

Evaporites

A Geological Compendium

Second Edition

Evaporites

John K. Warren

Evaporites

A Geological Compendium

Second Edition

John K. Warren Department of Geology Chulalongkorn University Bangkok Thailand

ISBN 978-3-319-13511-3 ISBN 978-3-319-13512-0 (eBook) DOI 10.1007/978-3-319-13512-0

Library of Congress Control Number: 2015959844

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com)

For my wife, Jennifer my sons, Matthew and Tristan

Eppur si muove (And yet, it does move) Galileo Galilei after recanting Copernican beliefs

Preface

So here it is, most of the way through 2015, 8 years after my last effort on this topic, and I am writing yet another preface to yet another edition on evaporites. Once again, my aim is to give you, the reader, a timely overview of our current understanding of all matters evaporitic. That is why the reference list is now the length of a novella and I have added three new chapter topics compared to the 2006 incarnation. And, to massage my ego, I have included the word compendium in the title.

For the first time, the publishers have allowed me to compile an all-colour version, rather than grey-scale. As the use of paper copy for scientific publishing recedes, publishers are finally moving into the digital world, sometimes scratching and screaming. Then again, copyright and intellectual property issues related to information and intellectual property on the internet will be an earner for the legal profession for decades to come. A digital base to any scientific compilation allows a breadth of coverage in the topics and an accessibility to information that is unprecedented, as in all other scientific fields. You can see this evolution in information access in the page lengths in each of my four books on evaporites. The first, in 1989, was a few hundred pages long; the second in 1999, was over 500 pages; the penultimate effort, published in 2006 was over 1,000 pages long; and this current effort runs to more than 1,800 A4 pages.

Yet I now store and access the hi-res digital version of the complete volume, along with numerous other volumes, as a side issue of the use of my smart-phone. On the same device I can link to, search, review and download copies of all related digital information anywhere in the world I can access the net. Needless to say, this is one old-fart scientist who is impressed by this technology. It is a far cry from the 128k Mac that in the mid-1980s I lugged to a house on the coast of Denmark, along with three shipping cases of photocopied references in order to write the first book. On the downside, open internet access has led to a plethora of cacography, prattle and unsubstantiated opinion given as fact.

In this volume I make much more use of online sources, outside the various libraries and subscribed publishing websites. This makes many of the issues and data compilations discussed in this book, both more current and perhaps more relevant but also more readily dated and updatable at the same time. As I sift through much of the unscientific chaff that is presented as fact on the internet, I am very aware of both the strengths and current weaknesses of science conducted on the internet. Outside of the mainstream literature from subscribed publishers and some democratic government bodies, much online material is opinionated and/ or uploaded with minimal peer review. As with much educational policy in the Western world these days, the internet approach is by its nature multicultural, largely non-judgemental, nonauthoritarian and unfortunately, in terms of science, often phrased in terms of political correctness.

As a rationalist and a non-theist, I welcome the vast increase in freely available knowledge the internet brings. But I worry that logic and rationalism, which underpin all valid science is being lost in many places of education across the developed world. It is swamped in a tsunami of opinionated quasi-superstitious information. In science, not all points of view are equally valid, there are testable hypotheses and then there is opinionated bumpf. One expects the latter from politicians and religious zealots, unfortunately it has entered matters that should be science-based, such as much of the current climate change discussion, as well as environmental discussions related, for example, to aforesaid climate change, hydrofracing in shale gas exploration, and other low-cost energy-recovery methodologies, as well as the relative merits of vaccinating children and the use of genetically modified crops. It says something about one's intellectual approach to a scientific problem if you tend to use the term skeptic as a pejorative.

Besides the scientific effort involved in writing this book, in order to give the volume broad utility and consistency, a good proportion of the blood, sweat and tears that I put into this volume involved preparing numerous colour illustrations and tables. I hope I have given improved value to the various authors listed, in my converting, compiling and revamping what were mostly their grey-scale and line drawings into Bezier-based colour outputs (all scaled figures with north to top, unless denoted otherwise). For this, thanks also to Saltwork Consultancy Pte Ltd for giving me permission to publish aspects of their evaporite GIS datasets as figures in this volume. In the digital form of this volume, figures should be extractable through any PDF reader and I hope will make a useful teaching and research resource for presentations and writings for anyone interested in matters evaporitic.

I would like to thank the various companies: Chevron Thailand, PDO, PTTEP, SaltWork Consultants Pte Ltd; Shell Brunei, Shell Oman and Statoil, who for the last 20 years have paid my salary allowing me to work as a company-sponsored academic in universities in interesting regions of the world where academic bureaucracy is subjugated to the peoples' thirst for education. So thanks as well, to my host universities of the past two decades: Universiti Brunei Darussalam, Sultan Qaboos University of Oman and Chulalongkorn University, Bangkok. This support has meant my academic teaching for the past 20 years has been based in developing world, in various places where you can be a full-time academic, publish and do research without being involved in the petty bureaucratic politics and political correctness that today plagues the efficiency of most federally and state-funded universities of the Western world.

Most importantly and most completely, my thanks to my wife Jennifer, who even after more than 40 years of marriage still manages to live with her at times abstracted other half.

Bangkok, Thailand

John K. Warren

Contents

1	Interpreting Evaporite Textures	1
	What is an Evaporite?	1
	Solar-Heated Brine Concentration	1
	Cryogenic and Other Non-solar Saline Mechanisms	2
	Burial and Hydrothermal Salts	5
	So, What Exactly Is an Evaporite?	8
	Primary Evaporitic Carbonates	12
	Carbonate Laminites (Subaqueous?)	13
	Strandzone Associations: Microbialites, Pisolites and Tepees	14
	Vadose Pisolites, Ooids and Coated Grains	32
	Tepees	35
	Carbonates: Present and Past	37
	Primary Evaporite Salts	39
	Gypsum Beds	39
	Halite Beds (Chevrons and Crusts)	44
	Pedogenic and Wind Reworked Salts	48
	Laminites from Settling of Pelagic Salts.	54
	Salt Reefs, Are They Real?	58
	Secondary (Diagenetic) Evaporites	60
	Intrasediment Salts	60
	Syndepositional Karst in Crusts	62
	Shallow Mineralogic Re-equilibration	65
	Burial of Sulphate Evaporites	69
	Evaporites as Uplift Indicators (Tertiary Evaporites)	74
	Fibrous Gypsum and Halite (Satinspar)	76
	Anhydrite Rehydration at the Microscale	79
	Saline Clay Authigenesis	80
	Textural Synthesis	83
2	Depositional Chamistry and Hydrology	05
2	Oustomerry Deserts and Exemptite Assumptions	0J 05
	Quaternary Desens and Evaporite Assumptions	00
	Quaternary Evaporities in a Koppen Chinatic Framework	92
	Chamical Evolution of Surface and Nearsurface Prince	90 102
	Marina Brings	103
	Marme Drines	105
	Noninal file Diffies	112
	Deale Deagtions	120
	Dack Reactions	121
	Acid Crown dwater in Continental Soling Sectors	123
	Acia Groundwater in Continental Saline Systems	127

	Indicators of Brine Parenthood Bromine Profiles – Parentage or Stability? Sulphur and Oxygen Isotopes Boron Isotopes Chlorine Isotopes Fluid Inclusions and Brine Temperatures Seawater Evolution A Phanerozoic Dilemma: Marine Versus Nonmarine Potash? Precambrian Oceanic Chemistry Precambrian Oceanic Chemistry Precambrian-Cambrian Transition Hydrology Is Depositional Style Active Phreatic/Vadose Regime Hydrologies in Saline Basins Mudflat Aggradation Mirrors Watertable Change Indicators of Fluctuating Watertables	132 132 135 138 140 144 147 147 153 159 162 162 163 168 169
	Degrading Hydrology and Playa Capture . Remote Sensing of Saline Hydrologies. Salinity Stratification Controls Texture . Brine Stability and Evaporite Textures . Brine Reflux Drives Substrate Alteration . Can Reflux Really Work? . Importance of Hydrographic Isolation. Extraterrestrial Hydrologies, "Freeze-Dried" Salts, and the Meaning of Life	175 177 185 188 190 196 198 201
3	Sabkhas, Saline Mudflats and PansIntroductionWhat Is a Sabkha?Marine Coastal Sabkhas.Carbonate-Hosted Coastal Sabkhas in the Southern Arabian Gulf.Siliciclastic-Hosted Coastal Sabkhas, Western and Northern Arabian Gulf.Other Coastal SabkhasInterpretive Limitations of Holocene Sabkha ModelsLacustrine Sabkhas and Pans.Depositional CharacteristicsStyles of Continental Sabkhas.Salt-Pans (Marshes) and Diapirs.Why and Where of Sabkhas & Pans?	207 207 210 211 212 231 240 249 251 251 256 299 301
4	Subaqueous Salts: Salinas and Perennial Lakes Introduction Sea-Margin Subaqueous Salts Coastal Salinas of Australia Coastal Salinas of the Middle East South American Salinas and Dolomite Continental Subaqueous Basins Perennial Saline Lakes Lake Asal, Republic of Djibouti Are Modern Saline Lakes all Shallow?	303 303 305 305 316 321 324 324 372 374
5	Ancient Basins and Stratigraphic Evolution Introduction Linking Present to Past Aridity Varying Extent of Ancient Evaporites Building Blocks of Ancient Salt Beds Evaporites: Broad-Scale Depositional Models	381 381 382 388 393 398

