International Series in Operations Research & Management Science

Salvatore Greco Matthias Ehrgott José Rui Figueira *Editors*

Multiple Criteria Decision Analysis

State of the Art Surveys

Second Edition

International Series in Operations Research & Management Science

Volume 233

Series Editor

Camille C. Price Stephen F. Austin State University, TX, USA

Associate Series Editor

Joe Zhu Worcester Polytechnic Institute, MA, USA

Founding Series Editor

Frederick S. Hillier Stanford University, CA, USA

Salvatore Greco • Matthias Ehrgott José Rui Figueira Editors

Multiple Criteria Decision Analysis

State of the Art Surveys

Volume 1 and 2

Second Edition

Editors
Salvatore Greco
Department of Economics and Business
University of Catania
Catania, Italy

Portsmouth Business School Centre of Operations Research and Logistics (CORL) University of Portsmouth Portsmouth, UK

José Rui Figueira CEG-IST, Instituto Superior Técnico Universidade de Lisboa Lisboa, Portugal Matthias Ehrgott Department of Management Science Lancaster University Lancaster, UK

ISSN 0884-8289 ISSN 2214-7934 (electronic) International Series in Operations Research & Management Science ISBN 978-1-4939-3093-7 ISBN 978-1-4939-3094-4 (eBook) DOI 10.1007/978-1-4939-3094-4

Library of Congress Control Number: 2015957403

Springer New York Heidelberg Dordrecht London
© Springer Science+Business Media, LLC 2005
© Springer Science+Business Media New York 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer Science+Business Media LLC New York is part of Springer Science+Business Media (www.springer.com)

Contents

Volume I

Part	t I The History and Current State of MCDA	
1	An Early History of Multiple Criteria Decision Making	3
2	Paradigms and Challenges Bernard Roy	19
Part	t II Foundations of MCDA	
3	Preference Modelling Stefano Moretti, Meltem Öztürk, and Alexis Tsoukiàs	43
4	Conjoint Measurement Tools for MCDM. Denis Bouyssou and Marc Pirlot	97
Part	III Outranking Methods	
5	ELECTRE Methods José Rui Figueira, Vincent Mousseau, and Bernard Roy	155
6	PROMETHEE Methods Jean-Pierre Brans and Yves De Smet	187
7	Other Outranking Approaches Jean-M. Martel and Benedetto Matarazzo	221
Part	t IV Multiattribute Utility and Value Theories	
8	Multiattribute Utility Theory (MAUT)	285

vi Contents

9	UTA Methods	315
10	The Analytic Hierarchy and Analytic Network Processes for the Measurement of Intangible Criteria and for Decision-Making	363
11	On the Mathematical Foundations of MACBETH Carlos A. Bana e Costa, Jean-Marie De Corte, and Jean-Claude Vansnick	421
Par	t V Non-classical MCDA Approaches	
12	Dealing with Uncertainties in MCDA Theodor J. Stewart and Ian Durbach	467
13	Decision Rule Approach	497
14	Fuzzy Measures and Integrals in MCDA Michel Grabisch and Christophe Labreuche	553
15	Verbal Decision Analysis Helen Moshkovich, Alexander Mechitov, and David Olson	605
16	A Review of Fuzzy Sets in Decision Sciences: Achievements, Limitations and Perspectives Didier Dubois and Patrice Perny	637
Volu	ume II	
Par	t VI Multiobjective Optimization	
17	Vector and Set Optimization	695
18	Continuous Multiobjective Programming	739
19	Exact Methods for Multi-Objective Combinatorial Optimisation Matthias Ehrgott, Xavier Gandibleux, and Anthony Przybylski	817
20	Fuzzy Multi-Criteria Optimization: Possibilistic and Fuzzy/Stochastic Approaches Masahiro Inuiguchi, Kosuke Kato, and Hideki Katagiri	851
21	A Review of Goal Programming	903

Contents vii

22	Interactive Nonlinear Multiobjective Optimization Methods Kaisa Miettinen, Jussi Hakanen, and Dmitry Podkopaev	927
23	MCDA and Multiobjective Evolutionary Algorithms Juergen Branke	977
Par	t VII Applications	
24	Multicriteria Decision Aid/Analysis in Finance Jaap Spronk, Ralph E. Steuer, and Constantin Zopounidis	1011
25	Multi-Objective Optimization and Multi-Criteria Analysis Models and Methods for Problems in the Energy Sector Carlos Henggeler Antunes and Carla Oliveira Henriques	1067
26	Multicriteria Analysis in Telecommunication Network Planning and Design: A Survey João Clímaco, José Craveirinha, and Rita Girão-Silva	1167
27	Multiple Criteria Decision Analysis and Sustainable Development Giuseppe Munda	1235
28	Multicriteria Portfolio Decision Analysis for Project Selection Alec Morton, Jeffrey M. Keisler, and Ahti Salo	1269
Par	t VIII MCDM Software	
29	Multiple Criteria Decision Analysis Software	1301
Ind	ex	1343

