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Preface

Advances in proof theory was the title of a symposium organized on the occasion
of the 60th birthday of Gerhard Jäger. The meeting took place on December 13 and
14, 2013, at the University of Bern, Switzerland.

The aim of this symposium was to bring together some of the best specialists
from the area of proof theory, constructivity, and computation and discuss recent
trends and results in these areas. Some emphasis was put on ordinal analysis,
reductive proof theory, explicit mathematics and type-theoretic formalisms, as well
as abstract computations.

Gerhard Jäger has devoted his research to these topics and has substantially
advanced and shaped our knowledge in these fields.

The program of the symposium was as follows:

Friday, December 13

Wolfram Pohlers: From Subsystems of Classical Analysis to Subsystems of Set
Theory: A personal account

Wilfried Buchholz: On the Ordnungszahlen in Gentzen’s First Consistency
Proof

Andrea Cantini: About Truth, Explicit Mathematics and Sets

Peter Schroeder-Heister: Proofs That, Proofs Why, and the Analysis of
Paradoxes

Roy Dyckhoff: Intuitionistic Decision Procedures since Gentzen

Grigori Mints: Two Examples of Cut Elimination for Non-Classical Logics

Rajeev Goré: From Display Calculi to Decision Procedures via Deep Inference
for Full Intuitionistic Linear Logic

Pierluigi Minari: Transitivity Elimination: Where and Why

vii



Saturday, December 14

Per Martin-Löf: Sample Space-Event Time

Anton Setzer: Pattern and Copattern Matching

Helmut Schwichtenberg: Computational Content of Proofs Involving
Coinduction

Michael Rathjen: When Kripke-Platek Set Theory Meets Powerset

Stan Wainer: A Miniaturized Predicativity

Peter Schuster: Folding Up

Solomon Feferman: The Operational Perspective

This volume comprises contributions of most of the speakers and represents the
wide spectrum of Gerhard Jäger’s interests. We deeply miss Grisha Mints who
planned to contribute to this Festschrift.

We acknowledge gratefully the financial support of Altonaer Stiftung für
philosophische Grundlagenforschung, Burgergemeinde Bern, Swiss Academy of
Sciences, Swiss National Science Foundation, and Swiss Society for Logic and
Philosophy of Science. We further thank the other members of the program com-
mittee, namely Roman Kuznets, George Metcalfe, and Giovanni Sommaruga.

For the production of this volume, we thank the editors of the Progress in
Computer Science and Applied Logic (PCS) Series, the staff members of
Birkhäuser/Springer Basel, and the reviewers of the papers of this volume.

We dedicate this Festschrift to Gerhard Jäger and thank him for his great
intellectual inspiration and friendship.

Lisbon Reinhard Kahle
Bern Thomas Strahm
Bern Thomas Studer
December 2015
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A Survey on Ordinal Notations Around
the Bachmann-Howard Ordinal

Wilfried Buchholz

Dedicated to Gerhard Jäger on the occasion of his 60th birthday.

Abstract Various ordinal functions which in the past have been used to describe
ordinals not much larger than the Bachmann-Howard ordinal are set into relation.

1 Introduction

In recent years a renewed interest in ordinal notations around the Bachmann-Howard
ordinal φε�+1(0) has evolved, amongst others caused by Gerhard Jäger’s metapred-
icativity program. Therefore it seems worthwile to review some important results
of this area and to present detailed and streamlined proofs for them. The results in
question are mainly comparisons of various functions which in the past have been
used for describing ordinals not much larger than the Bachmann-Howard ordinal.
We start with a treatment of the Bachmann hierarchy

(
φα

)
α≤��+1

from [3]. This
hierarchy consists of normal functions φα : � → � (α ≤ ��+1) which are defined
by transfinite recursion on α referring to previously defined fundamental sequences
(α[ξ])ξ<τα

(with τα ≤ �). The most important new concept in Bachmann’s approach
is the systematic use of ordinalsα > � as indices for functions from� into�. Bach-
mann describes his approach as a generalization of a method introduced by Veblen
in [22]; according to him the initial segment (φα)α<�� is just a modified presentation
of a system of normal functions defined by Veblen. But actually this connection is
not so easy to see. At the end of Sect. 2 we will establish the connection between
(φα)α<�� and Schütte’s Klammersymbols [19] for which the relation to [22] is clear

W. Buchholz (B)
Mathematisches Institut, Ludwig-Maximilians-Universität München, Munich, Germany
e-mail: buchholz@mathematik.uni-muenchen.de

© Springer International Publishing Switzerland 2016
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2 W. Buchholz

cf. [19, footnote 4]. In Sect. 3 we give an alternative characterization of the Bach-
mann hierarchy which instead of fundamental sequences

(
α[ξ])

ξ<τα
uses finite sets

Kα ⊆ � of coefficients (“Koeffizienten”). For α < ε�+1, Kα is almost identical to
the set C(α) of constituents (i.e., ordinals < � which occur in the complete base �

Cantor normal form of α) in [15], where it was shown how to construct a recursive
system of ordinal notations on the basis of Bachmann’s functions.

In the 1960s, theBachmannmethod for generating hierarchies of normal functions
on�was extended by Pfeiffer [17] and, much further, by Isles [16]. These extensions
were highly complex; especially the Isles approach was so complicated that it was
practically unusable for proof-theoretic applications. Therefore Feferman, in unpub-
lished work around 1970, proposed an entirely different and much simpler method
for generating hierarchies of normal functions θα (α ∈ On) (see e.g. [14]). Aczel (in
[1]) showed how the θα (α < ��+1) correspond to Bachmann’s φα. (Independently,
Weyhrauch [23] established the same results for α < ε�+1.) In addition, Aczel gen-
eralized Feferman’s definition and conjectured that the generalized hierarchy (θα)

matches up with the Isles functions. This conjecture was proved by Bridge in [4, 5].
In Sect. 4 of the present paper we show how Feferman’s functions θα (α < ��+1)
can also be defined by use of the Kα’s. Together with the content of Sect. 3 this leads
to an easy comparison of the hierarchies

(
φα

)
α<��+1

and
(
θα

)
α<��+1

which becomes

particularly simple if one switches to the fixed-point-free versions: φα(β) = θα(β)

for all α < ��+1, β < � (Theorem4.7).
In Sects. 5, 6 we deal with the unary functions ϑ : ε�+1 → � and ψ : ε�+1 → �

which play an important rôle in [18]. We show that θ1+α(β) = ϑ(�α+ β) (for
α < ε�+1, β < �) and refine a result from [18] on the relationship between ϑ and
ψ. In Sect. 7, largely following [23], we show how the Bachmann hierarchy below
ε�+1 can be defined by means of functionals of finite higher types.

