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Preface

This book is devoted to a study of the oscillation theory of nonautonomous linear
Hamiltonian differential systems and that of a spectral theory which is adapted to
such systems. Systematic use will be made of basic facts concerning Lagrange
subspaces of R

2n and argument functions on the set of symplectic matrices. We
will also consistently apply some fundamental methods of topological dynamics
and of ergodic theory, including Lyapunov exponents, exponential dichotomies,
and rotation numbers. Further, we will show that our results concerning oscillation
theory can be fruitfully applied to several basic issues in the theory of linear-
quadratic control systems with time-varying coefficients.

Nonautonomous Oscillation Theory

In due course, we will give an outline of the specific problems, methods, and results
to be discussed in the body of the book. Before doing that, it seems appropriate
to collocate them in a priori way in the vast and nonhomogeneous area called
oscillation theory of ordinary differential equations. In fact, the word “oscillation”
has various meanings in this context. For example, it can refer to the study of the
zeroes contained in some interval I � R of a solution of an ordinary differential
equation (ODE). In the case of a two-dimensional ODE, it can refer to the variation
of the polar angle along a solution, i.e., to the “rotation” associated to that solution.
Still again, it may indicate one of the many themes encountered in the study of the
periodic solutions of an ordinary differential equation.

This book is about “rotation.” Let us try to be a bit more precise. We will
focus attention on various issues concerning the solutions of a linear Hamiltonian
differential system

z0 D H.t/ z ; (1)

v
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where z 2 R
2n and t 2 R. The coefficient H.�/ is a bounded measurable real 2n �2n

matrix-valued function satisfying the symplectic condition .JH/T.t/ D JH.t/ for all
t 2 R, where the “T” indicates the transpose and J D �

0n �In
In 0n

�
is the usual 2n � 2n

antisymmetric matrix: In is the n � n identity matrix and 0n the n � n zero matrix.
Generally speaking, we will be interested in the “rotation” of the solutions of (1). Of
course, this notion is initially problematic because it is not immediately clear how
to define it precisely, especially if n � 2. One of our main goals will be to do this. It
will turn out that our concept of rotation is closely related to a more or less standard
notion of a “point of verticality” of a solution of (1), namely, a focal point. It will
also turn out that the concept of rotation considered here can be used to study some
basic questions in spectral theory, which are formulated in terms of equation (1) and
which will be discussed shortly.

Equation (1) is of course very significant. As a special case, one can set z D � x
y
�

for x and y in R
n, and

H.t/ D
�
0n In

G.t/ 0n

�
;

where GT D G is a real symmetric n � n matrix-valued function. Then (1) is
equivalent to the second-order system

x00 D G.t/ x ; (2)

which is often encountered in the study of mechanical systems near an equilibrium.
Another special case is obtained by setting n D 1 and

H.t/ D
"

0 1=p.t/

g.t/� � d.t/ 0

#

for a real parameter �; in this case (1) is equivalent to the classical Sturm–Liouville
problem

� .p x0/0 C g.t/ x D � d.t/ x : (3)

Problem (3) has been studied with success from various points of view for
over 150 years. The number and the location of the zeroes of a solution x.�/ are
a recurring theme. Information concerning these zeroes has implications for the
spectral problem obtained by varying � and by imposing boundary conditions, for
example, of Dirichlet type: x.a/ D x.b/ D 0 where a < b 2 R. Then, as is well
known, if p, g, and d satisfy certain general hypotheses, then the nth eigenfunction
of (3) has n � 1 zeroes in .a; b/, for n D 1; 2; : : :



Preface vii

A more general spectral problem is obtained by using (1) as a point of departure.
One introduces a parameter � 2 R and a positive semidefinite real weight function
� .t/ in (1), so as to obtain

z0 D �
H.t/C � J�1 � .t/

�
z : (4)

This problem was studied systematically by Atkinson in [5]. It is noteworthy that if
� is semidefinite but not everywhere definite, then the study of the boundary-value
problem associated to (4) cannot be naturally carried out using standard functional-
analytic techniques (due to the fact that one cannot multiply (4) by � �1). However,
in [5], one finds an “Atkinson condition” which, when imposed on (4), allows the
development of a satisfactory spectral theory for (4).

Another of our goals is to show that our oscillation theory of (1) can be fruitfully
applied to the spectral problem (4) especially when “the boundary conditions are
imposed at t D ˙1,” i.e., when (4) is considered on the whole line. Let us explain
some of the issues involved in relating oscillation theory and spectral theory in the
context of problem (4). Consider for a moment the version of (3) obtained by setting
p D d � 1:

� x00 C g.t/ x D � x : (5)

This is the Schrödinger equation with potential g.t/ (a most important ordinary
differential equation, due to its basic role in one-dimensional quantum mechanics).
Fix � 2 R, and consider a solution x.t/ of (5), say, that defined by the initial
conditions x.a/ D 0 and x0.a/ D 1. This solution is called nonoscillatory in the
interval .a; b/ if it has no zeroes there; otherwise, it oscillates. There is a simple and
fruitful way to study the presence/absence of zeroes of x.�/ on .a; b/, which is at
the heart of the classical Sturm–Liouville theory. Namely, one introduces the polar

angle �.t/ of the vector
h

x.t/
x0.t/

i
in the two-dimensional phase plane R2. It is clear that

if a < t < b, then x.t/ D 0 if and only if �.t/ D �=2 mod � . Moreover, � 0.t/ < 0

at each zero t of x.t/, so we can determine the number of zeroes of x.�/ in .a; b/ by
studying the evolution of �.�/ there, that is, the “rotation” of x.�/.