List of Figures

Fig. 3.1	Graphical representation of <i>R</i>
Fig. 3.2	Matrix representation of R
Fig. 3.3	Graphical representation of the semiorder
Fig. 4.1	Comparing the length of two rods
Fig. 4.2	Comparing the length of composite rods
Fig. 4.3	Using standard sequences
Fig. 4.4	Building a standard sequence on X_2
Fig. 4.5	Building a standard sequence on X_1
Fig. 4.6	The grid
Fig. 4.7	The entire grid
Fig. 4.8	The Thomsen condition
Fig. 4.9	Restricted Solvability on X ₁
Fig. 4.10	Value function when X_i is discrete
Fig. 4.11	Value function when X_i is continuous
Fig. 5.1	Inferring parameter values for ELECTRE TRI
Fig. 6.1	Preference function
Fig. 6.2	Valued outranking graph
Fig. 6.3	The PROMETHEE outranking flows. (a) The $\phi^+(a)$
	outranking flow. (b) The $\phi^-(a)$ outranking flow
Fig. 6.4	Profile of an alternative
Fig. 6.5	Projection on the GAIA plane
Fig. 6.6	Alternatives and criteria in the GAIA plane
Fig. 6.7	PROMETHEE II ranking. PROMETHEE decision
	axis and stick
Fig. 6.8	Piloting the PROMETHEE decision stick
Fig. 6.9	"Human Brain"
Fig. 6.10	Two types of decision problems. (a) Soft problem
-	(S1). (b) Hard problem (S2)
Fig. 6.11	Conflict between DM's

x List of Figures

Fig. 6.12	Overview PROMETHEE GDSS procedure	215
Fig. 6.13	Main functionalities of D-Sight	216
Fig. 6.14	D-Sight: geo-localization of the alternatives,	
	PROMETHEE I diamond, comparisons of profiles	217
Fig. 7.1	Set of feasible weights	225
Fig. 7.2	ORESTE flow chart	233
Fig. 7.3	Outranking graph	23'
Fig. 7.4	Geometrical interpretation of basic preferences indices	250
Fig. 7.5	Indifference areas: rectangular	25:
Fig. 7.6	Indifference areas: rhomboidal	25:
Fig. 7.7	Indifference areas: elliptical	25
Fig. 7.8	Aggregated semiorder structure	25
Fig. 7.9	Aggregated pseudo-order structure	25
Fig. 7.10	Partial profile of action a_h	26
Fig. 7.11	Partial profiles and partial broken lines of a_r , a_s , a_t	26
Fig. 7.12	Partial frequencies of a_r , a_s , a_t	26
Fig. 7.13	Some examples of compensatory functions	27
Fig. 7.14	Determination of a relation between the two	
Ü	alternatives $a,b \in A$ on the basis of the values of global indices	27
Fig. 7.15	Partial preorder	27
Fig. 8.1	Choice between two lotteries	29
Fig. 8.2	Additive independence criterion for risk	29
Fig. 8.3	Piecewise linear approximation of $v_1(\cdot)$	30
Fig. 8.4	Piecewise linear approximation of $v_2(\cdot)$	30
Fig. 9.1	The aggregation and disaggregation paradigms in	
	MCDA [57]	31
Fig. 9.2	The disaggregation-aggregation approach [127].	
	(a) The value system approach; (b) the outranking	
	relation approach; (c) the disaggregation-aggregation	
	approach; (d) the multiobjective optimization approach	31
Fig. 9.3	The normalized marginal value function	32
Fig. 9.4	Post-optimality analysis [56]	32
Fig. 9.5	Ordinal regression curve (ranking versus global value)	32.
Fig. 9.6	Robustness analysis in preference disaggregation	22
T: 0.	approaches [125]	32
Fig. 9.7	Normalized marginal value functions	33
Fig. 9.8	A non-monotonic partial utility function [22]	33.
Fig. 9.9	Distributional evaluation and marginal value function	33
Fig. 9.10	Distribution of the actions A_1 and A_2 on $u(\mathbf{g})$ [56]	34
Fig. 9.11	Simplified decision support process based on	_
	disaggregation approach [57]	34
Fig. 9.12	Methodological flowchart of MARKEX [89]	35
Fig. 10.1	Comparisons according to volume	37