A nice survey on the history of the subject can be found in [13].
Preliminaries. The letters α,β, γ, δ, ξ, η, ζ always denote ordinals. On denotes

the class of all ordinals and Lim the class of all limit ordinals. We are working in
ZFC. So, every ordinal α is identical to the set {ξ ∈ On : ξ < α}, and we have β <

α ⇔ β ∈ α and β ≤ α ⇔ β ⊆ α. For X ⊆ On we define: X <(≤)α :⇔ ∀x ∈ X
(x <(≤)α) and α ≤ X :⇔ ∃x ∈ X (α ≤ x), i.e., X < α ⇔ X ⊆ α and α ≤ X ⇔
¬(X < α). By H we denote the class {γ ∈ On : ∀α,β < γ(α+ β < γ)} = {ωα :
α ∈ On} of all additive principal numbers (Hauptzahlen), and by E the class {α ∈
On : ωα = α} = {εα : α ∈ On}of all epsilon-numbers.Anormal function is a strictly
increasing continuous function F : On → On. The normal functionsϕα : On → On
(α ∈ On) are defined by:ϕ0(β) := ωβ , andϕα := ordering (or enumerating) function
of {β : ∀ξ < α(ϕξ(β) = β)}, if α > 0. The family (ϕα)α∈On is called the Veblen
hierarchy over λξ.ωξ . An ordinal α is called strongly critical iff ϕα(0) = α. The
class of all strongly critical ordinals is denoted by SC, and its enumerating function
by λα.�α. It is well-known that λα.�α is again a normal function, and that �� = �,
where � is the least regular ordinal >ω.
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2 Fundamental Sequences and the Bachmann Hierarchy

The following stems from Bachmann’s seminal paper [3], but in some minor details
we deviate from that paper. We start by assigning to each limit number α ≤ ��+1
a fundamental sequence (α[ξ])ξ<τα

with τα ≤ �. The definition of α[ξ] is based on
the normal form representation of α in terms of 0,+, ·, F , where (Fα)α∈On is the
Veblen hierarchy over λx .�x , i.e., F0(β) := �β , and Fα := ordering function of
{β : ∀ξ < α(Fξ(β) = β)}, if α > 0. The relationship between Fα and ϕα for α > 0
is given by

Fα(β) = ϕα(α̃+ β) with α̃ :=

⎧
⎪⎨

⎪⎩

�+1 if 0 < α < �,

1 if α = �,

0 if � < α.

From this it follows that ��+1 is the least fixed point of λα.Fα(0).
For completeness note, that F0(β) = ϕ0(�β).

Abbreviations

1. � := ��+1 = min{α : Fα(0) = α}.
2. α|γ :⇔ ∃ξ(γ = α·ξ).
3. α =NF γ +�βη :⇔ α = γ +�βη & 0 < η < � & �β+1|γ.
4. γ =NF Fα(β) :⇔ α,β < γ = Fα(β).

Proposition

(a) For each 0 < δ < � there are unique γ,β, η such that δ =NF γ +�βη.
(b) For each δ ∈ ran(F0) ∩� there are unique α,β such that δ =NF Fα(β).
(c) δ < � ⇒ (δ =NF Fα(β) ⇔ β < δ = Fα(β)).

Definition of a fundamental sequence (λ[ξ])ξ<τλ
for each limit number

λ ≤ �

1. λ =NF γ +�βη /∈ ran(F0):
1.1. η ∈ Lim: τλ := η and λ[ξ] := γ +�β ·(1+ξ).
1.2. η = η0+1: τλ := τ�β and λ[ξ] := γ +�βη0 +�β[ξ].
2. λ =NF Fα(β):

2.1. β ∈ Lim: τλ := τβ and λ[ξ] := Fα(β[ξ]).
2.2. β /∈ Lim: Let λ− :=

{
0 if β = 0,

Fα(β0)+1 if β = β0+1.
2.2.0. α = 0: Then β = β0+1. τλ := � and λ[ξ] := �β0 ·(1+ξ).
2.2.1. α = α0+1: τλ := ω and λ[n] := F (n+1)

α0
(λ−).

2.2.2. α ∈ Lim: τλ := τα and λ[ξ] := Fα[ξ](λ−).
3. τ� := ω and �[0] := 1, �[n+1] := F�[n](0).
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Definition
For each limit λ ≤ � we set λ[τλ] := λ.
Further τ0 := 0, 0[ξ] := 0 and τα+1 := 1, (α+1)[ξ] := α.

Lemma 2.1 λ =NF Fα(β) < � & β ∈ Lim & 1 ≤ ξ < τβ ⇒
λ[ξ] =NF Fα(β[ξ]).
Proof Cf. Appendix.

Lemma 2.2 Let λ ∈ Lim ∩ (�+1).
(a) ξ < η ≤ τλ ⇒ λ[ξ] < λ[η].
(b) λ = supξ<τλ

λ[ξ].
(c) η ∈ Lim ∩ (τλ + 1) ⇒ λ[η] ∈ Lim & τλ[η] = η & ∀ξ < η(λ[η][ξ] = λ[ξ]).
(d) ξ < τλ & λ[ξ] < δ ≤ λ[ξ+1] =⇒ λ[ξ] ≤ δ[1].
The proof of (a), (b), (c) is left to the reader. The proof of (d) will be given in the
Appendix.

We now introduce a binary relation� which corresponds to Bachmann’s→ (cf.
[3] p. 123, 130) and is essential for proving the basic properties of the Bachmann
hierarchy. The advantage of � over → is that its definition does not refer to the
functions φα but only to the fundamental sequences (α[ξ])ξ<τα

.

Definition of�1,� and�

1. β �1 α :⇔ α ≤ � & β ∈ {α[ξ] : ξ < τ ◦α}, where τ ◦α :=
{

ω if τα = �,

τα otherwise.
2. � (� ) is the transitive (transitive and reflexive) closure of�1.

Lemma 2.3 Let α ≤ �.

(a) α ∈ Lim & ξ+1 < τα ⇒ α[ξ]+1� α[ξ+1].
(b) α ∈ Lim & ξ < η < (τα+1) ∩� ⇒ α[ξ] � α[η].
(c) β � α ⇒ β+1� α.
(d) n < ω & n ≤ α ⇒ n � α.

Proof
(a) By induction on δ we prove: α[ξ] < δ ≤ α[ξ+1] ⇒ α[ξ] + 1� δ.

1. δ = δ0+1 with α[ξ] ≤ δ0: Then either α[ξ]+1 = δ or α[ξ]+1 IH� δ0 �1 δ.
2. δ ∈ Lim:

By Lemma2.2a, d, α[ξ] < δ[2] < α[ξ+1]. Hence α[ξ]+1 IH� δ[2] �1 δ.

(b) Induction on η:
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1. η = η0+1 < τα: α[ξ]
IH� α[η0] �1 α[η0] + 1

(a)� α[η].
2. η ∈ Lim: Then τα[η] = η and α[ξ] = α[η][ξ] �1 α[η].
(c) We may assume β �1 α, i.e. β = α[ξ] with ξ < τ ◦α.

Then either τ ◦α = 1 & β+1 = α or τ ◦α ∈ Lim & α[ξ] + 1
(a)�α[ξ+1] �1 α.

(d) Induction on n:

1. Using Lemma2.2a we get 0� α by transfinite induction on α.

2. n+1 ≤ α ⇒ n < α & n
IH� α ⇒ n � α

(c)⇒ n+1� α.

Definition
An �-normal function is a strictly increasing continuous function f : � → �.

A set M ⊆ � is �-club (closed and unbounded in �) iff

∀X ⊆ M(X = ∅ & sup(X) < � ⇒ sup(X) ∈ M) and ∀α < �∃β ∈ M(α < β).

It is well-known that M ⊆ � is �-club if, and only if, M is the range of some
�-normal function. Hence the ordering function of any �-club set is �-normal.

The collection of �-club sets has the following closure properties:

1. If f is �-normal then {β ∈ � : f (β) = β} is �-club.
2. If (Mξ)ξ<α is a sequence of�-club sets with 0 < α < � then

⋂
ξ<α Mξ is�-club.