	Problems in Correlation Sans Hydrology	43
	Dolomite Aprons in a Drawdown Basin	44(
	Sequence Stratigraphy in Evaporite Basins?	443
	Does Sealevel Control Salt Sequence Boundaries?	446
	Icehouse and Greenhouse Eustasy	44′
	Basinwide Evaporites	45
	Basinwide Examples	454
	Summary	490
6	Flowing Salt: Halokinesis	49
	Introduction	49
	Physics of Salt Systems	494
	Density, Viscosity, Strength & Buoyancy	494
	Thermal Effects	50
	Flow Textures and Rates	504
	Triggers, Drivers and Outcomes of Salt Flow	51
	Diapirs and Extension	512
	Diapirism and Differential Loading	514
	Sedimentation Rate Controls Diapir Shape.	510
	Extension, Falling Diapirs and Turtles	51
	Falling Diapirs Drive Raft Tectonics.	51
	Salt as Sheets, Allochthons and Breakouts	52
	Inflation, Deflation, Welds and Basal (Subsalt) Shear Zones	524
	Near-Diapir Suprasalt Shear (Drag Zones)	534
	Welds, Loading Detachments and Growth Faults	53
	Fault Families in Allochthons	54
	Linking Allochthons at the Basin Scale	54
	Compressional Salt Tectonics	55
	Shortening with Gravity Gliding	55
	Thin Skinned Fold and Thrust Balts	55
	Inverted Salt Basins	56
	Mild Shortening in Tectonically Confined Basing	56
	Salt Extruding Today?	57
	Browne Formation Oldest Known Salt	591
	Sediments and Elevring Selt	50
	Sediments and Flowing Salt.	50.
	Sedimentation and Evolving Sait Structures	38. 50'
	Sediments fied to Salt Basin Evolution	39.
	Subsalt Sections	60
	Caprock Formation (Diagenesis of Salt).	60
	Complications of Shale Diapirism	60.
	Summary	612
7	Salt Dissolution and Pointers to Vanished Evaporites:	
-	Karst, Breccia, Nodules and Cement	61
	Introduction	61
	Evanorite Landforms	619
	Local Scale Karst	619
	Regional-Scale Karst	62
	Salt Dissolution: Solution Braccias and Residues	620
	Dafining Evaporite Dissolution Braceic	62
	Poddad Solution Collarse Pression	64
	Decode Solution-Conapse Breccias	04
	Breccia Extent	64.
	Diapiric Solution Breccias	650
	Diapiric Versus Salt Ablation (Retreat) Breccias	654
	Salt-Cored Thrust and Fold Breccias, Rauhwacke and Orogeny	650

	Partial Salt Dissolution: Residues of Less-Soluble Salts	665
	Focused Rapid Dissolution – Evaporite Clasts	666
	Diffuse Dissolution - Markers and Residue Beds	667
	Basal Anhydrite, Thailand	672
	Caves in Evaporite Karst	674
	Gypsum Caves.	675
	Halite Caves	685
	Evaporite Speleothems in Non-evaporite Karstified Host	691
	Hazards Tied to Evaporite Karst	692
	Problems in the Ripon Area, UK	694
	Problems with Miocene gypsum, Spain	697
	Gypsum Karst in Mosul, Iraq	699
	Coping: Man-made Structures Atop Salts.	699
	Solving the Problem?	703
	Sulphuric Acid Speleogenesis	704
	Mineralised Hypogene Breccias	712
	Filled Vugs and Nodules	715
	Silicified Evaporites	716
	Calcitisation and Dedolomitisation	724
	Celestite as an Evaporite Indicator?	735
	Fluorite as an Indicator?	743
	Baryte as an Indicator?	747
	Authigenic Anhydrite as a Burial Salt	753
	Enigmatic Outlines in Pseudomorphs	758
	Summary	760
•		760
8	Hypersaline Fluid Evolution During Burial and Uplift	763
	Basin-Scale Burial Hydrology	763
		/69
		/69
		770
	Deep Flow in Pull-Apart Basins	774
	Flow in and Adjacent to Collision Belts	700
	Flow in Post-Orogenic Hydrologically-Mature Basins.	/80
	Alteration, Pressure Cells and Salinity-Driven Convection	/80
	Haloes, Convection and Saltout	/86
	Evaporites as Pressure Seals	789
	Salt-Maintained Overpressure.	792
	L'ontrolling a l'inneradiatad lleacailea l'hongaa	000
		802
	Drilling Mud Chemistry in Salt Systems	802 804
	Drilling Mud Chemistry in Salt Systems	802 804 805
	Drilling Mud Chemistry in Salt Systems Salt-Generated Underpressure Temperature Anomalies and Brine Flow	802 804 805 806
	Drilling Mud Chemistry in Salt Systems Salt-Generated Underpressure Temperature Anomalies and Brine Flow Fluid Flow in Halokinetic Basins.	802 804 805 806 809
	Drilling Mud Chemistry in Salt Systems Salt-Generated Underpressure Temperature Anomalies and Brine Flow Fluid Flow in Halokinetic Basins Suprasalt Fluid Flow and Alteration	802 804 805 806 809 809
	Drilling Mud Chemistry in Salt Systems Salt-Generated Underpressure Temperature Anomalies and Brine Flow Fluid Flow in Halokinetic Basins Suprasalt Fluid Flow and Alteration Burial Dewatering of Hydrated Salts	802 804 805 806 809 809 814
	Drilling Mud Chemistry in Salt Systems Salt-Generated Underpressure Temperature Anomalies and Brine Flow Fluid Flow in Halokinetic Basins Suprasalt Fluid Flow and Alteration Burial Dewatering of Hydrated Salts Brine-Rock Burial Evolution	802 804 805 806 809 809 814 818
	Controlling Unpredicted Pressure Changes Drilling Mud Chemistry in Salt Systems Salt-Generated Underpressure Temperature Anomalies and Brine Flow Fluid Flow in Halokinetic Basins. Suprasalt Fluid Flow and Alteration Burial Dewatering of Hydrated Salts Brine-Rock Burial Evolution Brine Chemistry at Depth	802 804 805 806 809 809 814 818 819
	Controlling Unpredicted Pressure Changes Drilling Mud Chemistry in Salt Systems Salt-Generated Underpressure Temperature Anomalies and Brine Flow Fluid Flow in Halokinetic Basins Suprasalt Fluid Flow and Alteration Burial Dewatering of Hydrated Salts Brine-Rock Burial Evolution Brine Chemistry at Depth Effects and Indications of Water-Salt Interactions	802 804 805 806 809 809 814 818 819 824
	Controlling Unpredicted Pressure Changes Drilling Mud Chemistry in Salt Systems Salt-Generated Underpressure Temperature Anomalies and Brine Flow Fluid Flow in Halokinetic Basins. Suprasalt Fluid Flow and Alteration Burial Dewatering of Hydrated Salts. Brine-Rock Burial Evolution Brine Chemistry at Depth Effects and Indications of Water-Salt Interactions. Crustal Cycling of Brines?	802 804 805 806 809 809 814 818 819 824 826
9	Controlling Unpredicted Pressure Changes Drilling Mud Chemistry in Salt Systems Salt-Generated Underpressure Temperature Anomalies and Brine Flow Fluid Flow in Halokinetic Basins Suprasalt Fluid Flow and Alteration Burial Dewatering of Hydrated Salts Brine-Rock Burial Evolution Brine Chemistry at Depth Effects and Indications of Water-Salt Interactions. Crustal Cycling of Brines? Halotolerant Life in Feast or Famine: Organic Sources	802 804 805 806 809 809 814 818 819 824 826
9	Drilling Mud Chemistry in Salt Systems Salt-Generated Underpressure Temperature Anomalies and Brine Flow Fluid Flow in Halokinetic Basins. Suprasalt Fluid Flow and Alteration Burial Dewatering of Hydrated Salts Brine-Rock Burial Evolution Brine Chemistry at Depth Effects and Indications of Water-Salt Interactions. Crustal Cycling of Brines? Halotolerant Life in Feast or Famine: Organic Sources of Hydrocarbons and Fixers of Metals.	802 804 805 806 809 809 814 818 819 824 826 833
9	Controlling Unpredicted Pressure Changes Drilling Mud Chemistry in Salt Systems Salt-Generated Underpressure Temperature Anomalies and Brine Flow Fluid Flow in Halokinetic Basins. Suprasalt Fluid Flow and Alteration Burial Dewatering of Hydrated Salts. Brine-Rock Burial Evolution Brine Chemistry at Depth Effects and Indications of Water-Salt Interactions. Crustal Cycling of Brines? Halotolerant Life in Feast or Famine: Organic Sources of Hydrocarbons and Fixers of Metals. Introduction	802 804 805 806 809 809 814 818 819 824 826 833 833

	Halobiota: Adaptations and Bio Markers	853
	Metabolic Pathways in Producers and Consumers	854
	Light Dwellers and Pigmentation	856
	Non-photosynthesizers and Layering	860
	Salinity Tolerance	864
	Primary Producers (Photosynthesizers)	864
	Halobiotal Heterotrophs (Consumers)	873
	Cellular Adaptations to Hypersalinity	884
	Life in a Lavered Microbial Mat?	888
	Biomarkers and Microbial Responses to Changing Salinities	890
	Do Biomarkers Indicate Hypersalinity?	893
	Organic Enrichment.	898
	Biological Responses to Variably Lavered Brines: Cycles	
	of "Feast or Famine"	900
	The Where and When of Productivity	912
	Life Brine Seens and Dissolving Salts	919
	Geological and Hydrological Features	919
	Life Fe and Sulphur in Seafloor Brine Lakes	923
	Rim Life CH, and H-S in Seafloor Brine Lakes	930
	Hardgrounds Sattings and Stable Isotones	033
	Angient Saline Seens	035
	Life in the Soline Subourface	030
	Destarial Substitute Deduction (DSD)	040
	Thermochemical Sulphote Deduction (TSD)	940
	H S. Notural Gas and Matellogany	943
	Hudrothermal Creaking in Soling Bift Lakes	052
		952
		955
10	Hydrocarbons and Evaporites	959
	Introduction	959
	Seal Capacity of Evaporites	965
	So Why Do Evaporites Seal?	965
	Environments Favouring Seal Continuity	968
	Reservoirs and Traps	971
	Bedded Salt Seals	971
	Exploration Paradigms in the Bedded Evaporite	
	Hydrocarbon Association	1025
	Halokinetic Salt Traps	1031
	Supradiapiric Traps	1032
	Tiered Allochthon Plays in the Deepwater Realm	1038
	Minibasin Plays.	1047
	Intrasalt Halokinetic Plays	1049
	Subsalt Reservoirs in Compressional Evaporite Provinces.	1063
	Evaporite Dissolution.	1073
	Athabasca Tar Sands, Western Canada	1077
11	Potach Pasauroos: Acquirrances and Controls	1091
11	Introduction	1001
	Production and Consumption	1001
	Ora Extraction Tachnologies	1000
	Conventional Mining	1000
	Conventional Mining of Detech	1005
	John Dragoning and Solution Character	1093
	Che Demoficiation	1090
		1090