List of Figures xi

Fig. 10.2	To choose the best hospice plan, one constructs a hierarchy modeling the benefits to the patient, to the institution, and to society. This is the benefits	
	hierarchy of two separate hierarchies	378
Fig. 10.3	To choose the best hospice plan, one constructs a	
	hierarchy modeling the community, institutional,	
	and societal costs. This is the costs hierarchy of two	
	separate hierarchies	379
Fig. 10.4	Employee evaluation hierarchy	386
Fig. 10.5	Hierarchies for rating benefits, costs, opportunities,	
	and risks	395
Fig. 10.6	Prioritizing the strategic criteria to be used in rating the BOCR	396
Fig. 10.7	How a hierarchy compares to a network	398
Fig. 10.8	The supermatrix of a network and detail of a	
_	component in it	399
Fig. 10.9	The supermatrix of a hierarchy with the resulting limit	
	matrix corresponding to hierarchical composition	399
Fig. 10.10	(a) School choice hierarchy composition. (b)	
	Supermatrix of school choice hierarchy gives same	
	results as hierarchic composition	402
Fig. 10.11	The clusters and nodes of a model to estimate the	
	relative market share of Walmart, Kmart and Target	405
Fig. 10.12	The clusters and nodes of a model to estimate the	
	relative market share of footware	410
Fig. 10.13	Hierarchy for rating benefits, opportunities, costs and risks	416
Fig. 10.14	Arrow's four conditions	418
Fig. 11.1	Example of sub-type b inconsistency	428
Fig. 11.2	Example of incompatibility between (*) and (**)	435
Fig. 11.3	Procedure for all cases of inconsistency	441
Fig. 11.4	Suggestion of change to resolve inconsistency	443
Fig. 11.5	Matrix of judgements and basic MACBETH scale	444
Fig. 11.6	Representations of the MACBETH scale	445
Fig. 11.7	Consistent matrix of MACBETH qualitative	
	judgements with no hesitation	447
Fig. 11.8	First attempt to obtain the basic MACBETH scale	448
Fig. 11.9	Second attempt to obtain the basic MACBETH scale	449
Fig. 11.10	"Greatest" closed intervals included in the free and	
C	dependent intervals	451
Fig. 13.1	Decision tree representing knowledge included from	
	Table 13.1	523
Fig. 13.2	The hierarchy of attributes and criteria for a car	
	classification problem	532
Fig. 14.1	The two values that $x_k \mapsto \frac{\partial U}{\partial x_i}(x)$ can take	568
_	$\sim ox_i \sim c$	

xii List of Figures

Fig. 14.2	Different cases of interaction: complementary criteria (a), substitutive criteria (b), independent criteria (c)
Fig. 16.1	Interval-weighted average vs. interval convex sum
Fig. 17.1	(a) Minimal element \bar{x} and maximal element \bar{y} of a set A . (b) Strongly minimal element \bar{y} of a set A
Fig. 17.2	(a) Weakly minimal element \bar{y} of a set A . (b) Properly minimal element \bar{y} of a set A
Fig. 17.3	Minimal and maximal elements of $T = f(S)$
Fig. 17.4	Section A_y of a set A
Fig. 17.5	(a) Arbitrary spins. (b) Parallel and anti-parallel aligned spins
Fig. 17.6	Spin precession
Fig. 17.7	A so-called sagittal T1 MP-RAGE image taken up by the 3 tesla system MAGNETOM Skyra produced by Siemens AG. With kind permission of Siemens AG
Fig. 17.8	Healthcare sector
Fig. 17.9	excitation pulse
Fig. 17.10	$\bar{y} \in \{y'\} + \mathcal{D}(y') \setminus \{0_Y\}, \text{ cf. } [21, 23] \dots$ Illustration of two sets A and B with $A \leq_S B$, and
Fig. 17.11	$a \in \max A$ and $b \in \max B$ with $a \not\leq b$ and $b \not\leq a$
Fig. 17.11	Illustration of two sets $A, B \in \mathcal{M}$ with $A \leq_{mc} B$
Fig. 17.13	Illustration of the sets A_1 , A_2 , A_3 , A_5 and A_6 in Example 18
Fig. 19.1 Fig. 19.2	Feasible set and Edgeworth-Pareto hull
Fig. 19.3	non-dominated points (a) Extreme non-dominated point for $\lambda^T = (1, 1)$. (b) Supported non-dominated point in the relative interior of a face for $\lambda^T = (2, 1)$
Fig. 19.4	(a) A lower bound set. (b) An upper bound set defined by feasible points
Fig. 19.5	(a) The weighted sum scalarisation. (b) The ε -constraint scalarisation.
Fig. 19.6	The Chebychev scalarisation
Fig. 19.7	(a) The ε -constraint scalarisation. (b) The elastic constraint scalarisation
Fig. 19.8	(a) Lexicographically optimal points. (b) The first weighted sum problem