3. If (Mξ)ξ<� is a sequence of �-club sets then also {α ∈ � : α ∈ ⋂
ξ<α Mξ} is

�-club.

Drawing upon 1.–3. and upon the above assignment of fundamental sequences we
now define Bachmann’s hierarchy of �-normal functions φα (α ≤ �).

Definition φα : � → � is the ordering function of the �-club set Rα, where Rα is
defined by recursion on α as follows:

R0 := H ∩�,
Rα+1 := {β ∈ � : φα(β) = β} ,
Rα :=

{⋂
ξ<τα

Rα[ξ] if τα ∈ � ∩ Lim,

{β ∈ � ∩ Lim : β ∈ ⋂
ξ<β Rα[ξ]} if τα = �.

Notes

1. In Lemma2.5d we will show that Rα = {β ∈ � : φα[β](0) = β} if τα = �.
2.Asmentioned above, our definition of theBachmannhierarchy (and of Fα) diverges
in some minor points from [3]. As a consequence of this, Bachmann’s ordinals
H(1) = ϕF�(1)+1(1) and ϕFω2+1(1)(1) are φF�(0)(0) and φ�(0), respectively, in the
present paper. For more details cf. [2, Note on p. 35].

Lemma 2.4

(a) α0 � α ⇒ Rα ⊆ Rα0 .
(b) α0 � α ⇒ φα0(0) < φα(0).
(c) n < α ∩ ω & β ∈ Rα ⇒ ω·n < β ∈ Lim.
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Proof
(a) It suffices to prove Rα ⊆ Rα0 for α0 �1 α.

1. α = α0+1: Then Rα = {β ∈ � : φα0(β) = β} ⊆ Rα0 .
2. τα ∈ � ∩ Lim: Then α0 ∈ {α[ξ] : ξ < τα} and thus Rα = ⋂

ξ<τα
Rα[ξ] ⊆ Rα0 .

3. τα = �: β ∈ Rα ⇒ ω ≤ β ∈ ⋂
ξ<β Rα[ξ] ⇒ β ∈ ⋂

ξ<ω Rα[ξ] ⊆ Rα0 , since α0 ∈
{α[ξ] : ξ < ω}.

(b) 1. α = α0+1: β := φα(0) ∈ Rα ⇒ φα0(0) < φα0(β) = β.

2. α0+1 < α:α0 � α
2.3c⇒ α0+1� α

(a)⇒ Rα ⊆ Rα0+1 ⇒ φα0(0)
1.
<

φα0+1(0) ≤ φα(0).

(c) We have 1 ≤ φ0(0) < φ1(0) < · · · and φk+1(0) ∈ Lim. Hence ω·n < φn+1(0).
Further: n<α

2.3d⇒ n+1� α
(a)⇒ Rα ⊆ Rn+1 ⊆ {β : φn+1(0) ≤ β ∈ Lim}.

Lemma 2.5 For each α ∈ Lim ∩ (�+1) the following holds:

(a) ξ < η < (τα+1) ∩� ⇒ Rα[η] ⊆ Rα[ξ] & φα[ξ](0) < φα[η](0).
(b) ξ < (τα+1) ∩� ⇒ ξ ≤ φα[ξ](0).
(c) λ ∈ Lim ∩ (τα+1) ∩� ⇒ Rα[λ] = ⋂

ξ<λ Rα[ξ].
(d) τα = � ⇒ Rα = {β ∈ � : φα[β](0) = β}.
(e) n < ω ⇒ φα[n](0) < φα(0).

Proof

(a) follows from Lemmata2.3b, 2.4a, b.
(b) follows from (a).
(c) By Lemma2.2c we have τα[λ] = λ and α[λ][ξ] = α[ξ]. Hence, by definition,

Rα[λ] = ⋂
ξ<λ Rα[ξ].

(d) Rα = {β ∈ � ∩ Lim : β ∈ ⋂
ξ<β Rα[ξ]} (c)= {β ∈ � : β ∈ Rα[β]} (b)=

{β ∈ � : φα[β](0) = β}.
(e) follows from Lemma2.4b.

Schütte’s Klammersymbols
In [19], building on [22], Schütte introduced a system of ordinal notations based on

so-called ‘Klammersymbols’. A Klammersymbol is a matrix

(
ξ0 . . . ξn

α0 . . . αn

)
with 0 ≤

α0 < α1 < · · · < αn < � and ξ0, . . . , ξn < �. Two Klammersymbols are defined
to be equal if they are identical after deleting all columns of the form

( 0
αi

)
. This

means that one can identify the Klammersymbol

(
ξ0 . . . ξn

α0 . . . αn

)
with the ordinal

�αn ξn + · · · +�α0ξ0. Under this identification the <-relation between ordinals
induces a well-ordering ≺ on the Klammersymbols. To each �-normal function
f and each Klammersymbol A an ordinal f A < � is assigned by ≺-recursion:
f
(ξ
0

) := f (ξ), and for ξ1 > 0, the function λx . f

(
x ξ1 . . . ξn

0 α1 . . . αn

)
is the ordering
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function of the set {β ∈ � : ∀ξ < ξ1∀α0 < α1[ f

(
β ξ ξ2 . . . ξn

α0 α1 α2 . . . αn

)
= β]}. In this

subsection we will locate the values φ0 A within the Bachmann hierarchy, i.e., we

will prove φ0

(
β ξ0 . . . ξn

0 1+α0 . . . 1+αn

)
= φ�αn ξn+···+�α0 ξ0(β).

Lemma 2.6 Assume α =NF γ +�δ1ξ1 with δ1 < �.

(a) ξ < ξ1 ⇒ γ +�δ1ξ + 1� γ +�δ1(ξ+1) � α.
(b) ξ < ξ1 & δ0 < δ1 ⇒ γ +�δ1ξ +�δ0+1 � α.
(c) β ∈ Rα ⇔ ∀ξ < ξ1[φγ+�δ1 ξ(β) = β & ∀δ0 < δ1(φγ+�δ1 ξ+�δ0β(0) = β) ].
Proof
(a) Let α̂ := γ +�δ1+1, η := −1+ (ξ + 1), and η1 := −1+ ξ1. Then α̂[η] = γ +
�δ1(ξ+1), α̂[η1] = γ +�δ1ξ1 = α, and η ≤ η1 < τα̂. Hence γ +�δ1(ξ+1) � α by
Lemma2.3b. For the first inequality one needs the following auxiliary lemma (to be
proved by induction on δ1): �δ1 |γ1 ⇒ γ1 + 1� γ1 +�δ1 .

(b) γ +�δ1ξ +�δ0+1 (∗)� γ +�δ1ξ +�δ1 = γ +�δ1(ξ+1) (a)� γ +�δ1ξ1=α.

(∗) Let γ1 := γ +�δ1ξ. We have δ1 = δ + n with (δ0 < δ ∈ Lim or δ = δ0 + 1).

Further, γ1 +�δ0+1 � γ1 +�δ � γ1 +�δ+1 � · · · � γ1 +�δ+n .

(c) We have to show:
β ∈ Rα ⇔ ∀ξ < ξ1[β ∈ Rγ+�δ1 ξ+1 & ∀δ0 < δ1(β ∈ Rγ+�δ1 ξ+�δ0+1) ].
“⇒”: Cf. Lemma2.4a and (a), (b).
“⇐”: We distinguish the following cases:
1. ξ1 ∈ Lim: β ∈ ⋂

ξ<ξ1
Rγ+�δ1 (1+ξ) = Rα.