	Quaternary Potash	1100
	Playas of the Qaidam Basin	1100
	Danakil Depression, Ethiopia	1109
	Inland Chotts and Coastal Sabkhas in North Africa	1119
	Potash from Brine	1124
	Ancient (Pre-Quaternary) Potash	1136
	Upper Rhine Graben, France.	1136
	Khorat Plateau, Thailand.	1139
	Cretaceous Trans-Atlantic Potash	1145
	Moroccan Meseta (Late Triassic)	1148
	Permian Potash	1149
	German Potash (Z1, Z2 and Z3 Potash)	1149
	Z3 – Boulby Potash UK	1150
	New Mexico Potash USA	1154
	Unner Kama Potash Region Cis-Urals Russia	1156
	Canadian Maritimes (Mississinnian of Nova Scotia	1150
	and New Brunewick)	1160
	West Consider Potech (Devenien)	1163
	Prinvet Desin (Devenien) Delenus	1103
	Other Sterif cost Departu	1100
	Contrest Significant Deposits	1170
	So, How Does Mineable Polash Form?	11/2
	Controls on Potash Quality: Anomalies, Leaching	1174
	and Problematic Mine Waters	1174
	Potash Occurrence and Quality at the Worldscale	1181
12	Non-Potash Salts: Borates, Na-Sulphates, Na-Carbonate,	
	Lithium Salts, Gypsum, Halite and Zolites	1187
	Introduction	1187
	Borate Salts (Tincals).	1187
	Character, History and Processing	1187
	Geology of Borates	1192
	Evaporitic Borates and the Evolution of Life	1209
	Sodium Sulphate Salts (Salt Cake)	1209
	Character and History	1209
	Canadian Brine Extraction	1216
	Karahogazgol Brines Turkmenistan	1220
	I aguna Del Rav Brines Mexico	1220
	Spanish Glauberite Mines	1224
	Turkish Deposits	1220
	Other Sodium Sulphate Deposits	1220
	Sodium Carbonate Salte (Soda ash)	1231
	Character and Extraction History	1233
	Trope in North America	1200
		1230
	Notimel Node Ash in L'hine	1/4/
	Natural Soda Ash in China Trans in the African Dift	1244
	Natural Soda Ash in China Trona in the African Rift. Cross and NuCl	1242
	Natural Soda Ash in China Trona in the African Rift CaSO ₄ and NaCl	1242 1244 1246
	Natural Soda Ash in China Trona in the African Rift CaSO ₄ and NaCl Calcium Sulphate (Gypsum)	1242 1244 1246 1246
	Natural Soda Ash in China Trona in the African Rift. CaSO ₄ and NaCl. Calcium Sulphate (Gypsum). Rock and Pan Salt (Halite)	1244 1246 1246 1249
	Natural Soda Ash in ChinaTrona in the African Rift. $CaSO_4$ and NaCl.Calcium Sulphate (Gypsum).Rock and Pan Salt (Halite)Lithium and CaCl ₂ Brines, Iodine and Bromine	1244 1246 1246 1249 1256
	Natural Soda Ash in China Trona in the African Rift. CaSO ₄ and NaCl. Calcium Sulphate (Gypsum). Rock and Pan Salt (Halite) Lithium and CaCl ₂ Brines, Iodine and Bromine Lithium Brines	1244 1246 1246 1249 1256 1256
	Natural Soda Ash in China Trona in the African Rift. CaSO ₄ and NaCl. Calcium Sulphate (Gypsum). Rock and Pan Salt (Halite) Lithium and CaCl ₂ Brines, Iodine and Bromine Lithium Brines CaCl ₂ Brines and Minerals	1242 1244 1246 1246 1249 1256 1256 1268
	Natural Soda Ash in China Trona in the African Rift. CaSO ₄ and NaCl. Calcium Sulphate (Gypsum). Rock and Pan Salt (Halite) Lithium and CaCl ₂ Brines, Iodine and Bromine Lithium Brines CaCl ₂ Brines and Minerals Iodine.	1242 1244 1246 1246 1249 1256 1256 1268 1273
	Natural Soda Ash in China Trona in the African Rift. CaSO ₄ and NaCl. Calcium Sulphate (Gypsum). Rock and Pan Salt (Halite) Lithium and CaCl ₂ Brines, Iodine and Bromine Lithium Brines CaCl ₂ Brines and Minerals Iodine. Bromine.	1244 1246 1246 1246 1249 1256 1256 1268 1273 1277
	Natural Soda Ash in China Trona in the African Rift. CaSO ₄ and NaCl. Calcium Sulphate (Gypsum). Rock and Pan Salt (Halite) Lithium and CaCl ₂ Brines, Iodine and Bromine Lithium Brines CaCl ₂ Brines and Minerals Iodine. Bromine. Nitrate Salts (Nitratite and Saltpetre).	1244 1244 1246 1246 1249 1256 1256 1268 1273 1277

	Magnesite and Magnesia Salts	1282
	Sulphur Salts (Brimstone)	1287
	Usage History and Industry Trends	1287
	Types of Natural Sulphur Deposits	1289
	Biology of Native Sulphur	1290
	Occurrences and Textures	1290
	Zeolites – Molecular Sieves.	1292
	Usage and Production	1293
	Geological Controls on Saline Zeolitisation	1294
	Summary	1300
12	Solution Mining and Solt Covern Usage	1202
15	Introduction	1202
	The Solution Mining Process	1303
	History of Solt Solution Walls	1204
	Wall and Covern Design	1204
	Solution Well Styles	1200
	Techniques in Detech Operations	1210
	Lish a la av Effecta Share	1210
	Lithology Effects Shape.	1312
	well Pad Design	1314
	Blinding and Phase Chemistry.	1310
	Phase Chemistry – Irona Solution Mining	1310
		1318
	Energy Liquids & Compressed Air Storage	1318
		1323
	Problems in Salt Solution Mines, Conventional Mines,	1005
	Well-Bores and Storage Facilities	1325
	Case Histories: Caving Brinefields	1326
	Case Histories: Caving and Leaking Wells	1343
	Case Histories: Storage Cavern Problems.	1357
	Gas Escape, Explosions and Fires from Cavern Leaks	1359
	Recognising and Preventing Potential Cavern Problems	1366
	Salt Creep	1366
	Salt Falls Versus Roof Collapses.	1368
	Ground Subsidence	1369
	Surface Indicators of Breached Caverns	1370
	Monitoring and Minimizing Collapse.	1371
	Natural or Anthropogenic Subsidence?	1371
	So How Stable is a Storage Cavern?	1372
	Cavern Plugging	1372
	Summary	1374
14	Meta-evaporites	1375
	Introduction	1375
	World-Scale Tectonism	1379
	Many Meta-evaporites are Pre-Neoproterozoic	1381
	Protoliths Across the First 2 Billion Years	1384
	Metamorphism: Onset and Evolution	1387
	Thrust Belts: Dynamic or Regional Metamorphism	1387
	Meta-evaporite Mineral Associations	1394
	Scapolite and Scapolitization	1394
	Albitites and Albitization	1401
	Tourmaline and Tourmalinisation	1405
	Sodian Phyllosilicates and Talc	1414
	Precious Stones as Meta-evanorites	1417
	Flevated Magnesium Levels in Metasediments	1428
		1740

	Meta-evaporite Examples	1430
	Examples in the Greenschist Realm	1430
	Examples in the Amphibolite/Granulite Realm	1438
	Implications	1468
15	Lower Temperature Metals in an Evaporitic Framework	1469
	Introduction	1469
	A Little Classification/Exploration Philosophy	1473
	Evaporite-Related Metalliferous Brines?	1474
	Modern Basin Brines: Composition	1476
	Basinal Brines: Metal Carrying Capacity	1480
	Low Temperature Sediment-Hosted Ore Deposits (Evaporite-Related)	1490
	Red Sea – Modern Metalliferous Brine Lake Laminite Beds	1491
	Stratiform Copper Deposits (Salt-Related)	1498
	Stratiform Cu Halokinetic-Salt Associations	1500
	Sediment-Hosted Cu in Bedded Evaporite Context	1516
	Stratiform Sediment Hosted Ph-Zn Deposits (Salt-Related)	1524
	Evanorite Associated MVT Deposits	1525
	Evaporite_Associated SedEx Deposits	1563
	Arid Zone Diagenetic Uranium	1505
	and Common Associations	1501
	Duviemente: Vilgerra Australia	1304
	Duricrusis: Yiigam Austrana	1504
		1584
	Porphyry Copper, Supergene Enrichment and Aridity	1586
	Base Metals, Evaporites and Diagenetic Accumulations: A Summary	1588
16	Magma-Evaporite-Hydrothermal Metal Associations	1591
	Introduction	1591
	Metal Transport in the High Temperature Saline Realm	1503
	Regional Orthomagmatic- Evanorite Interactions	1595
	Orthomogmatica Ni Cu Associations with Evaporitas	1393
	orthomaginatic NI-Cu Associations with Evaporites	1506
	Denome superior Internetions	1602
		1602
	Cooking the Salt: Dykes and Sills in Salt.	1602
	Molten Salts: Natrocarbonatite and Brine	1606
	Phreatomagmatic Iron-Rich Associations	1609
	Korshunovsky (Korshunovskoye) Iron Ore Deposits, Siberia	1609
	Paramagmatic Saline Haloes	1610
	Iron-Oxide Copper Gold (IOCG) Deposits.	1616
	IOCG in an Evaporite/Basinal Brine Milieu	1620
	So What Is a IOCG Deposit and Is Mineralisation	
	Evaporite/Brine Related?	1640
	Hydrothermal (Non-evaporitic) Salts and Metalliferous VHMS Deposits	1643
	VHMS Deposits in Subduction-Related Island-Arc Settings:	
	Kuroko-Style Deposits	1646
	VHMS Deposits with Thermal Anhydrites at mid Ocean	
	and Back-Arc Spreading Centres	1650
	VHMS Deposits with Hydrothermal Anhydrite at Sediment-Covered	1050
	Spreading Contrast Paschi Stula and the Guaymas Pasin	1654
	Evaporitas and Matallifarous Daposite	1654
	Evapornes and metalinerous Deposits	1030
D 4		1650
Kef	erences	1659
Ind	ex	1783

Interpreting Evaporite Textures

What is an Evaporite?