List of Figures xiii

Fig. 19.9	Phase 1 of the two phase method	83
Fig. 19.10	(a) The triangles where non-supported non-dominated	
	points may be located. (b) Ranking non-supported	
	non-dominated points	83
Fig. 19.11	(a) The node can be fathomed by dominance. (b) The	
	node can be fathomed by dominance assuming $Y \subset \mathbb{Z}^p$	84
Fig. 20.1	L-R fuzzy number $\tilde{c} = (c^L, c^R, \alpha, \beta)_{LR}$	85
Fig. 20.2		85
Fig. 20.3		86
Fig. 20.4	•	86
Fig. 20.5		86
Fig. 20.6		87
Fig. 20.7		87
Fig. 20.8	Example of a tree generated by the implicit	88
Fig. 20.9	Example of a tree generated by the extended implicit	88
Fig. 20.10		88
Fig. 20.11		88
Fig. 20.12	Example of the membership function $\mu_{\widetilde{C}_{ls_l}x}$	88
Fig. 20.12	Example of the membership function of a fuzzy goal	88
Fig. 20.13		88
Fig. 23.1	Basic loop of an evolutionary algorithm	97
Fig. 23.2	Non-dominated sorting of solutions as in NSGA-II	98
Fig. 23.3	Example for (marginal) Hypervolume	98
Fig. 23.4	Influence of scaling on the distribution of solutions	
	along the Pareto front as generated by MOEAs. On	
	the left figure (a), the front is plotted with a 1:1 ratio.	
	On the right figure (b), the y-axis has been scaled by a	
	factor of 100	98
Fig. 23.5	Part of the Pareto optimal front that remains optimal	
_	with a given reference point r and the preference	
	relation from [38]. The left panel (a) shows a	
	reachable reference point, while the right panel	
		98
Fig. 23.6		99
Fig. 23.7	Marginal contribution calculated according to	-
<i>6.</i>	expected utility result in a concentration of the	
		99.
Fig. 23.8	Resulting distribution of individuals with the marginal	
8. 20.0	expected utility approach and a linearly decreasing	
		99.
	PAUCHCIANT MIDITIONION TOT 7VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	

xiv List of Figures

Fig. 23.9	from [31]. Maximization of objectives is assumed.	
	The <i>curve</i> represents all solutions equivalent to <i>B</i>	
	according to the approximated value function. All	
	solutions with an estimated value better than B (above	
	the <i>curve</i>) dominate all solutions with an estimated	
	value worse than <i>B</i> (below the <i>curve</i>). The <i>grey areas</i>	
	indicate the areas dominated by solutions A and C , respectively	998
Fig. 23.10	Visualization of the preference cone in 2D, assuming	,,,
115. 23.10	quasi concave utility function and maximization of objectives.	1000
Fig. 23.11	Solutions (<i>black points</i>) and territories (<i>squares</i>) with	1000
116. 23.11	different sizes as used in [54]. Regions with smaller	
	territories will maintain a higher density of solutions	1002
Fig. 24.1	The neo-classical view on the objective of the firm	1022
Fig. 24.2	Situations leading to MCDA in the firm	1023
Fig. 24.3	A bird's-eye view of the framework	1028
Fig. 24.4	Feasible regions Z of (MC-Un) and (MC-B) for the	
	same eight securities	1035
Fig. 24.5	Unbounded bullet-shaped feasible region Z created by	
	securities A, B and C	1036
Fig. 24.6	Nondominated frontiers as a function of changes in	
	the value of upper bound parameter μ	1039
Fig. 24.7	An ellipsoidal feasible region projected onto	
	two-dimensional risk-return space	1043
Fig. 25.1	Criteria considered in energy decision-making studies	1132
Fig. 25.2	Technical criteria. M miscellaneous, EE energy	
	efficiency, SD siting decisions, EP energy projects,	
	EPP energy plans and policies, PGT power generation	
	technologies	1136
Fig. 25.3	Economic criteria	1138
Fig. 25.4	Environmental criteria	1142
Fig. 25.5	Social criteria	1144
Fig. 25.6	MCDA methods used in energy decision-making studies	1145
Fig. 25.7	MCDA methods used in each type of energy	
	application (number of papers)	1145
Fig. 25.8	Uncertainty handling techniques used with different	
	MCDA methods	1150
Fig. 26.1	Priority regions and example in [16]	1188
Fig. 27.1	A systemic vision of sustainability issues	1238
Fig. 27.2	The ideal problem structuring in SMCE	1257
		1278
Fig. 28.1 Fig. 28.2	Bubble chart for the flat furnishing example	1278
Fig. 28.3	Core index display for the flat furnishing example	1279
1 12. 70.1	TAILOU TOUR URDIAY TOL TIC HAL HILLIMING GRAINING	17.01

List of Tables

Table 3.1	Various ε -representations with $\varepsilon = 1$	53 71
Table 4.1	Evaluation of the five offices on the five attributes	107
Table 6.1	Evaluation table	190
Table 6.2	Weights of relative importance	193
Table 6.3	Types of generalized criteria ($P(d)$: preference function)	195
Table 6.4	Single criterion net flows	202
Table 7.1	Rank evaluation of alternatives (impact matrix)	224
Table 7.2	The concordance/ discordance indices	225
Table 7.3	Concordance matrix	227
Table 7.4	Rank evaluation of alternatives (impact matrix)	227
Table 7.5	Regime matrix	227
Table 7.6	Position-matrix	231
Table 7.7	City-block distance	231
Table 7.8	Preference matrix for a criterion with ordinal evaluation	234
Table 7.9	Preference matrix for a criterion (Max) with	
	evaluation on a quantitative scale	234
Table 7.10	Preference importance table for g_j , a , b	235
Table 7.11	Combined preferences with weights importance	235
Table 7.12	Evaluation of alternatives	236
Table 7.13	Criteria g_1 and g_3 (ordinal scales)	236
Table 7.14	Criterion g ₂ (ordinal scale)	236
Table 7.15	Criterion g ₄ (interval scale MIN)	237
Table 7.16	Preference structure of weights	237
Table 7.17	Pairwise comparison between a_1 and a_4	237
Table 7.18	Axiomatic system of MAPPAC basic indices	249
Table 7.19	Basic preferences indices	250
Table 7.20	Table of observed stochastic dominances	279