2. ξ1 = ξ0+1:
2.1. δ1 = 0: Then β ∈ Rγ+�δ1 ξ0+1 = Rα.
2.2. δ1 = δ0+1: β ∈ Rγ+�δ1 ξ0+�δ0+1 = Rα.
2.3. δ1 ∈ Lim: Since δ1 < �, we then have τα = δ1 and α[ξ] = γ +�δ1ξ0 +�1+ξ .

From ∀ξ < δ1(β ∈ Rγ+�δ1 ξ0+�ξ+1)we get β ∈ ⋂
ξ<τα

Rα[ξ+1]
2.5a⊆ ⋂

ξ<τα
Rα[ξ] = Rα.

Definition Due to the fact that every ordinal can be uniquely represented in the
form �α+ β with β < � it is possible to code the binary function (α,β) �→ φα(β)

(α ≤ �, β < �) into a unary one by φ〈�α+ β〉 := φα(β) (α ≤ �, β < �).
Using φ〈·〉, the values of the Klammersymbols can be presented in a particularly

nice way (cf. Theorem2.8a below).
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Lemma 2.7 Assume α̃ =NF γ1 +�α1ξ1 with 0 < α1 < �.

(a) λx .φ〈γ1 +�α1ξ1 + x〉 enumerates
Q := {β ∈ � : ∀ξ < ξ1∀α0 < α1[φ〈γ1 +�α1ξ +�α0β〉 = β]}.

(b) If α1 = α0 + 1 then Q = {β ∈ � : ∀ξ < ξ1[φ〈γ1 +�α1ξ +�α0β〉 = β]}.
Proof There are δ1 and γ such that α1 = 1+ δ1 and γ1 = �γ. Let α := γ +�δ1ξ1.
From (the proof of) Lemma2.6c we get

Rα = {β ∈ � : ∀ξ < ξ1[φ〈�γ +�1+δ1ξ + β〉 = β &

∀δ0 < δ1(φ〈�γ +�1+δ1ξ +�1+δ0β〉 = β) ]}
= {β ∈ � : ∀ξ < ξ1∀α0 < α1[φ〈γ1 +�α1ξ +�α0β〉 = β]}, and

Rα = {β ∈ � : ∀ξ < ξ1[φ〈γ1 +�α1ξ +�α0β〉 = β]}, ifα1 = α0+1.

On the other side, λx .φ〈γ1 +�α1ξ1 + x〉 = λx .φ〈�α+ x〉 enumerates Rα.

Theorem 2.8 For α0 < · · · < αn < � and ξ0, . . . , ξn < �:

(a) φ0

(
ξ0 . . . ξn

α0 . . . αn

)
= φ〈�αn ξn + · · · +�α0ξ0〉.

(b) φ0

(
β ξ0 . . . ξn

0 1+α0 . . . 1+αn

)
= φ�αn ξn+···+�α0 ξ0(β).

Proof
(a) W.l.o.g. α0 = 0.

1. n = 0: φ〈�0ξ0〉 = φ〈�·0+ ξ0〉 = φ0(ξ0) = φ0

(
ξ0
0

)
.

2. n > 0: W.l.o.g. ξ1 > 0.

By Lemma2.7a, λx .φ〈�αn ξn + · · · +�α1ξ1 + x〉 is the ordering function of {β ∈
� : ∀ξ < ξ1∀α0 < α1[φ〈�αn ξn + · · · +�α1ξ +�α0β〉 = β]}.

Combining this with the above given definition of φ0 A (for Klammersymbols A)
the assertion is established by induction on �αn ξn + · · · +�α0ξ0.

(b) φ0

(
β ξ0 . . . ξn

0 1+α0 . . . 1+αn

)
(a)= φ〈�1+αn ξn + · · · +�1+α0ξ0 +�0β〉 =

= φ〈�·(�αn ξn + · · · +�α0ξ0)+ β〉.
Lemma 2.9 For ξ0, . . . , ξn < � let ϕn+1(ξn, . . . , ξ0) := φ〈�nξn + · · · +�0ξ0〉.
Then the following holds:

(i) ϕn+1(0, . . . , 0,β) = φ0(β).

(ii) If 0 < k ≤ n and ξk > 0, then λx .ϕn+1(ξn, . . . , ξk, 0, . . . , 0, x) enumerates
{β ∈ � : ∀ξ < ξk(ϕ

n+1(ξn, . . . , ξk+1, ξ,β, 0, . . . , 0) = β)}.
Proof of (ii):
By definition, ϕn+1(ξn, . . . , ξk, �0, x) = φ〈γ +�kξk +�0x〉 with
γ := �nξn + · · · +�k+1ξk+1.
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Therefore by Lemma2.7a, b, λx .ϕn+1(ξn, . . . , ξk, �0, x) enumerates
{β ∈ � : ∀ξ < ξk[φ〈γ +�kξ +�k−1β〉 = β]}.
Note
ϕn+1 (n ≥ 1) is known as the n+1-ary Veblen function.
Usually it is defined by (i), (ii).

3 Characterization of φα via Kα

In [15] the Bachmann hierarchy (φα) restricted to α < ε�+1 is studied, and thereby,
as a technical tool, the sets C(α) and ND(α) (of constituents and nondistinguished
constituents of α) are defined. From Lemmata4.1, 4.2 and Theorems 3.1, 3.3 of this
paper one can derive the following interesting result which provides an alternative
definition of the Bachmann hierarchy not referring to fundamental sequences:

Rα = {γ ∈ R0 : C(α) ≤ γ & ND(α) < γ &
∀ξ < α(C(ξ) < γ ⇒ φξ(γ) = γ)} (α < ε�+1).

(G)

In the following we will directly prove an analogue of (G), namely Theorem3.4, and
then exemplarily derive Gerber’s Theorems5.1, 4.3 (our Lemmas3.7, 3.8) from that.

Definition of Kα for α ≤ �

1. Kα :=
⎧
⎨

⎩

∅ if α ∈ {0,�},
{α} if α ∈ Lim ∩�,

Kα0 if α = α0+1 < �.

2. � < α =NF γ +�βη /∈ ran(F0): Kα := Kγ ∪ Kβ ∪ Kη.

3. � < α =NF Fξ(η) < �: Kα := K ′ξ ∪ Kη with K ′ξ :=
{∅ if ξ = 0,
{ω} ∪ K ξ if ξ > 0.

4. K� := {ω}.
Remark K (α0+1) = Kα0.

Lemma 3.1 λ ∈ Lim & 1 ≤ ξ ≤ τλ ⇒ Kλ[ξ] = Kλ[1] ∪ K ξ.

Proof

1. λ =NF γ +�βη /∈ ran(F0):
1.1. η ∈ Lim: τλ = η and λ[ξ] = γ +�β(1+ξ).

ξ ≤ η ⇒ Kλ[ξ] = Kγ ∪ Kβ ∪ K ξ.
1.2. η = η0+1: τλ = τ�β and λ[ξ] = γ +�βη0 +�β[ξ].

Kλ[ξ] = Kγ ∪ K (�βη0) ∪ K (�β[ξ]) IH= Kγ ∪ K (�βη0) ∪ K (�β[1]) ∪
K ξ.