This simple observation does not generalize easily to the Hamiltonian system (1).
It is rather straightforward to generalize the concept of zero of x.�/: one sets
z D � x

y
�
, requires that x.t/ D 0, and arrives at the concept of focal point, alias

point of verticality. But it is not easy to extend the concept of polar angle in an
appropriate way; in fact, it seems that this was only done in the 1950s and 1960s.
One way is to introduce argument functions in the symplectic group, as done by
Gel’fand, Lidskii, and Yakubovich. Another is to introduce the Maslov cycle and
the corresponding Maslov index in the manifold of Lagrange subspaces of R

2n.
There is a corresponding angle, as was pointed out by Arnol’d (and by Conley
in a little-known paper), which can be used to develop a Sturm–Liouville-type
theory for (4). Still another method to generalize the Sturm–Liouville theory to
Hamiltonian systems can be based on the polar coordinates of Barret and Reid.
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A point which we will emphasize in this book is that one can study the argument
functions, the index, and the polar coordinates from a dynamical point of view,
more precisely, by using basic tools from topological dynamics and ergodic theory.
One point of arrival in our theory is a quantity called the rotation number and its
“complexification,” the Floquet exponent for system (1). Using these quantities,
we will connect the oscillation theory of (1) with the spectral theory of the
Atkinson problem (4), much as the Sturm–Liouville theory connects the oscillation
of solutions of (3) for each fixed � to the spectral theory of (3).

Let us explain this matter in more detail. Let � � 0 be a real symmetric matrix-
valued function. Consider the boundary-value problem

z0 D �
H.t/C � J�1� .t/

�
z ; z D

�
x
y

�
2 R

2n ;

x.a/ D x.b/ D 0 ;

(6)

where a < b 2 R. In [5] an analytic theory of the eigenvalues and eigenfunctions
of (6) is worked out. Let us first try to extend that theory to the entire real axis: thus
set a D �1 and b D 1. One can expect that this will involve some analogue of
the classical Weyl m-functions m˙.�/ for (3), and in fact there is a rich literature
concerning the “Weyl–Titchmarsh M-matrices” for (6). We will assume that H.�/
and � .�/ are uniformly bounded and will impose a natural “Atkinson condition” on
the solutions of (5). It will then turn out that the dynamical concept of exponential
dichotomy together with the above-mentioned notion of rotation number permits
one to develop a satisfactory spectral theory for (6) with a D �1 and b D 1.
In particular, the introduction of the exponential dichotomy concept permits one to
clarify the dynamical significance of the M-matrices.

To summarize what has been said so far, we will supplement the analytic methods
which have been previously used to study the oscillation theory of (1) and the
spectral theory of (4) with certain geometrical and dynamical techniques. The
geometrical methods derive from the structure of the group of symplectic matrices
and from that of the manifold of Lagrangian subspaces of R2n. Using dynamical
methods, we define the rotation number and the Floquet exponent, which permit
one to count the focal points of (1) and to develop the spectral theory of (4) using
the exponential dichotomy concept.

The use of dynamical methods is made possible by carrying out a construction
named after Bebutov, which we now explain. Begin with linear Hamiltonian
differential system (1): we first view the coefficient function H.�/ as an element of
an appropriate functional space. This will often be the space of bounded continuous
functions eH from R to the Lie algebra of real infinitesimally symplectic matrices
sp.n;R/ D feH 2 M2n�2n.R/ j eHTJ C JeH D 02ng. Next introduce the translation
flow �t by setting �t.eH/.�/ D eH.� C t/ for all t 2 R. If the coefficient H.�/ of (1)
is uniformly continuous, then the closure clsf�t.H/ j t 2 Rg is compact (in the
compact-open topology). Call the closure ˝: it is clearly invariant with respect to
the translation flow. The idea now is to let H vary over ˝; to emphasize that we
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do not deal only with the “original” function H.�/, we write ! to indicate a generic
point of ˝ . Note that each ! 2 ˝ gives rise to a linear differential system of the
form (1); call this system (1)! .

At this point, one introduces the so-called cocycle obtained by considering the
fundamental matrix solution of (1)! and letting ! run over ˝ . One can now apply
the Oseledets theory of the Lyapunov indices of solutions of (1)! (! 2 ˝). One
can also apply the Sacker–Sell–Selgrade approach to the theory of exponential
dichotomies. In addition, one can define the rotation number of the family of
equations (1)! . We will see that all these dynamical methods permit one to gain
important insight into the oscillation theory of (1) and the spectral theory of (4).

In fact the main tool in the analysis consists in the systematic use of the
rotation number, the Lyapunov index, the exponential dichotomy concept, and
the Weyl matrices. These objects are also important in the discussion of two
more notions which are of fundamental significance in the context of the linear
Hamiltonian system (1): the property of disconjugacy, which is of basic significance
in the calculus of variations, and the related property of existence of principal
solutions, which in many interesting cases can be understood as a generalization
to the nonuniformly hyperbolic case of the bundles provided by the existence of
exponential dichotomy.

Applications to Control Theory

There are numerous applications of the oscillation theory of equation (1) to the
theory of mechanical systems, to the calculus of variations, to control theory, and
to other areas. We will not give an exhaustive account of these applications. But
we will apply our results concerning equations (1) and (4) to certain problems in
linear-quadratic (LQ) control theory. Among these are the linear-quadratic regulator
problem, the Kalman–Bucy filter, the Yakubovich frequency theorem, and the
question of Willems-type dissipativity in (linear) control systems. We now discuss
in a bit more detail these applications to control theory.

First we recall the formulation of the LQ regulator problem. The point of
departure consists of a linear control problem

x0 D A.t/ x C B.t/ u ; x 2 R
n; u 2 R

m ;

x.0/ D x :
(7)

The matrices A.�/, B.�/ are taken to be bounded continuous functions; the time
dependence is otherwise arbitrary. Let � 2 .0;1� be an extended positive real
number. Introduce a quadratic functional

Ix.x;u/ D hx.�/; Sx.�/i C
Z �

0

.hx.t/;G.t/ x.t/i C hu.t/;R.t/ u.t/i/ dt :
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where S is a symmetric positive semidefinite matrix and G.�/, R.�/ are bounded
continuous functions such that GT.t/ D G.t/ � 0 and RT.t/ D R.t/ > 0 for all
t 2 R. If the upper limit � is finite, one speaks of a finite-horizon problem, otherwise
one has an infinite-horizon problem. If � D 1 one sets S D 0n. For each fixed initial
condition x 2 R, one seeks a control uW Œ0; �� ! R

m which, when taken together
with the corresponding solution of (7), minimizes Ix.x;u/.