I define an evaporite as a salt rock that was originally precipitated from a saturated surface or nearsurface brine in hydrologies driven by solar evaporation (Fig. 1.1a). This simple definition encompasses a wide range of chemically precipitated salts and includes alkali earth carbonates (Table 1.1). Some workers restrict the term evaporite to salts formed at the earth's surface via solar evaporation of hypersaline waters. To underscore the highly reactive nature of evaporites in the sedimentary realm I think of such evaporites as primary, that is, precipitated from a standing body of surface brine and retaining crystallographic evidence of the depositional/hydrological process set where they formed (e.g. bottom-nucleated or current-derived textures). Outside of a few Neogene examples, there are few ancient evaporite beds with textures that are wholly and completely "primary." Most in the subsurface exhibit "secondary" (burial-related) textures, while remnants that have be uplifted back to the surface show "tertiary" (exhumation-related) overprints (Figs. 1.2 and 1.9).

We can contrast the solar-driven set of precipitative processes with other surface and subsurface water-loss mechanisms that can form bodies and beds of mineral salts, with the same chemical compositions as rocks typically called evaporites as listed in Table 1.1. And yet, if applying the term evaporite in its strictest form (i.e., a response to solardriven evaporation), this second group of mineral salts/sediments are not "true" evaporites; rather, they are mineral salts that crystallized in response to various cryogenic, hydrothermal and burial processes.

Solar-Heated Brine Concentration

In its broadest definition, evaporation is the process by which molecules in a liquid (water) spontaneously become gaseous (water vapour) and escape the liquid state, while evaporites are the resultant mineral precipitates accumulating in and around an increasingly saline residual brine that has reached a state of supersaturation with respect to a particular mineral salt or salts. Water molecules in the liquid phase are in continuous motion and so will collide. As they collide, they transfer energy to each other in varying degrees, based on how they collide. Evaporation, then, is a simple matter of solution kinetics in this milieu of molecular motion and is a response to varying degrees of heat absorption at the molecular scale.

On average, water molecules within a standing at-surface brine lake or in near-surface pore spaces, near a watertable and its associated capillary zone, do not have enough kinetic energy to escape the liquid phase and so cross the surface tension barrier. Otherwise, liquid water would turn to vapour spontaneously, any at-surface liquid phase would spontaneously disappear, while recharge to an underlying watertable would be an impossibility. Every so often, the level of solar energy transfer (heat absorption) at the molecular collision site is sufficient to give a water molecule (near the water-air interface) the heat energy necessary to pass into the vapour phase and so exit the liquid water mass (Fig. 1.1a). That is, for a water molecule to escape into the vapour phase it must absorb heat energy, be located near the liquid surface, be moving in the proper direction and have sufficient energy to overcome liquid phase intermolecular forces and pass through the surface tension interface. As the concentration of the residual brine increases the specific heat capacity decreases and the density increases (Fig. 1.1b, c). Specific heat is a measure of how much heat is required to raise the temperature of the brine by 1 °C.

In the absence of air movement, water vapour so created resides within the region immediately above the air-brine interface, or in the vapour phase in the gaseous portion near the top of the capillary zone, immediately below the land surface and above the watertable. Typically, the rate of evaporation atop a standing brine body, or in the uppermost few centimetres of a sabkha mudflat, increases with increasing temperature and decreases with increasing salinity (Bonython 1966). It also increases with the passage of dry winds over **Fig. 1.1** Brine formation by loss of liquid water volume and can occur at any liquid water surface, either at the surface of a standing water body or in a pore. (a) Evaporation: the rate of evaporation and consequent rate of brine formation is controlled by rate of molecular passage of H_2O across the vapour – liquid interface. (b) Decrease in specific heat with increase in concentration of NaCl solution. (c) Increase in density with increase in concentration of NaCl concentration

the brine lake or mudflat as this removes the overlying mass of an otherwise static water vapour cloud. If the water vapour layer is not blown away, it becomes increasingly saturated (humid) and so slows the rate of evaporation, even as the salinity of the underlying water mass increases (Chap. 2). In contrast, if the temperature atop the air-brine interface decreases, the vapour phase can pass back into the liquid phase via condensation. This explains the moisture droplets that form overnight in many saline arid settings and coat rock and salt crust surfaces in the early mornings in most coastal sabkhas. Condensation (not rainfall) explains many of the microkarst runnels that decorate the surfaces in intercrystal vadose contacts of subaerial halite crusts, so obvious in salars in the Andes and in the salt crusts that make up the Devil's Golf Course in Death Valley, California.

Cryogenic and Other Non-solar Saline Mechanisms

In contrast to the formation of evaporite minerals by solardriven evaporation (heating) of surface and nearsurface waters in hot arid and semi-arid climatic settings, cryogenic brines and associated salts require temperatures at or below the freezing point of the liquid phase. Cryogenic salts, such as hydrohalite, mirabilite, antarcticite and epsomite, can then accumulate. They crystallize in a cold, near-freezing, residual brine as it concentrates via the loss of its liquid phase, which is converting/solidifying to ice (Fig. 1.3a). As brine concentration increases, the freezing temperature deceases (Fig. 1.3b). Hydrohalite is a stable precipitate in a freezing brine only when the water temperature is below 0 °C (Fig. 1.4a).

Hydrohalite (NaCl·2H₂O) crystals have pseudo-hexagonal cross sections and are found in a number of modern cold saline lakes. Craig et al. (1974) collected hydrohalite from the lake bottom in saline Lake Bonney in Antarctica, where bottom water temperatures vary between +2.0 and -2.0 °C. Nikolaevsky (1938) observed hydrohalite forming in winter in the Baskunchak salt lake, northwest of the Caspian Sea (48°N latitude). It was seen to form on two occasions when formative brine temperatures were between -3 and -23 °C, while in summer halite precipitates. Hydrohalite also occurs in bottom sediments in salt-saturated cryogenic lakes in Saskatchewan, at about 51°N latitude, and has been observed in nearby saline springs sediments of the Northern Great Plains (Last 1989a). Hydrohalite pseudomorphs occur as halite crystals with hexagonal cross sections in cores some 100-140 m deep, in Death Valley, California, indicating NaCl cryogenesis has occurred in the Pleistocene Death Valley Lake from brines with temperatures that were less than 0 °C (Roberts et al. 1997). The climatic significance

-			
Mineral	Formula	Mineral	Formula
Anhydrite	CaSO ₄	Leonhardtite	MgSO ₄ ·4H ₂ O
Antarcticite	CaCl ₂ ·6H ₂ O	Leonite	MgSO ₄ ·K ₂ SO ₄ ·4H ₂ O
Aphthitalite (glaserite)	K ₂ SO ₄ ·(Na,K)SO ₄	Loewite	2MgSO ₄ ·2Na ₂ SO4·5H ₂ O
Aragonite**	CaCO ₃	Mg-calcite**	$(Mg_xCa_{1-x})CO_3$
Bassanite	CaSO ₄ ·1/2H ₂ O	Magnesite**	MgCO ₃
Bischofite	MgCl ₂ ·6H ₂ O	Meyerhoffite	$Ca_2B_5O_{11}$ ·7H ₂ O
Bloedite (astrakanite)	Na ₂ SO ₄ ·MgSO ₄ ·4H ₂ O	Mirabilite	Na ₂ SO ₄ ·10H ₂ O
Borax (tincal)	$Na_2B_4O_7 \cdot 10H_2O$	Nahcolite	NaHCO ₃
Boracite	$Mg_{3}B_{7}O_{13}$ ·Cl	Natron	Na ₂ CO ₃ ·10H ₂ O
Burkeite	$Na_2CO_3 \cdot 2Na_2SO_4$	Nitratite (soda nitre)	NaNO ₃
Calcite**	CaCO ₃	Nitre (salt petre)	KNO ₃
Carnallite	MgCl ₂ ·KCl·6H ₂ O	Pentahydrite	MgSO ₄ ·5H ₂ O
Colemanite	$Ca_2B_5O_{11}$ ·5H ₂ O	Pirssonite	CaCO ₃ ·Na ₂ CO ₃ ·2H ₂ O
Darapskite	NaSO ₄ ·NaNO ₃ ·H ₂ O	Polyhalite	2CaSO ₄ ·MgSO ₄ ·K ₂ SO ₄ ·H ₂
Dolomite**	$Ca_{(1+x)}Mg_{(1-x)}(CO_3)_2$	Proberite	NaCaB ₅ O ₉ ·5H ₂ O
Epsomite	MgSO ₄ ·7H ₂ O	Priceite (pandermite)	CaB_4O_{10} ·7H ₂ O
Ferronatrite	3NaSO ₄ ·Fe ₂ (SO ₄) ₃ ·6H ₂ O	Rinneite	FeCl ₂ ·NaCl·3KCl
Gaylussite	$CaCO_3 \cdot Na_2CO_3 \cdot 5H_2O$	Sanderite	MgSO ₄ ·2H ₂ O
Glauberite	$CaSO_4 \cdot Na_2SO_4$	Schoenite (picromerite)	MgSO ₄ ·K ₂ SO ₄ ·6H ₂ O
Gypsum	CaSO ₄ ·2H ₂ O	Shortite	$2CaCO_3 \cdot Na_2CO_3$
Halite	NaCl	Sylvite	KCl
Hanksite	9Na ₂ SO ₄ ·2Na ₂ CO ₃ ·KCl	Syngenite	CaSO ₄ ·K ₂ SO ₄ ·H ₂ O
Hexahydrite	MgSO ₄ ·6H ₂ O	Tachyhydrite	CaCl ₂ ·2MgCl ₂ ·12H ₂ O
Howlite	$H_5Ca_2SiB_5O_{14}$	Thernadite	Na_2SO_4
Ikaite**	CaCO ₃ ·6H ₂ O	Thermonatrite	NaCO ₃ ·H ₂ O
Inyoite	$Ca_2B_6O_{11}$ ·13H ₂ O	Tincalconite	$Na_2B_4O_7 \cdot 5H_2O$
Kainite	4MgSO ₄ ·4KCl·11H ₂ O	Trona	NaHCO ₃ ·Na ₂ CO ₃
Kernite	$Na_2B_4O_7 \cdot 4H_2O$	Tychite	2MgCO ₃ ·2NaCO ₃ ·Na ₂ SO ₄
Kieserite	MgSO ₄ ·H ₂ O	Ulexite	NaCaB ₅ O ₉ ·5H ₂ O
Langbeinite	2MgSO ₄ ·K ₂ SO ₄	Vanthoffite	MgSO ₄ ·3Na ₂ SO ₄