2. λ =NF Fα(β):
2.1. β ∈ Lim: Then by Lemma2.1, λ[ξ] =NF Fα(β[ξ]) and thus Kλ[ξ] = K ′α ∪

K (β[ξ]) IH= K ′α ∪ Kβ[1] ∪ K ξ = Kλ[1] ∪ K ξ.
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2.2. β /∈ Lim: Then Kλ− =
{

K ′α ∪ Kβ if β = β0+1 & β0 < Fα(β0),

Kβ otherwise.
Hence Kλ = K ′α ∪ Kβ = K ′α ∪ Kλ−.

2.2.0. α = 0: Then λ = �β0+1, τλ = � and λ[ξ] = �β0(1+ξ).
Hence Kλ[ξ] = Kβ0 ∪ K ξ.

2.2.1. α = α0+1: Then τλ = ω and, for ξ < ω, Kλ[ξ] = K (F (ξ+1)
α0

(λ−)) = K ′α ∪
Kλ− and K ξ = ∅.
Further Kλ[ω] = Kλ = K ′α ∪ Kλ− = K ′α ∪ Kλ− ∪ Kω.

2.2.2. α ∈ Lim: For ξ < τλ = τα we have Kλ[ξ] = K Fα[ξ](λ−) = Kα[ξ] ∪ {ω} ∪
Kλ− IH= Kα[1] ∪ {ω} ∪ Kλ− ∪ K ξ.

Further Kλ = Kα ∪ {ω} ∪ Kλ− IH= Kα[1] ∪ {ω} ∪ Kλ− ∪ K τα.
3. λ = �: For 1 ≤ ξ ≤ ω we have K�[ξ] = {ω}, whence K�[ξ] = K�[1] ∪

K ξ.

Lemma 3.2

(a) α ∈ Lim & α[ξ] ≤ δ ≤ α[ξ+1] ⇒ Kα[ξ] ⊆ K δ.
(b) δ < α & K δ < ξ ∈ Lim ∩ τα ⇒ δ < α[ξ].
Proof

(a) Induction on δ:

1. δ = α[ξ]: trivial.
2. δ = δ0 + 1 with α[ξ] ≤ δ0: Then Kα[ξ] IH⊆ K δ0 = K δ.

3. α[ξ] < δ ∈ Lim: Then, by Lemma2.2d, α[ξ] ≤ δ[1]. Hence Kα[ξ] IH⊆ K δ[1]
3.1⊆ K δ.

(b) Assume α[0] ≤ δ. Then by Lemma2.2a, b, c there exists ζ < τα such that
α[ζ] ≤ δ < α[ζ+1]. By (a) and Lemma3.1 we get K ζ ⊆ Kα[ζ] ⊆ K δ < ξ ∈
Lim. Hence δ < α[ζ+1] < α[ξ].

Definition
k(α) := max(Kα ∪ {0}). k+(α) := max{k(α[1])+1, k(α)}.
Lemma 3.3

(a) k(α) ≤ k+(α) ≤ k(α)+1;
(b) k+(α+1) = k(α)+ 1;
(c) k+(α) ≤ φα(0).

Proof

(a) By Lemma3.1, k(α) = max{k(α[1]), k(τα)} and thus
k+(α) = max{k(α[1])+ 1, k(τα)} (∗).

(b) k+(α+1) = max{k(α)+1, k(α+1)} = k(α)+1.
(c) Induction on α:

1. k+(0) = 1 ≤ φ0(0).
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2. α > 0: By IH and Lemma2.5e, k(α[1]) ≤ φα[1](0) < φα(0). By Lemma2.5b,

k(τα) ≤ φα(0). Hence k+(α)
(∗)= max{k(α[1])+ 1, k(τα)} ≤ φα(0).

Theorem 3.4 Rα = {β ∈ R0 : k+(α) ≤ β & ∀ξ < α(K ξ < β ⇒ φξ(β) = β)}.
Proof “⊆”: Assume β ∈ Rα. By Lemmata2.4a, 3.3a, c we get k+(α) ≤ β ∈ R0. The
second part is proved by induction on α. So let δ < α & K δ < β ∈ Rα.

1. α = δ + 1: β ∈ Rδ+1 implies φδ(β)=β.
2. α = α0 + 1 & δ < α0: From δ < α0 & K δ < β ∈ Rα ⊆ Rα0 we obtainφδ(β) =

β by IH.
3. α ∈ Lim & τα < �: Then β ∈ ⋂

ξ<τα
Rα[ξ] and δ < α. From this we get ∃ξ <

τα(β ∈ Rα[ξ] & δ < α[ξ]) and then φδ(β) = β by IH.
4. τα = �: By Lemmata2.4c, 2.5c we get β ∈ Lim ∩ Rα[β]. From δ < α and K δ <

β ∈ Lim ∩ τα we get δ < α[β] by Lemma3.2b. Now we have β ∈ Rα[β] and
δ < α[β] < α & K δ < β which by IH yields φδ(β) = β.

“⊇”: Assume (1) k+(α) ≤ β ∈ R0, and (2) ∀δ < α(K δ < β ⇒ β ∈ Rδ+1). From
k+(α) ≤ β we get (3) Kα[1] < β.

1. α = 0: trivial.
2. α = α0+1: From α0 < α & Kα0 = Kα[1] < β by (2) we obtain β ∈ Rα0+1 =

Rα.
3. α ∈ Lim & τα < �: By Lemma3.1 and (1) we have τα ≤ k(α) ≤ β. From 0 <

ξ < τα ≤ β by Lemma3.1 and (3) we conclude α[ξ] < α & Kα[ξ] ⊆ Kα[1] ∪
K ξ < β, and then by (2), β ∈ Rα[ξ]+1. Hence β ∈ ⋂

ξ<τα
Rα[ξ] = Rα.

4. τα = �: From 0 < α & K0 = ∅ < β by (2) we get β ∈ R1, thence β ∈ Lim.
Similarly as above we obtain β ∈ ⋂

ξ<β Rα[ξ]. Hence β ∈ Rα.

The Fixed-point-free Functions φα

Definition
φα(β) := φα(β + ι̃αβ) where

ι̃αβ :=
{
1 if β = β0 + n with φα(β0) ∈ Kα ∪ {β0},
0 otherwise.

Rα := ran(φα).

Notation. From now on we mostly write φαβ, φαβ for φα(β), φα(β).

Theorem 3.5

(a) φα is order preserving.
(b) Rα = {φαβ : Kα ∪ {β} < φαβ} = {γ ∈ Rα \ Rα+1 : Kα < γ}.
(c) φαβ = min{γ ∈ Rα : ∀η < β(φαη < γ) & Kα ∪ {β} < γ}.
Proof

(a) If β1 < β2 then β1 + ι̃αβ1 < β2 or β1 + ι̃αβ1 = β2.
In the latter case ι̃αβ2 = ι̃αβ1 = 1.
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(b) The first equation follows immediately from the definition, since k(α) ≤ φα0
and η+1 < φα(η+1) for all η < �. The second equation follows from the first,
since φαβ ∈ Rα+1 ⇔ β = φαβ.

(c) Let X := {γ ∈ Rα : ∀η < β(φαη < γ) & Kα ∪ {β} < γ}. By (a) and (b) we
have φαβ ∈ X . It remains to prove ∀γ ∈ X (φαβ ≤ γ). So let γ ∈ X , i.e. γ =
φαδ with ∀η < β(φα(η + ι̃αη) < φαδ) & Kα ∪ {β} < φαδ (∗).