This basic problem has been studied in detail and has been solved both when � <
1 and when � D 1. Our contribution is to give a solution in the infinite-horizon
case � D 1 which uses the theory of exponential dichotomies and the rotation
number as applied to an appropriate linear Hamiltonian system of the form (1).
In this way one obtains, among other things, detailed information concerning the
regular dependence of the optimal control on parameters.

The appropriate system (1) is obtained via a formal application of the Pontryagin
maximum principle. According to this principle, a minimizing control u must
maximize the Hamiltonian

H.t; x; y;u/ D hy;A.t/ x C B.t/ ui � 1

2

�hx;G.t/ xi C hu;R.t/ ui� ;

for each t 2 R, x 2 R
n, and an appropriate y 2 R

n. Here y is interpreted as a variable
dual to x. This leads immediately to the “feedback rule”

u D R�1.t/BT.t/ y :

Substituting for u in the Hamiltonian equations x0 D @H=@y, y0 D �@H=@x leads
to the differential system

z0 D
�

A.t/ B.t/R�1.t/BT.t/
G.t/ �AT.t/

�
z : (8)

Of course, (8) is a special case of (1).
We now arrive at the main point, which is that (under standard controllability

and observability conditions on (7)) the system (8) admits exponential dichotomy.
This is easily proved when one has available the basic facts concerning the rotation
number of (8) and its relation to the existence of exponential dichotomy. Now, the
existence of exponential dichotomy for (8) means that there is a linear projection
P D P2WR2n ! R

2n such that if z D � x
y
�

is in the image of P, then the
solution z.t/ of (8) satisfying z.0/ D z decays exponentially as t ! 1. It

further turns out that z.t/ D
h

x.t/
y.t/

i
D
h

x.t/
M.t/ x.t/

i
where x.0/ D x and M.t/ is a

function taking values in the set of negative definite symmetric n � n matrices. Set
u.t/ D R�1.t/BT.t/M.t/ x.t/ and note that u.t/ ! 0 exponentially as t ! 1.
So it is not so surprising that this u is in fact the unique control which minimizes
Ix.x;u/. If one varies x, the dichotomy projection P and the symmetric matrix-
valued function M.t/ do not change, so in fact we have solved the LQ regulator
problem.
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Let us note in passing that we have also solved the feedback stabilization
problem for the control system (7). In fact, set u.t/ D R�1.t/BT.t/M.t/ x.t/ as

above. Note that if z.t/ D
h

x.t/
y.t/

i
is the solution of (8) mentioned above, then

x.t/ solves (7) with precisely this control u.t/. Since u has the “feedback form”
u.t/ D K.t/ x.t/ with K.t/ D R�1.t/BT.t/M.t/, and since the linear system
x0 D �

A.t/C B.t/R�1.t/BT.t/M.t/
�

x is exponentially stable, we have “feedback
stabilized” the system (7).

We can also study certain important properties of the Kalman–Bucy filter by
applying our methods to an appropriate Hamiltonian system of the form (1). This
is because, as Kalman and Bucy observed, the construction of their filter is closely
tied to a “time-reversed” LQ regulator problem. We briefly describe the filter and
the relevance of the theory of linear Hamiltonian systems in this context.

Let �.t/ 2 R
n .t � 0/ denote the state of a linear system which is disturbed by a

d-dimensional white noise process: thus

d�.t/ D A.t/ �.t/ dt C S.t/ dw.t/ : (9)

Here w.t/ is a d-dimensional standard Brownian motion, and equation (9) is
understood to be of Itô type. The state �.t/ can only be partially observed; it is
assumed that the observation process �.t/ satisfies the Itô equation:

d�.t/ D B.t/ �.t/ dt C S1.t/ dw1.t/ :

where w1.t/ is a second, m-dimensional Brownian motion which is independent
of w.t/. The functions A, B, S, S1 are assumed to be continuous and bounded and
to have the appropriate dimensions. It is assumed that �.0/ D 0 and that �.0/ is
Gaussian, which implies that �.t/ is Gaussian for all t � 0.

Let ˙t be the �-algebra generated by the set f�.r/ j 0 � r � tg of measurements
up to time t. The goal is to describe an estimate �.t/ for �.t/, which minimizes the
mean-square error Ef.xT.�.t/ � �.t///2g for all vectors x 2 R

n; here the expected
value Ef�g is taken over an appropriate probability space. It is well known that this
best estimate is given by the conditional expectation

�.t/ Db�.t/ D E f�.t/ j ˙tg :
To describeb�.t/, one introduces the error process Q�.t/ D �.t/�b�.t/. It turns out that
Q�.t/ is Gaussian with mean value zero and hence is determined by its n�n covariance
matrix M.t/. Kalman and Bucy showed that M.t/ satisfies a Riccati equation

M0 D �M BT.t/ .S1S
T
1 /

�1.t/B.t/M C M AT.t/C A.t/M C .SST/.t/ :

Now, this Riccati equation corresponds to the linear Hamiltonian system

z0 D
� �AT.t/ BT.t/ .S1ST

1 /
�1.t/B.t/

.SST/.t/ A.t/

�
z ; (10)
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via the matrix change of variables M D Y X�1. It turns out that, under standard
controllability conditions, the system (10) admits exponential dichotomy. This
leads to the conclusion that M.t/ tends exponentially fast to a “nonautonomous
equilibrium” M1.t/, which essentially describes the error process Q�.t/, and hence
the signal �.t/ if one takes the estimateb�.t/ to be known.

We will also apply our results concerning the oscillation theory of equation (1)
and the spectral theory of the family (4) to the circle of ideas and results centered
on the Yakubovich frequency theorem. This theorem was originally formulated and
proved by Yakubovich for LQ control processes with periodic coefficients. We will
state and prove a more general nonautonomous version of this theorem. We briefly
sketch our results in this regard in the next paragraphs.