xvi List of Tables

Table 7.21	Explicable concordances indices
Table 9.1	Criteria values and ranking of the DM
Table 9.2	Marginal value functions (initial solution)
Table 9.3	Linear programming formulation (post-optimality analysis)
Table 9.4	Post-optimality analysis and final solution
Table 9.5	Marginal value functions (final solution)
Table 9.6	LP size of UTA models
Table 9.7	Indicative applications of the UTA methods
Table 10.1	The fundamental scale of absolute numbers
Table 10.2	Which drink is consumed more in the U.S.? An
	example of estimation using judgments
Table 10.3	The entries in this matrix respond to the question:
	which criterion is more important with respect to
	choosing the best hospice alternative and how strongly?
Table 10.4	The entries in this matrix respond to the question:
	which subcriterion yields the greater benefit with
	respect to institutional benefits and how strongly?
Table 10.5	The entries in this matrix respond to the question:
	which model yields the greater benefit with respect
	to direct care and how strongly?
Table 10.6	The entries in this matrix respond to the question:
	which criterion is a greater determinant of cost with
	respect to the care method and how strongly?
Table 10.7	The entries in this matrix respond to the question:
	which criterion incurs greater institutional costs and
	how strongly?
Table 10.8	The entries in this matrix respond to the question:
	which model incurs greater cost with respect to
	institutional costs for recruiting staff and how strongly?
Table 10.9	Synthesis (P = Priorities, M = Model)
Table 10.10	Ranking intensities
Table 10.11	Ranking alternatives
Table 10.12	Random index
Table 10.13	Calculating returns arithmetically
Table 10.14	Normalized criteria weights and normalized
	alternative weights from measurements in the same
	scale (additive synthesis)
Table 10.15	Priority ratings for the merits: benefits, costs,
	opportunities, and risks
Table 10.16	Four methods of synthesizing BOCR using the ideal mode
Table 10.17	The supermatrix
Table 10.18	The limit supermatrix
Table 10.19	The unweighted supermatrix
Table 10.20	The cluster matrix

List of Tables xvii

Table 10.21	The weighted supermatrix	408
Table 10.22	The synthesized results for the alternatives	409
Table 10.23	Footwear actual statistics and model results along	
	with the compatibility index	413
Table 10.24	Priority ratings for the merits: benefits, opportunities,	
	costs and risks	417
Table 10.25	Overall syntheses of the alternatives	417
Table 12.1	Description of consequences for the simple example	489
Table 13.1	Data table presenting examples of comprehensive	
	evaluations of students	501
Table 13.2	Quality of classification and Shapley value for	
	classification <i>Cl</i> and set of criteria <i>P</i>	512
Table 13.3	Evaluations of new students	521
Table 13.4	Evaluations of new students	522
Table 13.5	Information table of the illustrative example	525
Table 13.6	Students with interval evaluations	526
Table 13.7	Example of missing values in the evaluation of students	529
Table 13.8	Substitution of missing values in the evaluation of students	530
Table 13.9	Decision table with reference objects	539
Table 13.10	A fragment of S_{PCT}	540
Table 13.11	Ranking of warehouses for sale by decision rules	
	and the Net Flow Score procedure	541
Table 15.1	Criteria for applicant evaluation	612
Table 15.2	Comparison of hypothetical alternatives	614
Table 15.3	An example of a joint ordinal scale	615
Table 15.4	Ranks for JSQV	618
Table 15.5	Effectiveness of STEP-ZAPROS	620
Table 15.6	Presentation of a "tryad" to the decision maker	622
Table 19.1	Complexity results for MOCO problems	823
Table 19.2	Properties of popular scalarisation methods	831
Table 19.3	Algorithms based on scalarisation	834
Table 19.4	Two-phase algorithms	841
Table 19.5	Multi-objective branch and bound algorithms	845
Table 21.1	Distance metrics used in MCDM distance-based techniques	913
Table 23.1	Comparison of some selected approaches to	
	incorporate partial user preferences	1003
Table 24.1	Applications of MCDA approaches in bankruptcy	
	and credit risk assessment	1052
Table 24.2	Applications of MCDA approaches in portfolio	
	selection and management	1053