Table 1.1 Major evaporite minerals: less saline alkaline earth carbonates or evaporitic carbonates are indicated by **, the remainder are the more saline evaporite salts

Documented dolomite composition ranges from $Ca_{1.16}Mg_{0.84}(CO_3)_2$ to $Ca_{0.96}Mg_{1.04}(CO_3)_2$. Less common evaporite minerals, such as borates, iodates, nitrates and zeolites are not listed here, but are discussed in detail in Chap. 12

Fig. 1.2 What are primary and secondary precipitates?

Fig. 1.3 Cryogenesis: (a) Brine is formed and concentrated as cations and anions are excluded from the lattice structure of ice (pure water) as it solidifies. (b) Brine freezing temperature falls as the NaCl concentration increases

of such cryogenic salt is discussed in Chap. 2, while economic deposits of cryogenic lacustrine mirabilite are discussed in detail in Chap. 12.

When polar seawaters freeze on Earth, hydrohalite and mirabilite (Na₂SO₄ \cdot 10H₂O) precipitate from the residual marine brines and accumulate in ice sheet fissures, or in load-induced fractures in the ice understory wherever an increasingly saline brine sinks into rocks fractures beneath ice sheets. For example, there are numerous mirabilite beds on the ice floes of the Ross Ice Shelf near Black Island. Likewise, there are dense residual saline brines in interstitial waters extracted from deep cores in sediments of McMurdo Sound (Brady and Batts 1981; Frank et al. 2010). It seems that when ice sheets retreat, the at-surface cryogenic salts dissolve in the freshened at-surface hydrology, but the dense hypersaline brines remain behind in deep fissures, held and preserved in the rock fractures (Starinsky and Katz 2003). In the extreme setting of at-surface brine freezing in small saline depressions in the Dry Valleys of Antarctica, a solid form of calcium chloride, antarcticite, grows cryogenically in what is probably the most saline perennial natural water mass in the world (47 % salinity in Don Juan Pond, Antarctica; Horita 2009).

Extraterrestrially, cryogenesis explains sulphate salt phases that typify ice crack fissures crisscrossing the surface of Europa (a moon of Jupiter) and growing seasonally in

Fig. 1.4 Temperature dependence of (**a**) hydrohalite and, (**b**) CaSO₄ (After Cohen 1989)

soils of Mar. Widespread gypsum is also forming via ice ablation in the circumpolar Martian dunefield (McCord et al. 1998; Wentworth et al. 2005; Masse et al. 2012). On Earth, as ground temperatures increase, cryogenic salts tend to deliquesce or convert to their high temperature daughter salts (thenardite, glauberite and halite). Worldwide, in appropriate cold climatic settings, there are also numerous examples of cryogenic hydrated calcite (ikaite-glendonite after CaCO₃·6H₂O – see James et al. 2005).

Silica is not normally considered an evaporite salt, but some forms of chert (finely crystalline silica) do accumulate as primary chemical/biochemical precipitates in evaporitic settings. For example, there are hypersaline chert-filled vugs in magnesite crusts in some of the hypersaline alkaline lakes of the Coorong region, Australia (Peterson and Von der Borch 1965) and there are abundant chert co-precipitates (early diagenetic) in Miocene lacustrine beds in the Ebro Basin, Spain (Orti et al. 2007). Then there are thermalitic opal-A cherts associated with hot springs about the edges of many saline lakes, exemplified by the hot spring precipitates of the East African rift lakes (Owen et al. 2008). These likely-biomediated carbonate and silica terrestrial precipitates crystallize as mineral salts in somewhat saline settings, but unlike other evaporitic mineral salts, these syndepositional calcite and silica cements are not considered a possible variation on an evaporitic theme by the majority of the sedimentological scientific community.

I will leave it up to the purists to decide which of the various "heated" and "freeze-dried" salts, carbonates and silica cements that form at or near the earth's surface, in environments influenced by variations in solar radiation, are "true evaporites."

I am quite happy to call them all variations on the evaporite/mineral salt/brine theme. If not, then the classic thick widespread Quaternary-age cryogenically-formed mirabilites that evolved into the glauberite beds that underlie and typify Karabogaz Gol, and the extensive mirabilite bed in the shallow subsurface of Great Salt Lake, Utah, in two of what are considered by many to be better-known evaporite systems of the Quaternary, are not "true" evaporites. Nor are the mirabilites forming today on the floors and in the mudflats of modern salt lakes across the Canadian Plains.

Burial and Hydrothermal Salts

Substantial volumes of mineral salts, with compositions typically considered evaporite mineralogies, such as anhydrite and even halite, can precipitate in the deep subsurface of the earth in response to heating, cooling, or to increases in pore fluid salinity. None of these process sets, which can typify large parts of the crustal subsurface, are directly solar-driven. Perhaps the resulting mineral precipitates are best classified as hydrothermal or burial salts rather than "true" evaporites. In the sabkha chapter we shall see how retrograde solubility of anhydrite may drive its precipitation as modern sabkha thermalites; the same retrograde precipitation mechanism also drives the formation of burial anhydrites.

The term burial salt is a general descriptor (as defined by Warren 1999, 2006) that encompasses a set of mineral salts created by diagenetic and metamorphic processes that can precipitate mineral salts in the vicinity of a dissolving and altering subsurface salt mass (salt beds, diapirs and allochthons). This is especially so in zones where two brines mix, which premixing had different salinities and chemical constituent proportions. In the sabkha chapter we shall see how retrograde solubility of anhydrite may drive its precipitation mechanism also drives the formation of burial anhydrites different salinities and chemical constituent proportions. In the subsurface, such burial salts tend to form pore or fracture fills, located wherever the most permeable subsurface conduits were at the time of brine mixing and precipitation. A burial salt is not a true evaporite in that it is not formed by solar evaporation but, the fact that its ionic constituents are typically derived by the dissolution/alteration of a nearby evaporite, means most geologists consider burial salts in sedimentary basins to be evaporites. The precipitative processes driving formation of burial salts are typically heating, cooling or mixing of basinal waters of two salinities, typically derived by the dissolution of subsurface salt masses or relict hypersaline pore brines (see Chap. 2 for detailed discussion of the relevant literature).

The most common burial salt forming within or near a mass of buried evaporites is a sparry poikilotopic anhydrite, as typifies porosity-occluding cements in many reservoir sands in the North Sea (Sullivan et al. 1994). Halite cements can also be burial salts and both minerals are derived by the subsurface flushing of the nearby evaporites, as in carbonate-sliver reservoirs encased in Infracambrian Ara Salt in the South Oman Salt basin (Schoenherr et al. 2009). Timing of the onset of such subsurface dissolution and reprecipitation as burial salts can be late or early (e.g. Schoenherr et al. 2009; McNeil et al. 1998; Kendall 2000).

Hydrothermal salt is a broader descriptor than burial salt and encompasses a higher temperature range for mineral precipitates than the diagenetic realm, Such salts typically formed in heated subsurface fractures or at seafloor vents where hydrothermal waters are escaping, mixing, degassing heating and cooling. Hydrothermal anhydrite crystallizes due to anhydrite's retrograde solubility, whereby CaSO₄ becomes less soluble with increasing temperature (Fig. 1.4b). This is why, in the vicinity of active basaltic ridges on the deep seafloor, anhydrite is the dominant component of "white smokers" and is commonplace in other hydrothermal vent mounds; it is also why anhydrite is a major early component of many VHMS seafloor mounds (e.g. TAG Mound where it can constitute more than 50 % of the rock mass; Chap. 16). Hydrothermal anhydrite precipitates in response to the heating of seawater in regions where magmaticallydriven hydrothermal fluids are escaping onto the seafloor. In contrast, baryte, another marine hydrothermal precipitate, has prograde solubility and precipitates when an escaping barium-bearing brine is cooled by interacting and mixing with seawater (accordingly the S and Sr isotope signatures in the two precipitates reflect their origins - Paytan and Kastner 2002).

Hovland et al. (2006a, b) and Hovland and Rueslatten (2009) introduced the concept of substantial volumes of hydrothermal halite precipitating from subsurface brines at supercritical temperatures, especially in deeply buried riftrelated sedimentary basins. The model relies on heated subsurface waters becoming supercritical and so transforming to a fluid that does not dissolve but precipitates salt (within specific temperature and pressure ranges). A supercritical fluid is defined as any substance at a temperature and pressure above its critical point; in such a state it can effuse through solids like a gas, and dissolve materials like a liquid. In addition, close to the critical point, small changes in pressure or temperature result in large changes in density. The critical point (CP), also called a critical state, specifies the conditions (temperature, pressure and sometimes composition) at which a phase boundary ceases to exist. Under certain pressure/temperature conditions, supercritical water is unable to dissolve/retain common sea salts in solution (Josephson 1982; Simoneit 1994; Hovland et al. 2006a).