The point of departure is again the control system (7) combined with a quadratic
functional

eIx.x;u/ D
Z 1

0

.hx;G.t/ xi C 2hx; g.t/ ui C hu;R.t/ ui/ dt ;

where the functions A, B, G, g, R are assumed to be bounded and continuous and
to have the appropriate dimensions. The functional eIx.x;u/ differs from the one
encountered in the context of the LQ regulator in two respects. First of all, the cross-
term hx; g.t/ ui is present in the integrand. Second and more importantly, though it
is assumed that GT.t/ D G.t/ and that RT.t/ D R.t/ > 0 for all t, it is not assumed
that G is positive semidefinite for all t; indeed one is particularly interested in the
case when G.t/ < 0 (t 2 R).

We pose the problem of minimizing eIx.x;u/ subject to (7). Since G is not
assumed to be positive semidefinite, this problem need not have a solution.
Nevertheless we proceed by applying the Pontryagin maximum principle in a formal
way. Introduce the Hamiltonian

eH.t; x; y;u/Dhy;A.t/ x C B.t/ ui � 1

2
.hx;G.t/ xi C 2hx; g.t/ ui C hu;R.t/ ui/ :

A minimizing control u (if it exists) will maximize eH for each t 2 R and x 2 R
n,

and an appropriate y 2 R
n. This leads to the feedback rule

u D R�1.t/BT.t/ y � R�1.t/ gT.t/ x ;

and via the Hamiltonian equations x0 D @eH=@y, y0 D �@eH=@x, one is led to the
differential system

z0 D H.t/ z ; with H D
�

A � B R�1gT B R�1BT

G � g R�1gT �AT C g R�1BT

�
: (11)

In the case when all the coefficients in (11) are T-periodic, Yakubovich showed
that the minimization problem admits a solution if and only if (i) the system (11)
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has exponential dichotomy (frequency condition) and (ii) certain solutions of (11)
have no focal points (nonoscillation condition). We will consider the case when
A, B, G, g, R are bounded continuous functions of time and prove a satisfactory
generalization of Yakubovich’s theorem. It turns out that the frequency condition
and the nonoscillation condition (which can be stated as above) imply that the
optimal control problem can be solved for all x 2 R

n. The converse statement is
not quite true; as a matter of fact, and roughly speaking, the minimizing control
must exhibit a uniform continuity condition in order to ensure that the frequency
condition and the nonoscillation condition are valid.

The frequency theorem has many ramifications and applications, some of which
will be considered in this book. Here we mention that the frequency theorem can be
used to comment on the Willems concept of dissipativity in the context of control
systems. This connection was pointed out and analyzed in the periodic case, by
Yakubovich et al. [158]. We will discuss the connection between the frequency
theorem and the Willems dissipativity concept when the relevant coefficients are
aperiodic functions of time.

The main point here is to interpret the integrand of the functionaleIx.x;u/ as a
power function. To explain this, set x D 0 in equation (7). Let uW Œt1; t2� ! R

m be an
integrable function, and let x.t/ be the corresponding solution of (7) with x.t1/ D 0.
Let us write

Q.t; x;u/ D 1

2
.hx;G.t/ xi C 2hx; g.t/ ui C hu;R.t/ ui/ :

Then the net energy entering the system due to the effect of u.�/ is obtained by
integrating Q.t; x.t/;u.t// in the interval Œt1; t2�. Now one says that the system is
dissipative if

Z t2

t1

Q.s; x.s/;u.s// ds � 0

whenever t1 < t2 2 R. That is, “energy must be expended” to move the system from
its equilibrium position x D 0.

The basic result which we will prove is that, modulo details, the control system
determined by (7) together with Q.t; x;u/ is (strongly) dissipative if and only if the
Hamiltonian system (11) satisfies the frequency condition and the nonoscillation
condition. So the frequency theorem has deep consequences concerning the struc-
ture of LQ control processes.

Outline of the Contents

We end this introduction with a brief outline of the contents of the various chapters
which will follow.
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The long Chap. 1 contains a discussion of various tools from topological
dynamics and from ergodic theory which will be systematically used throughout
the book. We discuss the Birkhoff theorem and the Oseledets theorem, the Bebutov
construction and some facts concerning flows, the Sacker–Sell–Selgrade theory of
exponential dichotomies, and other matters as well.

Chapters 2 and 3 contain the basic theory of the oscillation of the solutions of (1),
respectively, as well as a dynamical approach to the spectral theory of the Atkinson
problem (4). In Chap. 2, we construct and discuss the rotation number for (1),
which is roughly speaking “the average number of focal points” admitted by a so-
called conjoined basis of solutions. This quantity can be defined in several ways,
using the Gel’fand–Lidskii–Yakubovich argument functions, the Maslov index, and
the Barrett–Reid polar angles. In Chap. 3 we complexify the rotation number so
as to obtain the Floquet exponent, a quantity which is quite useful in the study
of problem (4). We state and prove a basic result, namely, that if (4) satisfies an
Atkinson condition, then the rotation number ˛ D ˛.�/ of (4) is constant for � in
an open subinterval I 	 R if and only if (4) admits exponential dichotomy for all
� 2 I.

The Weyl M-matrices, or M-functions, arise in Chap. 3 as a tool used in the study
of the spectral theory of (4) and especially in the proof of the theorem relating the
constancy of the rotation number to the presence of exponential dichotomy. The
M-functions are defined for nonreal values of the parameter �. However, it is very
important to understand their convergence properties in the limit as Im� tends to
zero, and Chap. 4 is dedicated to a study of this issue. In particular, we work out
an extension to the Atkinson problem (4) of the classical Kotani theory, which is
an important tool in the study of the refined spectral properties of the Schrödinger
operator.

The notion of disconjugacy is very important in the context of the Hamiltonian
linear differential system (1), because of its significance in the calculus of variations.
Chapter 5 is devoted to a discussion of a generalization of the concept of disconju-
gacy, namely, weak disconjugacy. Under natural and mild auxiliary hypotheses, we
prove the existence of a principal solution when (1) is weakly disconjugate. Our
approach to the issue of (weak) disconjugacy relies on the systematic use of tools
of topological dynamics; these allow a deep understanding of the conditions under
which weak disconjugacy holds and also of the properties of the principal solutions.