xviii List of Tables

Table 24.3	Applications of MCDA approaches in the	
	assessment of corporate performance	1054
Table 24.4	Applications of MCDA approaches in investment appraisal	1055
Table 24.5	Applications of MCDA approaches in other financial	
	decision-making problems	1055
Table 25.1	Categories of planning problems in power systems	
	according to the organizational level and timeframe	1071
Table 25.2	Studies grouped in power generation comparison problems	1106
Table 25.3	Studies grouped in energy plans and policies problems	1112
Table 25.4	Studies grouped in energy project problems	1122
Table 25.5	Studies grouped in siting decision problems	1124
Table 25.6	Studies grouped in energy efficiency problems	1126
Table 25.7	Studies grouped in energy miscellaneous problems	1127
Table 27.1	Impact matrix for the four chosen cities according to	
	the selected indicators	1249
Table 27.2	Normalised impact matrix	1250
Table 27.3	Outranking matrix of the four cities according to the	
	nine indicators	1250
Table 27.4	Weighted outranking matrix	1252
Table 29.1	MADA and MOO software	1304
Table 29.2	Multiple criteria evaluation methods	1305
Table 29.3	Software by method implemented	1307
Table 29.4	Software with group decision support capabilities	1308
Table 29.5	Software platforms	1310

Introduction

José Rui Figueira, Salvatore Greco, and Matthias Ehrgott

1 Ten Years of Success of Multiple Criteria Decision Analysis and Reasons for This New Edition

After 10 years we present an updated revision of the collection of state-of-theart surveys on Multiple Criteria Decision Analysis (MCDA). This is a good occasion to briefly comment on the latest advances in the domain. We believe that in the last 10 years we have seen great progress of MCDA, from both a theoretical point of view and a real-life application point of view. We have seen the consolidation of the main "traditional" methodologies such as multiple attribute utility theory, outranking methods, interactive multiobjective optimization, as well as the growing success of new approaches such as Evolutionary Multiobjective Optimization (EMO). The spectrum of applications has been constantly expanding with particular emphasis on very complex problems such as industrial design or grid optimization. Taking into account this evolution of the domain, we partly modified the structure and the content of the book giving space to new methodologies (e.g., EMO or multi-criteria portfolio decision analysis for project selection) or splitting chapters into several new ones (e.g., the chapter on multiobjective programming of the previous edition that has now been substituted by three chapters, one on vector and set optimization, one on continuous multiobjective, and one on multiobjective combinatorial optimization). Moreover, all authors, sometimes with the help of

CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, A. Rovisco Pais, 1, 1049-001 Lisboa, Portugal

S. Greco

University of Catania, Catania, Italy

University of Portsmouth, Portsmouth, UK

M. Ehrgott

Department of Management Science, Lancaster University, Bailrigg, Lancaster LA1 4YX, UK

J.R. Figueira

xx J.R. Figueira et al.

a new colleague, have updated the contents of their contributions incorporating the novelties of the last 10 years. Of course, many sophisticated technical details that appear in the new edition of the book will sooner or later be destined to be superseded by the incessant evolution of research and applications. We think, however, that the basic principles as stated by the experts who prepared the different chapters in the book will remain reference points for the years to come. Moreover, we believe that the spirit with which experts on MCDA are working today, in these so rich and fruitful years, will remain forever in this book. This spirit is strongly related with the spirit with which, in the late 1960s and early 1970s of the last century, the "pioneers" (many of who are among the many authors of the chapters in this book) outlined the basic principles of MCDA with the genuine aim to give a satisfactory answer to concrete real world problems for which the classical methods of operations research were not able to find adequate answers. Therefore the basic principles of the presented methodologies and their relationships with the MCDA spirit are things that we recommend the reader to look for in each chapter. After these words about the intuition that guided the revision of this book, let us enter "in medias res", coming back to the introduction of the first edition that was of course also updated.

2 Human Reflection About Decision

Decision-making has inspired reflections of many thinkers since ancient times. The great philosophers Aristotle, Plato, and Thomas Aquinas, to mention only a few, discussed the capacity of humans to decide and in some manners claimed that this possibility is what distinguishes humans from animals. To illustrate some important aspects of decision-making, let us briefly quote two important thinkers, Ignatius of Loyola (1491–1556) and Benjamin Franklin (1706–1790).

To consider, reckoning up, how many advantages and utilities follow for me from holding the proposed office or benefice [...], and, to consider likewise, on the contrary, the disadvantages and dangers which there are in having it. Doing the same in the second part, that is, looking at the advantages and utilities there are in not having it, and likewise, on the contrary, the disadvantages and dangers in not having the same. [...] After I have thus discussed and reckoned up on all sides about the thing proposed, to look where reason more inclines: and so, according to the greater inclination of reason, [...], deliberation should be made on the thing proposed.

This fragment from the "Spiritual Exercises" of St. [14] has been taken from a paper by Fortemps and Slowinski [12].