To prove: φαβ ≤ φαδ, i.e. β + ι̃αβ ≤ δ.
From ∀η < β(φα(η + ι̃αη) < φαδ) we get β ≤ δ. Therefore if β < δ or ι̃αβ =

0, we are done.
Assume now β = δ & ι̃αβ = 1. Then δ = β = β0 + n with φαβ0 ∈ Kα ∪ {β0}.

1. 0 < n: Then η := β0 + (n−1) < β = η + 1 and therefore β = η + ι̃αη
(∗)
<

δ = β. Contradiction.

2. n = 0: Then φαβ ∈ Kα ∪ {β} (∗)
< φαδ = φαβ. Contradiction.

Corollary 3.6

(a) ξ < α & K ξ ∪ {η} < φαβ ⇒ φξη < φαβ.
(b) Kα ∪ {β} < φαβ.

Proof

(a) ξ < α & K ξ ∪ {η} < φαβ ∈ Rα ⇒ φξη ≤ φξ(η+1) < φξφαβ
3.4= φαβ.

(b) follows immediately from Theorem3.5c.

Lemma 3.7 Let γi = φαiβi (i = 1, 2).

(a) γ1 < γ2 if, and only if, one of the following holds:

(i) α1 < α2 & Kα1 ∪ {β1} < γ2;
(ii) α1 = α2 & β1 < β2;

(iii) α2 < α1 & γ1 ≤ Kα2 ∪ {β2}.
(b) γ1 = γ2 ⇒ α1 = α2 & β1 = β2.

Proof
(a) Let Q(α1,β1,α2,β2) :≡ (i) ∨ (ii) ∨ (iii).

To prove: γ1 < γ2 ⇔ Q(α1,β1,α2,β2).
From Theorem3.5a and Corollary3.6 we get the implications

(1) Q(α1,β1,α2,β2) ⇒ γ1 < γ2 and (2) Q(α2,β2,α1,β1) ⇒ γ2 < γ1.
Obviously,

(3) ¬Q(α1,β1,α2,β2) ⇒ Q(α2,β2,α1,β2) ∨ (α1 = α2 & β1 = β2).
From (2) and (3) we get: ¬Q(α1,β1,α2,β2) ⇒ ¬(γ1 < γ2).

(b) Proof by contradiction. Assume γ1 = γ2 & α1 < α2. Then by Corollary2.6b we
have α1 < α2 & Kα1 ∪ {β1} < γ1 = γ2. Hence γ1 < γ2 by Corollary 2.6a.

Lemma 3.8 For each γ ∈ R0 ∩ φ�(0) there exists α < � such that γ ∈ Rα.
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Proof
Assume ω < γ. Then K� < γ /∈ R�. Let α1 be the least ordinal such that Kα1 <

γ /∈ Rα1 . Then by Theorem3.4 there exists α < α1 such that Kα < γ /∈ Rα+1. By
minimality of α1 we get γ ∈ Rα. Hence γ ∈ Rα by Theorem3.5b.

The following will prove useful in Sect. 5.

Theorem 3.9 Let φ〈�α+ β〉 := φαβ (α ≤ �, β < �). Then for all α < �+�,
φ〈α〉 = min{γ ∈ R0 : ∀ξ < α(K ξ < γ ⇒ φ〈ξ〉 < γ) & Kα < γ}.
Proof

φ〈�α+ β〉 = φαβ
3.5c=

min{γ ∈ Rα : ∀η < β(φαη < γ) & Kα ∪ {β} < γ} 3.4=
min{γ ∈ R0 : ∀ξ < α∀η(K ξ ∪ {η} < γ ⇒ φξη < γ) &

∀η < β(φαη < γ) & Kα ∪ {β} < γ} (∗)=
min{γ ∈ R0 : ∀ξ < α∀η(K ξ ∪ Kη < γ ⇒ φ〈�ξ + η〉 < γ) &

∀η < β(Kα ∪ Kη < γ ⇒ φ〈�α+ η〉 < γ) & Kα ∪ Kβ < γ} =
min{γ ∈ R0 : ∀ζ < �α+β(K ζ < γ ⇒ φ〈ζ〉 < γ) & K (�α+ β) < γ}.
(∗) For α = β = 0 the equation is trivial. Otherwise it follows from the fact that for
1 < γ ∈ R0 we have ∀η < �(Kη < γ ⇔ η < γ).

4 Comparison of φα,φα with θα,θα

In this sectionwewill compare theBachmann functionsφα withFeferman’s functions
θα. Wewill prove that φαβ = θα(α̂+ β) for allα ≤ �, β < �, where α̂ := min{η :
k+(α) ≤ θαη}. This result is already stated in [1], Theorem 31 and, for α < ε�+1,
proved in [23].

Before we can turn to the proper subject of this section we have to do some
elementary ordinal arithmetic.

Definition E�(α) =
⎧
⎨

⎩

∅ if α ∈ {0,�},
{α} if α ∈ E \ {�},⋃

i≤n E�(αi ) if α = ωα0 # · · · # ωαn /∈ E.

Definition A set C ⊆ On is nice iff
0 ∈ C & ∀n∀α0, . . . ,αn(ω

α0# · · · #ωαn ∈ C ⇔ {α0, . . . ,αn} ⊆ C).

Lemma 4.1

(a) E�(�+ α) = E�(�·α) = E�(�
α) = E�(α).

(b) α =NF γ +�βη ⇒ E�(α) = E�(γ) ∪ E�(β) ∪ E�(η).
(c) If C is nice and � ∈ C then ∀α(α ∈ C ⇔ E�(α) ⊆ C).

1Actually Aczel’s Theorem 3 looks somewhat different, but it implies the above formulated result.
A proof of Theorem 3 can be extracted from the proof of Theorem 3.5 in [5].
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(d) α < ε�+1 & δ ∈ E ⇒ (E�(α) < δ ⇔ Kα < δ).

Proof
(a) Let α = ωα0 + · · · + ωαn with α1 ≥ · · · ≥ αn .

1. E�(�+ α) =
{

E�(α) if � < α0,

E�(�) ∪ E�(α) if � ≥ α0.

2. E�(�·α) = E�(ω
�+α0 + · · · + ω�+αn ) = ⋃

i≤n E�(�+ αi )
1.=⋃

i≤n E�(αi ) =
E�(α).

3. E�(�
α) = E�(ω

�·α) = E�(� · α)
2.= E�(α).

(b) Let η = ωη0 + · · · + ωηm with η0 ≥ · · · ≥ ηm .
Then �βη = ω�·β · (ωη0 + · · · + ωηm ) = ω�β+η0 + · · · + ω�β+ηm .
Hence E�(�

βη) = ⋃
i≤m E�(�β + η0) = ⋃

i≤m(E�(β) ∪ E�(ηi )) = E�(β) ∪⋃
i≤m E�(ηi ) = E�(β) ∪ E�(η).

(c) 1. α ∈ {0,�}: E�(α) = ∅ ⊆ C and α ∈ C .
2. α ∈ E: E�(α) = {α}.
3. α = ωα0 # · · · # ωαn /∈ E: E�(α) = E�(α0) ∪ · · · ∪ E�(αn) and therefore:

E�(α) ⊆ C ⇔ ∀i ≤ n(E�(αi ) ⊆ C)
IH⇔ ∀i ≤ n(αi ∈ C)

Cnice⇔ α ∈ C .

(d) 1. α ∈ {0,�}: E�(α) = ∅ = Kα.
2. α < �: E�(α) < δ ⇔ α < δ ⇔ Kα < δ.