The book concludes with Chap. 6 (the LQ regulator problem and the Kalman–
Bucy filter), Chap. 7 (the nonautonomous version of the Yakubovich frequency
theorem), and Chap. 8 (Willems dissipativity for LQ control processes).

Note finally that, in this book, methods and results which have been developed in
the course of 100 years in the context of linear Hamiltonian systems with constant
or periodic coefficients are extended to systems whose coefficients can exhibit a
much more general time dependence. Indeed, techniques of topological dynamics
and of ergodic theory which have been worked out in recent times permit us to
apply new methods and adapt older ones to the study of a rich set of new scenarios
which are not possible in the periodic case. In the end we obtain a coherent theory
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which has been successfully applied to a wide range of problems in the setting of
nonautonomous linear Hamiltonian systems.
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Chapter 1
Nonautonomous Linear Hamiltonian Systems

This chapter is devoted to the general explanation of the framework of the analysis
made in this book, and to stating the many foundational facts which will be required.
With the aim of being relatively self-contained, precise references where the proofs
of the stated properties can be found are included, and at the same time some proofs
which the reader may consider elementary or well known, but for which it is not
easy to find a completely appropriate reference in the literature, are given.

This long chapter is divided into four sections. The first presents the most
fundamental notions and properties of topological dynamics and ergodic theory,
including the concept and main characteristics of a skew-product flow, which are
fundamental for the book.

The second section summarizes basic results concerning spaces of matrices, the
Grassmannian and Lagrangian manifolds, and matrix-valued functions.

Section 1.3 is devoted to the description of the general framework of the book.
Under mild conditions on the coefficient matrix, a nonautonomous linear system
of ordinary differential equations defines continuous skew-product flows on the
trivial and Grassmannian bundles above a compact metric space. Special attention
is devoted to the Hamiltonian case, for which two special skew-product flows can
be defined. For the first one, which is defined on the Lagrange bundle, the use
of generalized polar coordinates simplifies the task of describing the dynamical
behavior. The second one, which is closely related to the first, is defined on
the bundle given by the set of symmetric matrices. It presents some interesting
monotonicity properties.

The last section concerns one of the most fundamental concepts for the devel-
opment of the analysis made in the book: that of exponential dichotomy, both in
the general linear case and in the linear Hamiltonian case. Many of the properties
ensured by its presence will be described in detail, and then applied later in the
book. The closely related concept of Sacker–Sell spectrum is also discussed, and
several aspects of the Sacker–Sell perturbation theory are explained. The section is

© Springer International Publishing Switzerland 2016
R. Johnson et al., Nonautonomous Linear Hamiltonian Systems: Oscillation,
Spectral Theory and Control, Developments in Mathematics 36,
DOI 10.1007/978-3-319-29025-6_1

1



2 1 Nonautonomous Linear Hamiltonian Systems

completed with the less standard analysis of the behavior of the Grassmannian flows
in the presence of exponential dichotomy.

1.1 Some Fundamental Notions

The concepts and properties summarized in this section will be used often through-
out the book, many times without reference to these initial pages. Suitable references
for all these notions include Nemytskii and Stepanov [110], Ellis [41], Sacker and
Sell [133], Cornfeld et al. [35], Walters [148], Mañé [99], and Rudin [128, 129].

1.1.1 Basic Concepts and Properties of Topological Dynamics

Let ˝ be a locally compact Hausdorff topological space. Let ˙˝ and ˙R represent
the Borel sigma-algebras of˝ and R, and let˙� D ˙R�˙˝ be the product sigma-
algebra; i.e. the intersection of all the sigma-algebras on R �˝ containing the sets
I � A for I 2 ˙R and A 2 ˙˝ . Mild conditions on ˝ ensure that ˙� agrees with
the Borel sigma-algebra of R�˝: it is enough to assume that˝ admits a countable
basis of open sets (see e.g. Proposition 7.6.2 of Cohn [30]).

It will be convenient to work under the hypothesis that ˙� is indeed the Borel
sigma-algebra of R�˝ . So, throughout Sect. 1.1,˝ will represent a locally compact
Hausdorff topological space which admits a countable basis of open sets. In fact,
throughout the book, any flow will be defined on a set which satisfies, at a minimum,
these conditions. Some of the results explained in this section require ˝ to be a
compact metric space, but this hypothesis will be specified whenever it is assumed.

A map � WR �˝ ! ˝ is Borel measurable if ��1.A/ 2 ˙� for all A 2 ˙˝ . A
global real Borel measurable flow on˝ is a Borel measurable map � WR �˝ ! ˝

such that �0 D Id˝ and �tCs D �t ı �s for all s; t 2 R, where �tW˝ ! ˝; ! 7!
�.t; !/. The flow is continuous if � satisfies the stronger condition of being a
continuous map, in which case each map �t is a homeomorphism on˝ with inverse
��t. The notation .˝; �/ will be frequently used to represent a real global flow on
˝ , and the words real and global will be omitted when no confusion arises.

The orbit of a point ! 2 ˝ is the set f�t.!/ j t 2 Rg, and its positive
(resp. negative) semiorbit is f�t.!/ j t 2 RCg, where RC D ft 2 R j t � 0g
(resp. f�t.!/ j t 2 R�g, where R� D ft 2 R j t � 0g).

Given a Borel measurable flow .˝; �/, a Borel subset A � ˝ (i.e. an element
A of ˙˝ ) is �-invariant (resp. positively or negatively �-invariant) if �t.A/ D A
for all t 2 R (resp. t 2 RC or t 2 R�). Let Y be a topological space. If ˙ is a
sigma-algebra on˝ containing the Borel sets, a map f W˝ ! Y is˙-measurable if
f �1.B/ 2 ˙ for every Borel subsetB � Y; and f is Borel measurable when it is˙˝ -
measurable. A Borel measurable function f W˝ ! Y is �-invariant if f .�t.!// D
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f .!/ for all ! 2 ˝ and t 2 R. It is obvious that a Borel subset A is �-invariant if
and only if its characteristic function 	A is �-invariant.