London, Sept 19, 1772

In the affair of so much importance to you, wherein you ask my advice, I cannot, for want of sufficient premises, advise you what to determine, but if you please I will tell you how. [...], my way is to divide half a sheet of paper by a line into two columns; writing over the one Pro, and over the other Con. [...] When I have thus got them all together in one view, I endeavor to estimate their respective weights; and where I find two, one on each side, that

Introduction xxi

seem equal, I strike them both out. If I find a reason pro equal to some two reasons con, I strike out the three. If I judge some two reasons con, equal to three reasons pro, I strike out the five; and thus proceeding I find at length where the balance lies; and if, after a day or two of further consideration, nothing new that is of importance occurs on either side, I come to a determination accordingly. [...] I have found great advantage from this kind of equation, and what might be called moral or prudential algebra. Wishing sincerely that you may determine for the best, I am ever, my dear friend, yours most affectionately.

B. Franklin

This letter from Benjamin Franklin to Joseph Prestly has been taken from a paper by MacCrimmon [17].

What is interesting in the above two quotations is the fact that decision is strongly related to the comparison of different points of view, some in favor and some against a certain decision. This means that decision is intrinsically related to a plurality of points of view, which can roughly be defined as criteria. Contrary to this very natural observation, for many years the only way to state a decision problem was considered to be the definition of a single criterion, which amalgamates the multidimensional aspects of the decision situation into a single scale of measure. For example, even today textbooks of operations research suggest to deal with a decision problem as follows: To first define an objective function, i.e., a single point of view like a comprehensive profit index (or a comprehensive cost index) representing the preferability (or dis-preferability) of the considered actions and then to maximize (minimize) this objective. This is a very reductive, and in some sense also unnatural, way to look at a decision problem. Thus, for at least 40 years, a new way to look at decision problems has more and more gained the attention of researchers and practitioners. This is the approach considered by Loyola and Franklin, i.e., the approach of explicitly taking into account the pros and the cons of a plurality of points of view, in other words the domain of multiple criteria decision analysis. Therefore, MCDA intuition is closely related to the way humans have always been making decisions. Consequently, despite the diversity of MCDA approaches, methods and techniques, the basic ingredients of MCDA are very simple: A finite or infinite set of actions (alternatives, solutions, courses of action, ...), at least two criteria, and, obviously, at least one decision-maker (DM). Given these basic elements, MCDA is an activity which helps making decisions mainly in terms of choosing, ranking, or sorting the actions.

3 Technical Reflection About Decision: MCDA Researchers Before MCDA

Of course, not only philosophers reasoned about decision. Many important technical aspects of MCDA are linked to classic works in economics, in particular, welfare economics, utility theory, and voting-oriented social choice theory (see [27]). Aggregating the opinion or the preferences of voters or individuals of a community into collective or social preferences is quite similar a problem to

xxii J.R. Figueira et al.

devising comprehensive preferences of a decision-maker from a set of conflicting criteria in MCDA [7].

Despite the importance of Ramon Llull's (1232–1316) and Nicolaus Cusanus' (1401–1464) concerns about and interests in this very topic, the origins of voting systems are often attributed to Le Chevalier Jean-Charles de Borda (1733–1799) and Marie Jean Antoine Nicolas de Caritat (1743–1794), Le Marquis de Condorcet. However, Ramon Llull introduced the pairwise comparison concept before Condorcet [13], while Nicolaus Cusanus introduced the scoring method about three and a half centuries before Borda [26]. Furthermore, it should be noted that a letter from Pliny the Younger (\approx AD 105) to Titus Aristo shows that he introduced the ternary approval voting strategy and was interested in voting systems a long time before Ramon Llull and Nicolaus Cusanus [18, Chapter 2]. Anyway, Borda's scoring method [4] has some similarities with current utility and value theories as has Condorcet's method [10] with the outranking approach of MCDA. In the same line of concerns, i.e., the aggregation of individual preferences into collective ones, Jeremy Bentham (1748–1832) introduced the utilitarian calculus to derive the total utility for the society from the aggregation of the personal interests of the individuals of a community [3]. Inspired by Bentham's works, Francis Ysidro Edgeworth (1845–1926), a utilitarian economist, was mainly concerned with the maximization of the utility of the different competing agents in an economy. Edgeworth tried to find the competitive equilibrium points for the different agents. He proposed to draw indifference curves (lines of equal utility) for each agent and then derive the contract curve, a curve that corresponds to the notion of the Pareto or efficient set [20]. Not long afterward, Vilfredo Federico Damaso Pareto (1848–1923) gave the following definition of ophelimity [utility] for the whole community [21].

We will say that the members of a collectivity enjoy maximum ophelimity in a certain position when it is impossible to find a way of moving from that position very slightly in such a manner that the ophelimity enjoyed by each of the individuals of that collectivity increases or decreases. That is to say, any small displacement in departing from that position necessarily has the effect of increasing the ophelimity which certain individuals enjoy, of being agreeable to some, and disagreeable to others.