When seawater brines are heated in pressure cells in the laboratory they pass into the supercritical region at a temperature of 405 °C and 300 bar pressure (the CP of seawater). A particulate 'cloud' then forms via the onset of 'shock crystallization' of NaCl and Na₂SO₄ (Fig. 1.5a). The sudden phase transition occurs as the solubility of the previously dissolved salts declines to near-zero, across a temperature range

of only a few degrees, and is associated with a substantial lowering of density (Fig. 1.5b). The resulting solids in the "cloud" consist of amorphous microscopic NaCl particles with sizes between 10 and 100 mm. The resultant "salting out" can lead to the precipitation of large volumes of subsurface salts, as well as the ability to carry high volumes of hydrothermal hydrocarbons prior to the onset of supercritical conditions (Josephson 1982; Fig. 1.5c). Supercritical water has enhanced solvent capacity for organic compounds and reduced solvation properties for ionic species due to its loss of aqueous hydrogen bonding (Simoneit 1994).

Hovland et al. (2006a, b) predict that some of the large volumes of deep subsurface salt found in the Red Sea, in the Mediterranean Sea and the Danakil depression, formed via the forced magmatically-driven hydrothermal circulation of seawater down to depths where it became supercritical. This salt, they argue, was precipitated deep under-ground via "shock crystallisation" from a supercritical effusive phase

Fig. 1.5 Hydrothermal halite derived from supercritical seawater. (a) P-T projection of the monovariant solid-liquid-vapour saturation curve (solidus) for the NaCl-water system. *Arrows* indicate the two points of intersection with the section at 250 bar (defining the lower and upper solidus boundaries). (b) Density of water and brine as a function of temperature

along the 300 bar isobar. The two-phase region (or "out-salting region") is indicated by the shaded region with onset indicated by a drastic fall in density over a narrow temperature range. (c) Ionic and hydrocarbon solubility in heated water at pressures of 200–300 bars (**a**–**b** After Hovland et al. 2006a, b; **c** after Josephson 1982; Simoneit 1994)

and so formed massive accumulations (mostly halite) typically in crustal fractures that facilitated the deep circulation. NaCl then flowed upwards in solution in dense, hot hydrothermal brine plumes, precipitating more solid salt beds upon cooling nearer or on the surface/seafloor. To date, the Hovland et al. model of hydrothermal sourcing for widespread halite from a supercritical brine source (in active magmatic settings) has not been widely accepted by the geological community (Talbot 2008).

Another source of chlorine-rich hydrothermal fluid in the deep subsurface is the recycling of deeply buried sedimentary salt into the greenschist realm and beyond (Yardley and Graham 2002). In the metamorphic realm (T>200 $^{\circ}$ C) the derived fluids do not precipitate halite, but a series of metaevaporite indicator minerals (Chap. 14). Lewis and Holness (1996) demonstrated that buried salt bodies, subjected to high pressures and elevated temperatures, can acquire a permeability comparable to that of a sand. This is because the crystalline structure of deeply buried salt (halite) attains dihedral angles between salt crystals of less than 60° and so creates an permeable polyhedral meshwork. Such conditions probably begin at the onset of greenschist P-T conditions, whereby highly saline hot brines form continuous brine stringers around all such altered and recrystallizing salt crystals (Fig. 1.6; Chap. 14). This polyhedral permeability meshwork allows hot dense brines or hydrocarbons to migrate through salt and so ultimately dissolve the salt host, releasing a pulse of sodic- and chloride-rich fluid into the metamorphic realm (Chap. 14). It is why little or no evidence of masses of metamorphosed halite is found in subsurface meta-evaporitic settings where temperatures have exceeded 250-300 °C, even though the melting point of halite is 800 °C. Given the right subsurface conditions these halite-derived metamorphic brines may evolve into supercritical waters.

One of the most visually spectacular examples of hydrothermal precipitation is in the Naica mine, Chihuahua,

а

Mexico (Fig. 1.7a). There several natural caverns, such as Cave of Swords (Cueva de la Espades) and Cave of Crystals (Cueva de los Cristales), which contain giant, faceted, and transparent single crystals of gypsum as long as 11 m (García-Ruiz et al. 2007; Garofalo et al. 2010). Crystals in Cueva de los Cristales are the largest documented gypsum crystals worldwide. These huge crystals grew slowly at very low supersaturation levels from thermal waters near the gypsum-anhydrite boundary. Gypsum is currently precipitating on modern mine walls.

Fluid inclusion analyses show that the giant crystals came from low-salinity solutions at temperatures ≈ 54 °C, slightly below the temperature at which the solubility of anhydrite equals that of gypsum (Fig. 1.7b). According to García-Ruiz et al. 2007, the sulphur and oxygen isotopic compositions of these gypsum crystals are compatible with growth from solutions resulting from dissolution of anhydrite, which was previously precipitated during late hydrothermal mineralization in a volcanogenic matrix. The chemistry suggests that these megacrystals formed via a self-feeding mechanism, driven by a solution-mediated, anhydrite-gypsum phase transition. Nucleation kinetics calculations based on laboratory data show that this mechanism can account for the formation of these giant crystals, yet only when operating within a very narrow range of temperature of a few degrees, as identified by the fluid inclusion values. According to the paper's authors, these singular conditions create a mineral wonderland, a site of scientific interest, and an extraordinary phenomenon worthy of preservation.

Garofalo et al. (2010), accept the need for a limited temperature range during precipitation, but argue the precipitating solutions were in part meteorically influenced. Their work focused on Cueva de las Espadas. As for most other hypogenic caves, prior to their analytical work they assumed that caves of the Naica region lacked a direct connection with the land surface and so gypsum precipitation would be

Fig. 1.6 Effect of dihedral angle on pore connectivity in texturally equilibrated monomineralic and isotopic polycrystalline mosaic halite. Shading shows position of dihedral fluid phase within the polyhedral intercrystalline porosity. (a) Isolated porosity for dihedral angle >60°. (**b**) Connected polyhedral porosity for dihedral angle <60° (After Lewis and Holness 1996)

Burial induced change in halite interhedral angle

Fig. 1.7 Naica Mine, Mexico. (a) Cross section of Naica mine. Mine exploits a hydrothermal Pb-Zn-Ag deposit with irregular manto and pipe morphologies entirely enclosed in subhorizontally dipping carbonates. Cavities of gypsum crystals are located in carbonates close to main and secondary faults. Galleries have been excavated down to -760 m, requiring average pumping rate of 55 m3/min to depress groundwater to -580 m with respect to phreatic level located at -120 m; Naica and Gibraltar faults act as main drains. (b) Homogenization temperatures of 31 fluid inclusions showing actual temperature of growth. (c) Solubility of gypsum calculated at 55 °C and 105 Pa and measured activities of shallow and deep cave fluids from fluid inclusion data. Mixing at equilibrium between these two fluids in any proportion generates a fluid with a composition would consistently supersaturated with respect to gypsum, as shown by the position of the mixing curve, indicated by a dashed line, in the gypsum supersaturation field (After García-Ruiz et al. 2007; Garofalo et al. 2010)

unrelated to climate variation, Yet, utilising a combination of fluid inclusion and pollen spectra data from cave and mine gypsum, they concluded climatic changes occurring at Naica exerted and influence on fluid composition in the Naica caves, and hence on crystal precipitation and growth.

Microthermometry and LA-ICP-Mass Spectrometry of fluid inclusions in the gypsum indicate that brine source was a shallow, chemically peculiar, saline fluid (up to 7.7 eq. wt.% NaCl) in the Cueva de las Espadas and that it could

have formed via evaporation, during an earlier dry and hot climatic period. In contrast, the fluid of the deeper caves (Cristales) was of lower salinity (≈ 3.5 eq. wt.% NaCl) and chemically homogeneous, and likely was little affected by evaporation processes. Garofalo et al. (2010) propose that mixing of these two fluids, generated at different depths of the Naica drainage basin, determined the stable supersaturation conditions needed for the gigantic gypsum crystals to grow (Fig. 1.7c). The hydraulic communication between Cueva de las Espadas and the other deep Naica caves controlled fluid mixing. Mixing must have taken place during alternating cycles of warm-dry and fresh-wet climatic periods, which are known to have occurred in the region. Pollen grains from 35 ka-old gypsum crystals from the Cave of Crystals indicates a fairly homogenous catchment basin dominated by a mixed broadleaf wet forest. This suggests precipitation during a fresh-wet climatic period, the debate continues.

So, What Exactly Is an Evaporite?

Now that we have discussed some possible complexities in interpretation created by the widespread occurrence of nonsolar mineral salts, the remainder of this chapter deals with controls on distribution of "true" sedimentary modern and ancient evaporites (formed at or nearsurface by solar-driven brine concentration). My working definition for an evaporite is, as the name suggests, a sedimentary rock formed at sedimentary surface temperatures (>50–70 °C) and is typically precipitated by solar concentration (heating) of a nearsurface or at-surface brine to where the salinity of residual brine becomes saturated with respect to a particular set of mineral salts, which then drop out of the solution as a series of predictable crystallites, subject to nearsurface and later alteration, replacement and dissolution (Figs. 1.8 and 1.9).

So, what are the basic requirements to form and preserve an evaporite? We need; (1) a surface or nearsurface brine body that is saline enough to precipitate and preserve salt, this typically means an arid to semi-arid climatic setting with a drawdown hydrology capable of maintaining substantial volumes of saltsaturated brine at or near the landsurface, (2) accommodation space in a sedimentary depression that is not completely filled by other sediment, and (3) a burial environment that does not allow sufficient undersaturated porewater throughflow to completely dissolve the buried salts.