If ˙ is a sigma-algebra containing the Borel sets, the concepts of �-invariant
set A 2 ˙ and �-invariant ˙-measurable map f W˝ ! Y are defined analogously.
Note that in fact this concept of invariance can be extended to any set or function,
since it does not depend on measurability.

All these definitions of �-invariance correspond to strict �-invariance, although
the word strict will be almost always omitted. A less restrictive definition of
invariance, depending on a fixed measure, is given in Sect. 1.1.2.

The flow is local if the map � is defined, Borel measurable, and satisfies the two
initially required properties on an open subset O � R � ˝ containing f0g � ˝ .
Define O! D ft 2 R j .t; !/ 2 Og for ! 2 ˝ . The orbit of the point ! for
a local flow .˝; �/ is f�t.!/ j t 2 O!g, and it is globally defined if O! D R.
The positive (resp. negative) semiorbit of a point ! is the set f�t.!/ j t 2 O! \RCg
(resp. f�t.!/ j t 2 O!\R�g, and it is globally defined ifO!\RC D RC (resp.O!\
R� D R�). A (in general Borel) subset A � ˝ is �-invariant (resp. positively or
negatively �-invariant) if it is composed of globally defined orbits (resp. globally
defined positive or negative semiorbits).

Finally, replacing R by RC (resp. by R�) provides the definition of a (global
or local) real positive (resp. negative) semiflow on ˝ . The definitions of positive
(resp. negative) semiorbit and (strict) invariance are the obvious ones.

For the remaining definitions and properties discussed in this section, the flow �

is assumed to be continuous.
A compact �-invariant subset M � ˝ is minimal if it does not contain properly

any other such set; or, equivalently, if each of its positive or negative semiorbits is
dense in it. The flow .˝; �/ is minimal or recurrent if ˝ itself is minimal, which
obviously requires ˝ to be compact. Note that Zorn’s lemma ensures that, if ˝ is
compact, then it contains at least one minimal subset.

Suppose that the positive semiorbit of a point !0 for such a flow is relatively
compact. Then the omega-limit set of the point (or of its positive semiorbit) is given
by those points ! 2 ˝ such that ! D limk!1 �.tk; !0/ for some sequence .tk/ "
1. The omega-limit set is nonempty, compact, connected, and �-invariant. The
concept of alpha-limit set is analogous, working now with a negative semiorbit and
with sequences .tk/ # �1. Clearly, a minimal subset of ˝ is the omega-limit set
and the alpha-limit set of each of its elements.

Finally, assume in addition that˝ is a compact metric space, and let d˝ represent
the distance on ˝ . The flow .˝; �/ is chain recurrent if given " > 0, t0 > 0, and
points !; Q! 2 ˝ , there exist points ! D !0; !1; : : : ; !m D Q! of ˝ and real
numbers t1 > t0; : : : ; tm > t0 such that d˝.�ti.!i/; !iC1/ < " for i D 0; : : : ;m � 1.
It is easy to check that minimality implies chain recurrence: just take !0 D ! and
!1 D Q! and keep in mind that the positive semiorbit of ! is dense in ˝ . It is also
easy to check that if .˝; �/ is chain recurrent, then the set ˝ is connected.
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1.1.2 Basic Concepts and Properties of Measure Theory

Unless otherwise indicated, any measure appearing in the book is a positive
normalized regular Borel measure. Given such a measure m, let ˙m be the m-
completion of the Borel sigma-algebra (see e.g. Theorem 1.36 of [128]), and
represent with the same symbol m the extension of the initial measure to ˙m. As
usual, the notation “m-a.e.” means almost everywhere with respect to m; “for m-
a.e. ! 2 ˝” means for almost every ! 2 ˝; and L1.˝;m/ represents the quotient
set of ˙m-measurable functions f W˝ ! R with

R
˝

j f .!/j dm < 1 (so that two
real functions represent the same class if they are m-a.e. equal, in which case they
are the same element of L1.˝;m/). See Sect. 1.2.4 for the general definitions of Lp

spaces of matrix-valued functions on˝ .
Let m be a measure on ˝ . Then m is �-invariant if m.�t.A// D m.A/ for every

Borel subset A � ˝ and all t 2 R, which ensures the same property for every A 2
˙m. A ˙m-measurable map f W˝ ! Y (for a topological space Y) is �-invariant
with respect to m if, for all t 2 R, f .�t.!// D f .!/ m-a.e. And a subset A 2 ˙m is
�-invariant with respect to m if 	A has this property.

The expression “�-invariant” (for sets, measures, or functions) will often be
changed to “invariant” throughout the book, since in most cases no confusion arises.

Proposition 1.2 shows the relation between these concepts of �-invariance with
respect to m and the (strict) ones given in the previous section: it proves that, when
moving for instance in the quotient space L1.˝;m/, one can always consider that
a “�-invariant function” satisfies the “strict” definition. More information in this
regard will be added in Proposition 1.5.

Remark 1.1 Recall that any ˙m-measurable function f W˝ ! K, for K D R

or K D C, agrees m-a.e. with a Borel measurable one (see [128], Lemma 1 of
Theorem 8.12). In addition, if ˙ is any sigma-algebra containing the Borel sets,
and if a sequence . fnW˝ ! K/ of ˙-measurable functions converges everywhere
to a function f , then f is ˙-measurable (see [128], Theorem 1.14). And, as a
consequence of this last result, if . fnW˝ ! K/ is a sequence of ˙m-measurable
functions which converges m-a.e. to a function f , then f is ˙m-measurable.

Proposition 1.2 Let .˝; �/ be a Borel measurable flow, and let m be a �-invariant
measure on ˝ .

(i) Let the ˙m-measurable function f W˝ ! K be �-invariant with respect to m.
Then there exists a ˙m-measurable function f �W˝ ! K which is (strictly) �-
invariant such that f D f � m-a.e.

(ii) Let the set A 2 ˙m be �-invariant with respect to m. Then there exists a
(strictly) �-invariant set A� 2 ˙m such that 	A D 	A�

m-a.e.