3.� < α =NF γ +�βη: E�(α) < δ
(b)⇔ E�(γ) ∪ E�(β) ∪ E�(η) < δ

IH⇔ Kγ ∪ Kβ ∪
Kη < δ ⇔ Kα < δ.

Basic Properties of the Functions θα

The functions θα : On → On and sets C(α,β) ⊆ On are defined simultaneously by
recursion on α (cf. [5], p. 174, [7], p. 6, [20], p. 225). Instead of giving this definition
we present a list of basic properties which are sufficient for proving Theorems4.6,
4.7 below.—Notation: θαβ := θα(β).

(θ1) θα : On → On is a normal function and Inα := ran(θα).

(θ2) (i) In0 = H,
(ii) Inα+1 = {β ∈ Inα : α ∈ C(α,β) ⇒ β = θαβ},
(iii) Inα = ⋂

ξ<α Inξ if α ∈ Lim.
(θ3) θα� = �.
(θ4) Inα ∩� = {β ∈ � : C(α,β) ∩� ⊆ β}.
(θ5) {0} ∪ β ⊆ C(α,β), and if α > 0 then C(α,β) is nice and � ∈ C(α,β).
(θ6) ξ < α ≤ � & � < η < θξη ⇒ (ξ, η ∈ C(α,β) ⇔ θξη ∈ C(α,β)).

Remark (θ4)–(θ6) are only needed for the proof of Lemma4.3c (via Lemmas4.2
and 4.3a, b). Having established Lemma4.3c we will make use only of (θ1)–(θ3)
with (θ2ii) replaced by Lemma4.3c.
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Lemma 4.2

(a) α < θα(�+1) & � ≤ β ⇒ (β ∈ Inα+1 ⇔ β = θαβ).
(b) 0 < α ≤ � ⇒ Fα(β) = θα(�+ 1+ β).

Proof
(a) “⇐”: immediate consequence of (θ2i i) (and (θ1)).
“⇒”: Assume β ∈ Inα and (α ∈ C(α,β) ⇒ β = θαβ). For β = � the claim fol-
lows directly from (θ3). Otherwise:

θα�
(θ3)= � < β ∈ Inα ⇒ θα(�+1) ≤ β ⇒ α < β

(θ5)⇒ α ∈ C(α,β) ⇒ β= θαβ.

(b) Let J := {β : � < β}. We prove ran(Fα) = Inα ∩ J which is equivalent to the
claim ∀β(Fα(β) = θα(�+ 1+ β)).

The proof proceeds by induction on α.

1. α = 1: ran(F1) = {β : β = �β} = {β : � < β = ωβ} (θ2)= In1 ∩ J .

2. α = α0+1 with 1 ≤ α0: ran(Fα) = {β : β = Fα0(β)} IH=
{β : β = θα0(�+1+β)} = {β : � < β = θα0β} (∗)= Inα ∩ J .

(∗) α0<� ⇒ α0<Fα0(0)
IH= θα0(�+1) (a)⇒ ∀β > �(β = θα0β ⇔ β ∈ Inα).

3. α ∈ Lim: ran(Fα) = ⋂
ξ<α ran(Fξ)

IH= ⋂
ξ<α Inξ ∩ J

(θ2iii)= Inα ∩ J .

Lemma 4.3 For α < � we have:

(a) ξ < α & η < Fξ(η) < � ⇒ (ξ, η ∈ C(α,β) ⇔ Fξ(η) ∈ C(α,β)).
(b) ∀δ ≤ α(δ ∈ C(α,β) ⇔ K δ ⊆ C(α,β)).
(c) Inα+1 = {β ∈ Inα : Kα < β ⇒ β = θαβ}.
Proof
(a) For ξ = 0 the claim follows from Lemma4.1a, c and (θ5).
Assume now ξ > 0 and let γ := Fξ(η).
Then ξ, η1 < γ = θξη1 with η1 := �+1+η.
By (θ5) and Lemma4.1a, c we have (η ∈ C(α,β) ⇔ η1 ∈ C(α,β)).

Hence: ξ, η ∈ C(α,β) ⇔ ξ, η1 ∈ C(α,β)
(θ6)⇔ γ ∈ C(α,β).

(b) Induction on δ: Assume δ ≤ α, and let C := C(α,β).

1. δ ∈ {0,�}: δ ∈ C & K δ = ∅.
2. δ = δ0+1: δ ∈ C ⇔ δ0 ∈ C , and K δ = K δ0.
3. δ ∈ Lim ∩�: K δ = {δ}.
4. δ =NF γ +�βη /∈ ran(F0): δ ∈ C

4.1c⇔ E�(δ) ⊆ C
4.1b⇔ E�(γ) ∪ E�(β) ∪ E�(η) ⊆

C
4.1c⇔ γ,β, η ∈ C

IH⇔ Kγ ∪ Kβ ∪ Kη ⊆ C ⇔ K δ ⊆ C .

5. δ =NF Fξη: δ ∈ C
(a)⇔ ξ, η ∈ C

IH⇔ K ξ ∪ Kη ⊆ C
(∗)⇔ K δ ⊆ C .

(∗) ω = θ01 ∈ C .
(c) follows from (θ2ii), (θ4), (b) and the fact that Kα ⊆ �.
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Theorem 4.4 α ≤ � ⇒ Inα = {β ∈ H : ∀ξ < α(K ξ < β ⇒ θξβ = β)}.
Proof by induction on α

1. α = 0: By (θ2i) we have In0 = H.

2. α = α0+1: Inα
4.3c= {β ∈ Inα0 : Kα0 < β ⇒ β = θα0β} IH=

{β ∈ H : ∀ξ < α0(K ξ < β ⇒ β = θξβ) & (Kα0 < β ⇒ β = θα0β)}.
3. α ∈ Lim: Then, by (θ2iii), Inα = ⋂

ξ<α Inξ and the assertion follows immediately
from the IH.

Definition α̂ := min{η : k+(α) ≤ θαη}.
Lemma 4.5 α ≤ � & Kα < θαβ ⇒ (θα(α̂+ β) = β ⇔ θαβ = β).

Proof
“⇒”: This follows from β ≤ θαβ ≤ θα(α̂+ β).
“⇐”: If Kα < β = θαβ then α̂ ≤ k+(α) ≤ k(α)+1 < β ∈ H and thus α̂+ β = β.

Theorem 4.6 If α ≤ �, then Rα = {γ ∈ � : k+(α) ≤ γ ∈ Inα},
and thus ∀β < �(φαβ = θα(α̂+ β)).

Proof by induction on α:
For β < � we have:

β ∈ Rα
3.4⇔ k+(α) ≤ β ∈ H & ∀ξ < α(K ξ < β ⇒ φξβ = β)

I H+4.5⇔ k+(α)

≤ β ∈ H & ∀ξ < α(K ξ < β ⇒ θξβ = β)
4.4⇔ k+(α) ≤ β ∈ Inα.

The Functions θα

In [7] the fixed-point-free functions θα are introduced, which are more suitable for
proof-theoretic applications than the θα’s. By definition, θα is the <-isomorphism
from {η ∈ On : Sμ(α) ≤ η} onto Inα where Inα := Inα \ Inα+1, μ(α) := min{η :
θαη ∈ Inα}, Sμ(α) := min{�ξ : μ(α) < �ξ+1} where �0 := 0.