Depositional Setting and Texture

Primary evaporites precipitate with distinct textures in a number of hydrologically-contrasted settings, contingent on brine stability and rates of temperature and salinity change in the mother liquor. Primary evaporite textures are direct indicators of the hydrology at the time of precipitation and

"In situ" eva	aporite texture	es (not mecha	anically rework	ed)	Evaporite textures from syndepositional mechanical reworking				
Subaerial sabkha-style (mud or sandflat)	Salts precipitate just below sediment surface Retrograde (thermalite) salts in zones of temp. increase Prograde salts in zones of temperature decrease				Subaerial (mudflat or sandflat)	Aeo Lunettes gyr	olian transport (mostly x-bedded osum sands)	Pedogenesis Gypsite soils (mostly gypsum silt)	
Saline pan or strandzone	Cycles of flooding and desiccation Cycles of flooding and desiccation					Shorezone or strandzone		Halolites and gypsol	ites (x-rippled)
	Seasonally meromictic brine column	Shallower Cumulates Deeper Deeper Pelagic laminites	v	Shallower (saltern or shelf)	Intraclasts and cementstone	Storm and wave-rippled			
Subaqueous	Long-term holomictic brine column	Shallower	Bottom nuclea beds of coarse inclusion-rich growth-aligne Bottom nucle coarse inclus -free crystal r	ated		Subaqueou	Deeper (slope and rise to basinal)	Proximal Olistoliths Turbio	Distal dites Laminites (distal to turbidites)

Fig. 1.8 Significance of primary evaporite depositional textures as indicators of brine hydrology

accumulation (Fig. 1.8). Sometimes crystals remain where they precipitate, other times they are mechanically or geochemically reworked, or undergo partial degrees of dissolution and fractional recrystallization.

Crystals may first precipitate at the air-brine interface in rafted crystal clusters that then sink to form cumulate beds, or can be blown to the strandzone (e.g., halite rafts crystallizing at the air-brine interface in Lake Guilietti in Ethiopia). Then again, immediately after they crystallize, precipitates can sink from the uppermost water mass to ultimately collect as pelagic accumulations (cumulates) on the shallow or deep brine floor "rain from heaven" deposits. Seasonal or longer term changes in the chemistry and salinity in the upper water column means many such pelagic deposits are mm-scale laminates made up of mineral doublet or triplet layers. In a holomictic shallow water mass, coarse cm-dm scale crystals can form as bottom-nucleated inclusion-entraining precipitates, typically at the base of a water column that is tens of centimetres to metres deep. Such crystals, be they gypsum swallowtails or halite chevrons, tend to be composed of alternating inclusion-rich and inclusion-poor laminae and micro-laminae, reflecting rapid changes in chemistry or temperature of the overlying shallow holomictic water mass (Fig. 1.8).

If a brine column remains both supersaturated and holomictic to greater depths, then evaporites can accumulate at the deepwater base of a brine column that is hundreds of metres deep. This is the case today in the North Basin of the Dead Sea in the Middle East, where a salt bed, made up of a meshwork of inclusion-free, randomly-aligned cm-scale halite crystals, is accumulating and has been doing so since the North Basin brine column became holomictic in February, 1978. Prior to 1978 and for at least the preceding 400 years the brine column of North Basin (>370 m water depth) was a meromictic density-stratified hypersaline system, with pelagic mm-scale laminites accumulating on the same deep bottom, composed of alternating calcite and aragonite lamina, along with minor cm-scale gypsum crystal clusters or rosettes. The lack of inclusions in the halite mesh on the present-day deep bottom reflects the greater stability of chemical conditions on the bottom. The corollary is that growth-aligned evaporite crystals, rich in entrained inclusions of brine (e.g. chevron halite in Death Valley, California, or carbonate pellets encased in swallowtail gypsum in Marion Lake, Australia) indicate precipitation in much shallower water depths (decimetre to metre depths). That is, inclusion-rich aligned bottom-growth

Fig. 1.9 Classification of evaporite formation in the depositional-diagenetic realms emphasizing ongoing postdepositional evolution of mineralogy and texture

		Т	уре	Precipitation process	Tem (°C)	b Hydrological process	
from a riven by	ant extures	"P ev	rimary" aporite	An evaporite salt precipitated via solar evaporation from a brine pool at the earth's surface. Crusts, bottom nucleates & pelagic crystals accumulate on brine pool floor.	-60 °C	Gravity and density effects	iven by ation
lly precipitated by processes d	 Remn primary te 	y" evaporites	okha nodules he bulk /aporite beds)	An evaporite salt formed in the shallow subsurface in the zone of active prheatic flow. The concentration process of the brine and the associated gravitational reflux is driven by solar evaporation. May form displacive, replacive or cement textures.		at surface or in zone of active phreatic flow (brine reflux	Saturation dr solar evapora
hat was origina surface brine t ar evaporation"	Seconday exture dominan	"Secondar	(include sal and t of ancient ev	A burial diagenetic evaporite phase that replaces earlier evaporite beds. Salt precipitation is driven by fluid mixing or saturation mechanisms driven by burial diagenetic processes. Forms replacive and cement textures.	60–200 °C	Burial effects compactional	riven oration
ite is a rock t irface or near sol			Burial salts	Subsurface precipitation of evaporite as cements and replacements in non-evaporite matrix from a saturated brine derived form the dissolution of adjacent evaporite beds or zones of brine mixing.		and thermobaric flow	uration not d v solar evap
"An evapor aturated su	trertiary" evaporites		Tertiary" vaporites	An evaporite formed by brine saturation related to partial bed dissolution via re-entry into the zone of active phreatic circulation. Often driven by basin uplift and reosion.	060 °C	Stagnant to active phreatic flow	Brine sat directly b
?? ??	No prima	Hyo sali	drothermal s	Salts (anhydrite – retrograde; halite -supercritical) precipitated by heating of seawater or subsurface brines.	>150 °C	Hydrothermal circulation	

Time

textures form in well-mixed brines that are shallow enough to experience short term changes in saturation and growth rate, coupled to short term changes in water temperature or salinity.

If currents and waves rework the bottom crystals, then ripple structures and dune forms can be the dominant texture in the accumulating evaporite bed. The presence of evaporite equivalents of carbonate ooids, namely gypsolites and halolites, indicate oscillating bottom currents at the time the crystals grew. Brine floor instability, related to seismic events, halokinesis or tectonism, can also lead to the formation of slumps, brine escape and debris flow textures (seismites) in a salt bed deposited at any water depth (El Taki and Pratt 2010). The lowering of suprasalt brine column salinity or the lowering of the regional watertable can create karst cones and breccias in an evaporite bed. For more detail on the significance of the various evaporite textures the reader is referred to (Lowenstein and Hardie 1985; Orti et al. 2010).

Evaporite salts can crystallize as early diagenetic precipitates in the shallow subsurface some mm to cm below the sediment surface, as occurs today in the capillary zones of many marine coastal and continental mudflats and sabkhas (where displacive and poikilotopic crystals, nodules and efflorescent crusts are typical). Some initial crystals precipitates can be dissolved and recycled through the nearsurface sediment column, especially in arid and semi-arid settings, to create pedogenic profiles; as in the gypsite soils atop gypsum lunettes in southern Australia or in the nitrate-rich salt solid of the hyperarid Atacama Desert.

So, as for depositional textural associations in carbonate and siliciclastic sediments, a depositional model based on evaporite textures can encompass a spectrum of formative sites ranging from the pedogenic, to saline mudflats, to shallow and deep subaqueous brine settings. However, because evaporite salts are orders of magnitude more soluble than carbonate or siliciclastic sediments, they require particular postdepositional tectonics and hydrologies in order for large volumes of salts to be buried and textures preserved or no more than partially modified. This high degree of solubility and mobility at the time of precipitation and in their subsequent subsurface evolution is key to understanding deposition and diagenesis in both modern and ancient evaporite settings.

Secondary and Tertiary Evaporites

As soon as an evaporite bed is formed it is subject to alteration, which continues at varying levels of intensity throughout the sedimentary history of the rock (Fig. 1.9). In a Pre-Quaternary, or certainly pre-Neogene evaporite, many textures are secondary; the rock has been diagenetically altered, frequently showing fabrics indicating early recrystallisation and perhaps some later crossflow of basinal waters.

Under this definition of a primary versus secondary salt, even the nodules in Holocene mudflats are secondary salts, including those in the various modern mudflats of the Arabian (Persian) Gulf, which is the type area for a sabkha. The nodules are a porewater overprint superimposed on a primary matrix of mud and sand. Ancient bedded anhydrites are typically dominated by secondary textures, although beds may still retain "ghosts" or partial relicts of primary textures such as indistinct laminae or aligned nodules after growth-aligned gypsum. In a halite bed there may be remnant patches of aligned halite chevrons floating in a matrix of mosaic halite spar. Even when evaporite beds are extensively recrystallised, most retain coarse stratiform layering made up of that once defined primary impurities depositional discontinuities.

What distinguishes evaporites, especially NaCl beds, from other types of sediment in the subsurface is their ability to flow via pressure-driven recrystallisation, even as they backreact or dissolve. Even earlier secondary textures can be syndepositional precipitates, formed as cements and replacements, while primary matrix accumulated around them. Early replacement sometimes preserves remnants of the original depositional texture, such as gypsum ghosts in nodular anhydrite or aligned halite chevrons outlined by secondary anhydrite. Nodular anhydrite ghosting of lenticular gypsum was recognised in Permian mudflats in the early 1960s by Kerr and Thomson (1963), they interpreted it as a subaqueous saline pan indicator. Unfortunately, for the next two decades their results were overlooked by workers in the Permian Basin who incorrectly applied supratidal capillary analogs to thick massive subaqueous anhydrite beds.