Proof

(i) The proof of this property is carried out in Lemma 1 of Chapter 1.2 of [35],
and included here for the reader’s convenience. It follows from Remark 1.1 that
there is no loss of generality in assuming that f is Borel measurable. Define the
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sets N D f.t; !/ 2 R � ˝ j f .!/ ¤ f .�t.!//g, and note that the hypotheses
on � ensure that this set belongs to ˙� D ˙R �˙˝ , since the maps R �˝ !
R; .t; !/ 7! f .!/ and R � ˝ ! R; .t; !/ 7! f .�t.!// are ˙�-measurable.
Define now Nt D f! 2 ˝ j .t; !/ 2 N g for t 2 R, and N! D ft 2 R j .t; !/ 2
N g for ! 2 ˝ , and note that Nt 2 ˙˝ for all t 2 R and N! 2 ˙R for all
! 2 ˝ (see Theorem 8.2 of [128]). By definition of �-invariance with respect
to m, m.Nt/ D 0 for all t 2 R. Define 
 as the product measure of m and
l on ˝ � R, where l is the Lebesgue measure on R. Fubini’s theorem (see
Theorem 8.8 of [128]) ensures that the maps ! 7! l.N!/ and t 7! m.Nt/ are
Borel, and that 
.N / D R

˝
l.N!/ dm D R

R
m.Nt/ dl D 0. Therefore the subset

˝f � ˝ of points ! with l.N!/ D 0 is Borel, and m.˝f / D 1. Suppose that
! and �t.!/ belong to ˝f for a pair .t; !/ 2 R �˝ . Then f .!/ D f .�t.!//. In
order to prove this assertion, take s 2 R�N�t.!/ such that s C t 2 R�N! , and
note that f .�t.!// D f .�s.�t.!/// D f .�sCt.!// D f .!/. Now define

f �.!/ D
�

f .!/ if there exists t 2 R with �t.!/ 2 ˝f ;

0 otherwise ;

which is ˙m-measurable, since it agrees with f at least on ˝f (and hence m-
a.e.), and which is �-invariant in the classical sense.

(ii) Let g D 	�
A be the �-invariant function associated to 	A by (i). Then the set

B D f! 2 ˝ j g.!/ 2 f0; 1gg D 1 belongs to ˙m, is �-invariant, and has full
measure for m: m.B/ D 1. The set A� D f! 2 ˝ j g.!/ D 1g � B also
belongs to ˙m and is �-invariant. In addition, g.!/ D 	A�

.!/ for all ! 2 B,
so that 	A D 	A�

m-a.e., as asserted.

One of the most fundamental results in measure theory is the Birkhoff ergodic
theorem, one of whose simplest versions is now recalled.

Theorem 1.3 Let .˝; �/ and m be a Borel measurable flow and a �-invariant
measure on˝ . Given f 2 L1.˝;m/, there exists a (strictly) �-invariant set˝f 2 ˙m

with m.˝f / D 1 such that, for all ! 2 ˝f , the limits

lim
t!1

1

t

Z t

0

f .�s.!// ds D lim
t!1

1

2t

Z t

�t
f .�s.!// ds D lim

t!�1
�1
t

Z 0

t
f .�s.!// ds

exist, agree, and take on a real value Qf .!/. In addition, Qf .�t.!// D Qf .!/ for all
! 2 ˝f and t 2 R, Qf belongs to L1.˝;m/, and

R
˝

Qf .!/ dm D R
˝

f .!/ dm.

Its proof in the case of a discrete flow (given by the iteration of an automorphism
on ˝) can be found, for example, in Section II.1 of [99]. The procedure to deduce
the result for a real flow from the discrete case is standard: define the automorphism
T.!/ D �.1; !/ and, given f 2 L1.˝;m/, define F.!/ D R 1

0
f .�s.!// ds; then,

Fubini’s theorem ensures that F 2 L1.˝;m/, and the application of the discrete
version of the theorem to this setting provides the sets ˝f and the function Qf
satisfying the theses of the real version. The details are left to the reader.
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Note that the function Qf provided by the previous theorem can be considered to be
�-invariant in the strict sense: just define it to be 0 outside˝f . Note also that the set
˝f contains a Borel subset with measure 1, which is clearly �-invariant with respect
to m. But in fact this Borel subset of˝f can be taken as a (strictly) �-invariant set, as
Proposition 1.5(i) below proves. Therefore, there is no loss of generality in assuming
that the set ˝f itself is Borel.

The following result, whose proof is included for completeness, will be required
in Chap. 4. The notation gW˝ ! Œ0;1� is used for extended-real functions (which
can take the value 1), and the concept of ˙m-measurability for such a function is
clear.

Proposition 1.4 Let .˝; �/ be a Borel measurable flow, and let m be a �-invariant
measure on ˝ . Let f W˝ ! Œ0;1/ be a ˙m-measurable function. Then, there exists
a (strictly) �-invariant set ˝f 2 ˙m with m.˝f / D 1 such that, for all ! 2 ˝f , the
limits

lim
t!1

1

t

Z t

0

f .�s.!// ds D lim
t!1

1

2t

Z t

�t
f .�s.!// ds D lim

t!�1
�1
t

Z 0

t
f .�s.!// ds

exist, agree, and take a value Qf .!/ 2 R [ f1g. In addition, the extended-real
function Qf W˝ ! Œ0;1� is ˙m-measurable, and it satisfies Qf .�t.!// D Qf .!/ for
all ! 2 ˝f and t 2 R, and

R
˝

Qf .!/ dm D R
˝ f .!/ dm.

