully methylated or 
hemi-methylated DNA has been reported [ 62 ]. Moreover, Tet1 blocks DNMTs and 
DNA demethylation is followed by chromatin remodelling including loss of H1 and 
H2Az [ 18 ,  62 ]. Other potential players such as  GADD45 and ELP3   have been 
investigated in the context of DNA demethylation [ 40 ,  46 ,  47 ,  52 ,  70 ]. Together, 
these results provide compelling evidence that DNA methylation mark is more 
dynamic than previously thought. These observations may also suggest that estab-
lishing and maintaining DNA methylation may be highly susceptible to modulation 
by environmental and extracellular infl uences.  

1.8     Environmental Exposure and  Transgenerational 
Epigenetic Inheritance   

 Exposure to environmental and dietary factors during embryonic life as well as 
during childhood and adolescence is associated with a change in risk of developing 
specifi c human cancers in adulthood. Epigenetic deregulation during this critical 
period of growth and development might explain such observations. This notion is 
supported by recent studies showing an association between early life energy 
restriction and DNA methylation states in adult colorectal cancer [ 21 ]. Therefore, 
exposure to a transient environmental factor during early life may result in persis-
tent epigenetic changes that later infl uence cancer development.    Furthermore, it is 
possible that epigenetic changes induced by environmental exposures might be 
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transmitted to future generations. It is widely believed that epigenetic states are 
cleared on passage through the germ line in mammals and that only genetic features 
are passed on to subsequent generations. However, accumulating evidence argues 
that in both animals and plants epigenetic modifi cations are not completely erased 
between generations. The phenomenon of incomplete erasure of epigenetic marks 
between generations resulting in a detectable phenotype is known as transgenera-
tional epigenetic inheritance [ 27 ]. 

 Perhaps surprisingly, recent studies indicate that epigenetic states can be inher-
ited transgenerationally after not only maternal but also paternal transmission [ 8 , 
 53 ]. Epigenomic screening revealed that paternal diet may induce changes in DNA 
methylation and consequently expression of specifi c genes and pathways in off-
spring of inbred mice and that carriers of epigenetic information that reside in sperm 
may respond to environmental exposures [ 8 ]. In addition, epigenetic intergenera-
tional transmission of metabolic changes from father to offspring in rats have also 
been described [ 44 ]. Therefore, epigenetic changes induced by environmental expo-
sures may be inherited through the germline and this could be a plausible transgen-
erational carrier of environmental “memory”, although future studies are required to 
substantiate these observations and to defi ne their underlying mechanism. 

 This intriguing concept, derived from experimental studies, is further supported 
by epidemiological  observations   suggesting that environmental and dietary expo-
sures in men may infl uence health and susceptibility to diseases in following gen-
erations [ 31 ,  50 ]. However, to what extent the parental environmental exposures 
contribute to cancer risk through transgenerational epigenetic inheritance remains 
to be establishes and warrants further study.  

1.9     Conclusions and Perspectives 

 The fi eld of cancer epigenetics has been expanding rapidly over the past decade and 
numerous conceptual advances have dramatically accelerated research in this and 
related fi elds. Both the scientifi c and medical communities now recognize the key 
role of epigenetic mechanisms in the development and control of normal cellular 
processes as well as abnormal events associated with disease development, notably 
human cancer. Epigenetic modifi cations can be viewed as an interface between the 
environment and the genome, the deregulation of which may disrupt key cellular 
processes, leading to disease. This interface may also be a memory system that 
“records” and transmits information about past exposures to the subsequent genera-
tions of cells, and could thus be exploited in biomarker discovery. Recent studies 
also indicated that epigenetic states may be more dynamic than previously thought, 
and that establishing and maintaining them may be infl uenced by environmental and 
dietary factors and endogenous cues. However, further studies are needed to eluci-
date the molecular mechanisms by which the environmental and extracellular sig-
nals impair initiation, establishment, and maintenance of normal patterns of 
epigenetic modifi cations as well as aberrant epigenetic states associated with cancer 
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development. The almost spectacular advances in epigenomics and the emergence 
of powerful technologies that allow the analysis of epigenetic events in high- 
throughput and genome-wide settings should facilitate this task.     
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    Chapter 2   
 Developmental Origins of Hypoxic Pulmonary 
Hypertension and Systemic Vascular 
Dysfunction: Evidence from Humans                     

     Claudio     Sartori     ,     Stefano     F.     Rimoldi     ,     Hervé     Duplain    ,     Thomas     Stuber    , 
    Sophie     Garcin    ,     Emrush     Rexhaj    ,     Yves     Allemann    , and     Urs     Scherrer   

    Abstract     Epidemiological studies have shown an association between pathologic events occur-
ring during fetal/perinatal life and the development of cardiovascular and metabolic disease in 
adulthood. These observations have led to the so-called developmental origin of adult disease 
hypothesis. More recently, evidence has been provided that the pulmonary circulation is also an 
important target for the developmental programming of adult disease in both experimental animal 
models and in humans. Here we will review this evidence and provide insight into mechanisms that 
may play a pathogenic role.  
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2.1       Introduction 

2.1.1     The Barker Hypothesis 

 The initial observations made by Barker and colleagues [ 1 ], that individuals born 
with a low birth weight present increased cardiovascular mortality in adulthood, 
gave rise to the “Barker hypothesis.” This hypothesis postulated that environmental 
factors, in particular nutritional, could act during the early phases of life and deter-
mine the risk to suffer from metabolic and/or cardiovascular  disease   later in life. 
Since then, many epidemiological studies have confi rmed the association between 
impaired fetal growth (deduced from birth weight or body composition) and an 
increased incidence of cardiovascular diseases, type 2 diabetes mellitus, or their 
precursors: dyslipidemia, impaired glucose tolerance, or vascular endothelial dys-
function. The terms “ fetal programming  ” and “developmental origin of adult dis-
eases” were coined to describe these associations. Interestingly, this association is 
not only present in children with extremely low birth weight, since in children with 
normal birth weight the cardiovascular risk is also inversely related to birth weight. 
In some conditions, adverse developmental infl uences could also affect disease risk 
without birth size affected [ 12 ]. 

 Developmental  plasticity   provides organisms with the ability to change structure 
and function in response to environmental cues. These changes usually take place 
during critical time windows, and then become permanent, and thereby permit a 
range of phenotypes to develop from a single genotype. The predictive developmen-
tal adaptive responses are thought to optimize the phenotype for the probable envi-
ronment of the mature organism. Where there is a match between the predicted and 
actual mature environment, these predictive adaptive responses are appropriate and 
assist survival. Conversely, inappropriate predictions increase the risk of disease. 
Modeling suggests that such lagged responses aid the survival of the species [ 11 ]. 

 To explain his observations, Barker postulated that when the  fetal environment   
is low in nutrients, the fetus adapts its metabolism to increase its chances of sur-
vival after the birth in presumably similarly poor conditions. However, if the 
actual environment will be richer in food than predicted, then the adaptations pro-
grammed during the pregnancy might be deleterious and predispose to disease in 
adulthood [ 15 ]. 

 In humans, such a situation occurred towards the end of World War II. A Dutch 
epidemiological study showed that an insuffi cient caloric intake in pregnant moth-
ers during the period of famine of the winter 1944–1945 increased the risk of the 
offspring to develop cardiovascular or metabolic diseases in adulthood, and this 
even in the presence of a normal birth weight [ 30 ]. Noteworthily, the girls born from 
these pregnancies in period of famine gave themselves birth to children of lower 
than normal weight, suggesting the possibility of a  transgenerational transmission   
of the consequences of a perinatal insult [ 28 ].   
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