Early diagenetic overprints and effects of later compactiondriven flow and pressure solution can destroy much of the depositional evidence in an ancient evaporite bed. This means retention of primary crystal textures is at best patchy in both halite and anhydrite beds. Many ancient bedded halites are dominated by coarsely crystalline halite spar. Much of it was deposited in multiple episodes of early diagenetic (syndepositional) cementation, leaving less than 10-15 % of the bed as primary growth-aligned chevrons within a few metres to tens of meters below of the depositional surface. This syndepositional coarse sparry halite formed in multiple dissolution-precipitation events in microkarst pits and was precipitated between successive depositional episodes of chevron halite crust formation (Chap. 3). Other coarsely crystalline halite spar, especially in halokinetic beds, shows pervasive and multiple flowaligned textures created by pressure-solution. Textures are driven by numerous salt creep and recrystallisation episodes, which occur millennia to millions of years postdeposition, and after hundred to thousands of metres of burial (Chap. 6).

Secondary evaporite textures form in subsurface settings equivalent to the eogenetic¹ and mesogenetic porosity realms, as defined for carbonates by Choquette and Pray (1970). Tertiary evaporite textures tend to form in the telogenetic realm (Fig. 1.9). And, as in carbonate diagenesis, the most pervasive alteration of evaporites is either early in the burial history (eodiagenesis) or it occurs much later during uplift (telo-diagenesis). Both the eogenetic and telogenetic settings are characterised by relatively permeable evaporites and hydrologies capable of high volumes of pore fluid crossflow. Alteration of a salt mass in the mesogenetic realm consists largely of recrystallisation overprints within a flowing salt mass, but with substantial alteration and dissolution possible about the edge of a bed or a flowing salt mass. In carbonates, the mesogenetic overprint tends to be pervasive throughout the bed (Choquette and Pray 1970). In evaporites units, the pervasive early loss of porosity and permeability in the shallow diagenetic/eogenetic realm means that deep burial (mesogenetic) alteration, prior to halokinesis, tends to be first concentrated about the edges of a buried salt body (see discussion of dissolving salt "block of ice" model in Chaps. 7 and 8). Unlike carbonates and siliciclastics, the core of a subsurface bedded halite unit (nonhalokinetic) can be largely unaffected by fluid flow-driven processes of burial alteration due to its early loss of effective porosity via cementation. Preservation of the unaltered core of the salt unit is why viable Permian halobacteria can be cultured from brine inclusions in remnant chevrons in Permian salt beds from West Texas (Vreeland et al. 2000).

Unlike quartzose and aluminosilicate sediments, buried evaporite beds can flow as ductile masses from the surface down to 8–10 km of burial and even into the metamorphic realm. At the same time their dissolving edges supply ions to adjacent nonevaporitic sediments. Salt flow can be: (a) early diagenetic, coinciding with syndepositional fractionation, reflux or dissolution; (b) later diagenetic, associated with complex burial-stage bed dissolution or reprecipitation and driven by subsurface fluid flow in the zone of free convection below the zone of overpressure; (c) widespread and pervasive, as occurs during halokinesis (salt tectonics); and (d) postdiagenetic and extending well into the metamorphic realm where daughter minerals, such as scapolite and tourmaline, can act as a source of volatiles and lubricants long after the precursor salts have gone.

Exhumed or uplifted evaporite beds also undergo pervasive alteration, dissolution and replacement as they re-enter the zone of active phreatic flow (telogenesis) and regain permeability along internodular nd inter crystalline boundaries. Once again, alteration tends to occur from the edges inward. Soluble components from the altering and dissolving bed can be reprecipitated in adjacent shales as alabastrine and satinspar gypsum or fibrous halite veins. Exhumed evaporite textures are termed tertiary (Fig. 1.9) and are varying combinations of competitive crystal alignment and geopetal void fills. The resulting fabrics can duplicate "primary" crystal alignments, especially when parts of a cavern fill can only be studied at a limited scale, as in core or a mine face. Not recognising a telogenetic overprint typically misidentifies tertiary evaporite textures as primary and so creates interpretive confusion (Chap. 7). This is why interpretations of depositional setting are not reliable if based on observations in an evaporite outcrop where that unit is the remnant of a once more massive and thick primary unit that has passed through the mill of burial and uplift. Adjacent nonevaporitic sandstones, shales and limestones also undergo diagenetic reactions when flushed by evolving pore fluids, but the diagenetic rock/fluid framework is slower to respond and requires years to millennia to overprint an original depositional texture. But, given enough time, the textures of many other sediments evolve during burial, just at much slower rates (Table 1.2).

Primary Evaporitic Carbonates

The simplest subdivision of evaporite minerals is into evaporitic alkaline earth carbonates – aragonite, dolomite, low-Mg calcite and high-Mg calcite – and evaporite salts – gypsum, anhydrite, halite, trona, carnallite, etc. (Table 1.1). Primary evaporitic carbonates tend to form in the initial stages of brine concentration, whereas the other primary evaporite salts are precipitated in the more saline stages of concentration (Chap. 2). Evaporitic carbonates can contain and preserve elevated levels of organic matter that subsequently generate hydrocarbons or act as reductants for base metal sulphides (Chap. 9).

Evaporitic alkaline earth carbonates are the first evaporite minerals to precipitate from a concentrating hypersaline surface water and are usually composed of aragonite, high- and lowMg-calcite, magnesite or even primary dolomite. The essential hydrology of any evaporite depositional setting is that evaporative outflow exceeds inflow. This results in two characteristics of the carbonate depositional system, which hold also for the more saline evaporite salts. First, rapid

¹In their original definitions Choquette and Pray (1970) focused their studies on carbonate sediments. Throughout this book I have expanded and slightly modified their original definitions (*as noted in italics*). So the modified definitions of eogenetic, mesogenetic and telogenetic are as follows: Eogenetic zone extends from surface of newly deposited sediment (*not just carbonates*) to depths where processes genetically related to surface become ineffective. Telogenetic zone extends from erosion surface to depths at which major surface-related erosional processes become ineffective. Below a subaerial erosion surface, the practical lower limit of telogenesis is at or near watertable (*and the related surface driven zone of phreatic meteoric water movement and includes both unconfined and confined aquifers*). Mesogenetic zone lies below major influences of processes, or features developed in respective zones.

	Siliciclastic: (continental, fluviodeltaic, shelf, submarine)	Carbonate: humid-oceanic/marine tropical/subtropical	Carbonate-evaporite: arid, land-locked subtropical/ temperate
Early marine cementation	Rare	Local occurrence	Pervasive (especially in mesohaline platform)
Dolomitisation	Rare	Locally in mixing zones (?)	Pervasive (brine reflux and burial)
Leaching	Uncommon, mostly related to freshwater leaching, rare in burial diagenesis	Common, related to subaerial exposure and karstification	Intensive, related to hypersaline brines
Calcite cementation	Uncommon, locally common (mostly related to burial)	Common	Rare to local occurrence (mostly burial)
Anhydrite-halite	Uncommon	Rare to absent	Common to pervasive
Porosity types	Intergranular	(1) Mouldic, vuggy and chalky microporosity (common)(2) Fracture and intercrystalline porosity (local occurrence)	 (1) Intergranular, mouldic, vuggy, and intercrystalline (dolomitic) porosity (very common) (2) Fracture and chalky microporosity (locally common)
Controls on reservoir quality	(1) Stratigraphic position(2) Depositional facies	 (1) Stratigraphic position (2) Depositional facies (3) Karst in zones on meteoric influx 	(1) Depositional facies(2) Accessibility of sulphate- and chloride- bearing and later corrosive fluids (karstic or deep)
Geometry	Layered	Layered	 (1) Carbonate-basinwide evaporite: Massive, irregular, halokinetic (2) Carbonate-saltern-mudflat evaporite: layered
Reservoir distribution	High energy shoreline or channel fills with position related to lowstand, transgressive and highstand system tract	Highstand reef or bank carbonate immediately beneath subaerial unconformity	 (1) Carbonate-basinwide evaporite: near faults and fractures where late corrosion is most intensive (2) Carbonate saltern-mudflat evaporite (a) Within grain-supported facies where primary porosity is preserved or mouldic porosity was created through leaching (b) Within coarsely crystalline dolomite (c) Within highly fractured limestone

Table 1.2 Characteristics of siliciclastic and carbonate depositional systems

In part after Sun and Esteban (1994)

changes in water level are possible, especially in the more marginward facies, leading to interlayering of strandzone and subaqueous units. Under such a regime any subaqueously precipitated sediment is liable to subaerial exposure and syndepositional subaerial diagenesis. Second, the solute content, especially the Mg/Ca ratio, of shallow hypersaline water fluctuates as the salinity fluctuates. For example, the Ca content of any freshened water is depleted by the early precipitation of calcite or low-Mg calcite. Subsequent carbonate precipitates drop out of increasingly saline waters that will have a higher Mg/Ca ratio and so saline carbonate precipitates tend to be dominated by high-Mg calcite, aragonite, magnesite, or even dolomite.

Carbonate Laminites (Subaqueous?)

Mm-scale lamination is volumetrically the dominant sedimentary texture in modern and ancient evaporitic carbonates as well as in higher salinity salts, but its origins are varied and complex (Fig. 1.10). Sometimes it is an inorganic cumulate, other times it is biologically structured (biolaminite – see next section). Beds dominated by finely laminated, regular alterations of two or more sediment types are called laminites or rhythmites. Many evaporitic carbonate laminites form couplets or even triplets by the regular superposition of micrite with siliciclastic clay, organic matter or evaporite salts. Such couplets and triplets are frequently referred to as varves, yet are not necessarily "true" varves in that the layers may not define annual couplets.

As an example of a contemporary carbonate laminite, consider deep bottom pelagic sediments deposited prior to 1979 in the Northern Basin in the Dead Sea, Israel (Fig. 4.51). They are made up of alternating light and dark mm laminae that accumulated beneath a density-stratified brine column more than 350 m deep. The whitish laminae are composed of stellate clusters of aragonite needles (5–10 μ m diameter), which precipitated each summer at the air-brine interface and then sank. The darker laminae consist of clay minerals, quartz grains, detrital calcite and dolomite that washed in as suspended sediment from the surrounding highlands during occasional storm floods (Garber et al. 1987). Thus laminites in the Dead Sea are not annual layers, but indicate flood events that occur every 3–10 years.