Proof Let hW˝ ! Œ0;1/ be a ˙m-measurable function. For each k 2 N, define
hk D min.h; k/, which obviously belongs to L1.˝;m/. Hence there exists a function
Qhk 2 L1.˝;m/ and a set ˝hk 2 ˙m with m.˝hk/ D 1 satisfying the theses of
Theorem 1.3. Define ˝�

h D \k2N˝hk , which belongs to ˙m, is �-invariant, and
has full measure for m. Note that the nondecreasing sequence .hk.!// converges to
h.!/ for all ! 2 ˝�

h , and define h�.!/ 2 Œ0;1� as the limit of the nondecreasing
sequence of �-invariant functions .Qhk.!//, also for ! 2 ˝�

h . Then, h� is ˙m-
measurable (see Remark 1.1) and �-invariant. In addition, if h� 2 L1.˝;m/,
then h 2 L1.˝;m/: apply the Lebesgue monotone convergence theorem and
the Birkhoff Theorem 1.3 to get 0 � R

˝
h.!/ dm D limk!1

R
˝

hk.!/ dm D
limk!1

R
˝

Qhk.!/ dm D R
˝

h�.!/ dm < 1.
Returning to the function f of the statement, note that if f 2 L1.˝;m/, the

assertions follow from Theorem 1.3. Assume hence that
R
˝

f .!/ dm D 1, and
associate to it the sequences . fk/ and . Qf k/, the set ˝�

f , and the function f �, as above.
Therefore, f � … L1.˝;m/. Clearly, the sets

A D f! 2 ˝�
f j f �.!/ D 1g ;

Aj D f! 2 ˝�
f j j � f �.!/ < j C 1g for j � 0
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belong to ˙m, are �-invariant and disjoint, and satisfy ˝�
f D A [ .[1

jD0Aj/. Then,
if ! 2 A,

lim inf
t!1

1

t

Z t

0

f .�s.!// ds � sup
k2N

lim
t!1

1

t

Z t

0

fk.�s.!// ds

D sup
k2N

Qf k.!/ ds D f �.!/ D 1 ;

so that there exists limt!1.1=t/
R t
0

f .�s.!// ds D f �.!/ D 1. The same property
holds for the other two limits of the proposition. Now define

g D
1X

jD0

1

j C 1
	Aj

f

on ˝�
f , note that it is ˙m-measurable, and associate to it the sequences .gk/, .Qgk/,

and the set ˝�
g � ˝�

f , as at the beginning of the proof. Fix any k 2 N and any
! 2 ˝�

g outside A, and take the unique j 2 N such that ! 2 Aj \ ˝�
g . Then

g.!/ D .1=j C 1/ f .!/, and hence

gk.!/ D 1

j C 1
min. f .!/; k. j C 1// D 1

j C 1
fk. jC1/.!/ :

Since �s.!/ 2 Aj \˝�
g for all s 2 R,

Qgk.!/ D lim
t!1

1

t

Z t

0

gk.�s.!// ds D 1

j C 1
lim

t!1
1

t

Z t

0

fk. jC1/.�s.!// ds

D 1

j C 1
Qf k. jC1/.!/ � 1

j C 1
f �.!/ � 1

for all k 2 N. Note that gk vanishes outside [1
jD1Aj. Hence

R
˝

gk.!/ dm DR
˝

Qgk.!/ dm � 1, so that the Lebesgue dominated convergence theorem ensures
that g 2 L1.˝;m0/. Let Qg and ˝g � ˝�

f be the �-invariant function and subset
associated to g by Theorem 1.3, with m.˝g/ D 1. Then for all ! in the �-invariant
set Aj \˝g, f .!/ D . j C 1/ g.!/ and hence

lim
t!1

1

t

Z t

0

f .�s.!// ds D lim
t!1

1

2t

Z t

�t
f .�s.!// ds

D lim
t!�1

�1
t

Z 0

t
f .�s.!// ds D . j C 1/ Qg.!/ D . j C 1/ 	Aj

Qg.!/ :
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Define ˝f D A [
	
.[1

jD0Aj/ \˝g



, and note that it belongs to ˙m and satisfies

m.˝f / D 1. This �-invariant set and the ˙m-measurable and �-invariant function

Qf D

8
<̂

:̂

f �.!/ if ! 2 A
1X

jD0
. j C 1/	Aj

Qg if ! 2 .[1
jD0Aj/\˝g

(1.1)

satisfy the statements regarding the limits. In addition, for all ! 2 ˝f ,

Qf .!/ D lim
t!1

1

t

Z t

0

f .�s.!// ds � lim
t!1

1

t

Z t

0

fn.�s.!// ds D Qf n.!/ ;

so that Qf .!/ � f �.!/ on ˝f . Hence,
R
˝

Qf .!/ dm � R
˝ f �.!/ dm D 1 DR

˝ f .!/ dm, which completes the proof.

As in the case of Theorem 1.3, the function Qf provided by Proposition 1.4 can be
considered to be �-invariant in the strict sense, and Proposition 1.5(i), which is
proved immediately below, ensures that the set ˝f contains a Borel subset with
measure 1 which is �-invariant with respect to m.

Proposition 1.5 Let .˝; �/ be a Borel measurable flow, and let m be a �-invariant
measure on ˝ .

(i) Let A 2 ˙m be a (strictly) �-invariant set with m.A/ D 1. Then A contains a
(strictly) �-invariant Borel set B with m.B/ D 1.

(ii) Let f W˝ ! R be ˙m-measurable and �-invariant with respect to m0. Then
there exists gW˝ ! R which is Borel and (strictly) �-invariant such that g D
f m-a.e.

Proof

(i) It suffices to prove that for all n 2 N there exists a �-invariant Borel set Bn � A
with m.Bn/ � m.A/� 1=n, and then take B D [n�1Bn.

Fix n 2 N, and note that the regularity of the measure m implies the existence
of a compact set Kn � A with m.A � Kn/ � 1=n. The Borel measurability of
the flow ensures that the map R � ˝ ! R ; .t; !/ 7! 	Kn

.�.t; !// is Borel
measurable, and hence Fubini’s theorem guarantees that the maps h j

nW˝ ! R

given by

h j
n.!/ D

jX

iD�j

1

jij2 C 1

Z jC1

j
	Kn

.�t.!// dt

are Borel measurable (see e.g. Theorem 8.8 of [128]). Clearly, h j
n � h jC1

n , so
that the limit hn.!/ D limj!1 h j

n.!/ exists for all ! 2 ˝ , and the (bounded)