As we will show in a moment, Sμ(α) = 0 for all α < �, and therefore, if α < �

then θα is the ordering function of Inα. On the other side, by Theorem3.5, φα is
the ordering function of Rα = {γ ∈ Rα \ Rα+1 : Kα < γ}. Using Theorem4.6 one
easily sees that Rα = Inα ∩�. So we arrive at the following theorem.

Theorem 4.7 φαβ = θαβ for all α < �, β < �.

Proof
I. Fromα < �byLemma4.3c and (θ3)weobtain∀β ∈ �(k(α) ≤ β ⇒ θα(β+1) ∈
Inα ∩�). Hence Sμ(α) = 0, and Inα ∩� is unbounded in�. This implies that θα��
is the ordering function of Inα ∩�.
II. As mentioned above, φα is the ordering function of Rα. So it remains to prove
that Rα = Inα ∩�. First note that

(1) k+(α) ≤ k(α)+1 = k+(α+1) and (2) ∀γ ∈ Inα(k(α) < γ) (by Lemma4.3c).

Then for γ < � we get: γ ∈ Rα ⇔ k(α) < γ ∈ Rα & γ /∈ Rα+1
4.6.(1)⇔ k(α)

< γ ∈ Inα & (k(α) < γ ⇒ γ /∈ Inα+1)
(2)⇔ γ ∈ Inα.
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5 The Unary Functions ϑX and ψX

As we have seen above, θα is the ordering function of Inα = Inα \ Inα+1 (if α < �).
From this together with (θ2i i) and (θ4) one easily derives the following equation
(1) θα0 = min{β : C(α,β) ∩� ⊆ β & α ∈ C(α,β)}
which motivates the definition of ϑα in [18]:
(2) ϑα := min{β : C̃(α,β) ∩� ⊆ β & α ∈ C̃(α,β)} (α < ε�+1)
where C̃(α,β) is the closure of {0,�} ∪ β under +, λξ.ωξ and ϑ�α.
On the other side, by Theorems4.7, 3.9 we have:
(3) θα0 = φ〈�α〉 = min{β ∈ H : ∀ξ < �α(K ξ < β ⇒ φ〈ξ〉 < β) & Kα < β}.

In the light of (1)–(3) the following theorem suggests itself.

Theorem 5.1
α < ε�+1 ⇒ ϑα = min{β ∈ E : ∀ξ < α(K ξ < β ⇒ ϑξ < β)& Kα < β}.
Proof
I. From [18], Lemma2.1 and 2.2(1)–(4) we obtain
ϑα ∈ E& ∀ξ < α(E�(ξ) < ϑα ⇒ ϑξ < ϑα)& E�(α) < ϑα.
II. Assume β ∈ E & ∀ξ < α(E�(ξ) < β ⇒ ϑξ < β) & E�(α) < β.
We will prove that ϑα ≤ β.

For this let Q := {γ : E�(γ) ⊆ β}. Sinceβ ∈ E,wehave Q ⊆ β.Moreover, as one
easily sees, {0,�} ⊆ Q and Q is closed under+, λξ.ωξ and ϑ�α. Hence C̃(α,β) ⊆
Q and thus C̃(α,β) ∩� ⊆ Q ∩� ⊆ β. It remains to show that α ∈ C̃(α,β). But
this follows immediately from E�(α) ⊆ β ⊆ C̃(α,β) and [18, 1.2(4)].

From I. and II. we get
ϑα = min{β ∈ E : ∀ξ < α(E�(ξ) < β ⇒ ϑξ < β)& E�(α) < β},
which together with Lemma4.1 d yields the claim.

Relativization
Comparing the recursion equations for ϑα and φ〈α〉 in Theorems5.1, 3.9 one notices
that these equations are almost identical. The only difference is that in the equa-
tion for ϑα there appears E where in the equation for φ〈α〉 we have R0 (i.e.
H). In order to establish the exact relationship between ϑ and φ we go back to
the definition of the Bachmann hierarchy in Sect. 2 and replace the initial clause
“R0 := H ∩�” of this definition by “R0 := X ∩�” where here and in the sequel X
always denotes a subclass of {1} ∪ Lim such that X ∩� is �-club. Then the whole
of Sects. 2, 3 remains valid as it stands. To make the dependency on X visible we
write RX

α , RX

α ,φX

α ,φX

α ,φX〈α〉,φX〈α〉 instead of Rα, Rα, . . ..

Remark
Theorems5.1, 3.9 yield ϑα = φE〈α〉 and ϑ(�α+ β) = φE

α(β) (α < ε�+1, β < �)
The previous explanations motivate the following definition.
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Definition
ϑXα := min{β ∈ X : ∀ξ < α(K ξ < β ⇒ ϑXξ < β)& Kα < β} (α ≤ �).

Theorem5.1 now reads: ϑα = ϑEα for α < ε�+1.
Further, by Theorem3.9 we have

(ϑ0) ϑX(�α+ β) = φX

α(β), if β < �.

Therefore, properties of ϑX can be proved by deriving them from corresponding
properties of φ. But for various reasons it is also advisable to work directly from the
above definition.

Let us first mention that for β < � the set {ξ < α : K ξ < β} is countable too,
and therefore ϑXα < �. Moreover, directly from the definition of ϑX we obtain:

(ϑ1) Kα < ϑXα ∈ X,
(ϑ2) α0 < α & Kα0 < ϑXα ⇒ ϑXα0 < ϑXα,
(ϑ3) β ∈ X & Kα < β < ϑXα ⇒ ∃ξ < α(K ξ < β ≤ ϑXξ),

and then

(ϑ4) ϑXα0 = ϑXα1 ⇒ α0 = α1 [from (ϑ1), (ϑ2)],
(ϑ5) β ∈ X & β < ϑX� ⇒ ∃ξ < �(β = ϑXξ).

Proof of (ϑ5): If β ≤ ω then β ∈ {ϑ0,ϑ1}. Otherwise we have K� < β < ϑX�, and
the assertion follows by transfinite induction from (ϑ3).

Note on Klammersymbols. As we mentioned above, Sects. 2, 3 remain valid if

φ is replaced by φX. So by Theorem2.8, for A =
(

ξ0 . . . ξn

α0 . . . αn

)
and α = �αn ξn +

· · · +�α0ξ0 we have φX

0 A = φX〈α〉 fromwhich one easily derives φX

0 A = φX〈α〉 ,2
whence (by Theorem3.9) φX

0 A = ϑXα. Via Theorem5.1 this fits together with

Schütte’s result φE

0 A = ϑα in [21].

The Function ψX

In [9] (actually already in [8]) the author introduced the functions ψσ : On → �σ+1
and proved, via an ordinal analysis of IDν , that ψ0ε�ν+1 = θε�ν+1(0). In [12] ordinal
analyses of several impredicative subsystems of 2nd order arithmetic are carried out
by means of the ψσ’s. The definition of ψσ in [12] differs in some minor respects
from that in [9]; for example, λξ.ωξ is a basic function in [12] but not in [9]. In
[18] Rathjen and Weiermann compare their ϑ with ψ0�ε�+1 from [12] which they
abbreviate by ψ. In Sect. 6 we will present a refinement of this comparison which
is based on Schütte’s definition of the Veblen function ϕ (below �0) in terms of ψ,
given in Sect. 7 of [12].

Similarly as Theorem5.1 one can prove

ψα = min{β ∈ E : ∀ξ < α(K ξ < β ⇒ ψξ < β)}, for α < ε�+1.

2 ϕA is the ‘fixed-point-free version’ of ϕA defined in [19, Sect. 4].