From this definition it is easy to derive the concept of dominance, which today is one of the fundamental concepts in MCDA.

MCDA also benefits from the birth and development of game theory. Félix Edouard Justin Emile Borel (1871–1956) and John von Neumann (1903–1957) are considered the founders of game theory [5, 6, 19, 29]. Many concepts from this discipline had a strong impact on the development of MCDA.

The concept of efficient point was first introduced in 1951 by Tjalling Koopmans (1910–1985) in his paper "Analysis of production as an efficient combination of activities" [15].

A possible point in the commodity space is called efficient whenever an increase in one of its coordinates (the net output of one good) can be achieved only at the cost of a decrease in some other coordinate (the net output of a good).

Introduction xxiii

In the same year (1951) Harold William Kuhn (born 1925) and Albert William Tucker (1905–1995) introduced the concept of vector maximum problem [16]. In the 1960s, basic MCDA concepts were explicitly considered for the first time. As two examples we mention Charnes' and Cooper's works on goal programming [8] and the proposition of ELECTRE methods by Roy [22]. The 1970s saw what is conventionally considered the "official" starting point of MCDA, the conference on "Multiple Criteria Decision Making" organized in 1972 by Cochrane and Zeleny at Columbia University in South Carolina [9]. Since then MCDA has seen a tremendous growth which continues today.

4 Reasons for This Collection of State-of-the-Art Surveys

The idea of MCDA is so natural and attractive that thousands of articles and dozens of books have been devoted to the subject, with many scientific journals regularly publishing articles about MCDA. To propose a new collection of state-of-the-art surveys of MCDA in so rich a context may seem a rash enterprise. Indeed, some objections come to mind. There are many and good handbooks and reviews on the subject (to give an idea consider [1, 11, 24, 25, 28]). The main ideas are well established for some years and one may question the contributions this volume can provide. Moreover, the field is so large and comprises developments so heterogeneous that it is almost hopeless to think that an exhaustive vision of the research and practice of MCDA can be given.

We must confess that at the end of the work of editing this volume we agree with the above remarks. However, we believe that a new and comprehensive collection of state-of-the-art surveys on MCDA can be very useful. The main reasons which, despite our original resistance, brought us to propose this book are the following:

- 1. Many of the existing handbooks and reviews are not too recent. Since MCDA is a field which is developing very quickly this is an important reason.
- 2. Even though the field of research and application of MCDA is so large, there are some main central themes around which MCDA research and applications have been developed. Therefore our approach was to try to present the—at least in our opinion—most important of these ideas.

With reference to the first point, we can say that we observed many theoretical developments which changed MCDA over the last 20 years. We tried to consider these changes as much as possible and in this perspective strong points of the book are the following:

- 1. It presents the most up-to-date discussions on well-established methodologies and theories such as outranking-based methods and MAUT.
- 2. The book also contains surveys of new, recently emerged fields such as conjoint measurement, fuzzy preferences, fuzzy integrals, rough sets, and others.

xxiv J.R. Figueira et al.

Following these points we drafted a list of topics and asked well-known researchers to present them. We encouraged the authors to cooperate with the aim to present different perspectives if topics had some overlap. We asked the authors to present a comprehensive presentation of the most important aspects of the field covered by their chapters, a simple yet concise style of exposition, and considerable space devoted to bibliography and survey of relevant literature. We also requested a sufficiently didactic presentation and a text that is useful for researchers in MCDA as well as for people interested in real-life applications.

The importance of these requirements is also related to the specific way the MCDA community looks at its research field. It can be summarized in the observation that there is a very strong and vital link between theoretical and methodological developments on the one hand and real applications on the other hand. Thus, the validity of theoretical and methodological developments can only be measured in terms of the progress given to real-world practice. Moreover, interest of MCDA to deal with concrete problems is related to the consideration of a sound theoretical basis which ensures the correct application of the methodologies taken into account.

In fact, not only the chapters of our book but rather all MCDA contributions should satisfy the requirements stated out above because they should be not too "esoteric" and therefore understandable for students, theoretically well founded, and applicable to some advantage in reality.

5 A Guided Tour of the Book

Of course, this book can be read from the first to the last page. However, we think that this is not the only possibility and it may not even be the most interesting possibility. In the following we propose a guided tour of the book suggesting some reference points that are hopefully useful for the reader.

5.1 Part I: The History and Current State of MCDA

This part is important because MCDA is not just a collection of theories, methodologies, and techniques, but a specific perspective to deal with decision problems. Losing this perspective, even the most rigorous theoretical developments and applications of the most refined methodologies are at risk of being meaningless because they miss an adequate consideration of the aims and of the role of MCDA. We share this conviction with most MCDA researchers.

From this perspective it is important to have a clear vision of the origin of the main basic concepts of the domain. For this reason, Murat Köksalan, Jyrki Wallenius, and Stanley Zionts present the early history of MCDA and related areas showing how many developments in the field were made by major contributors to operations research, management science, economics, and other areas.

Introduction xxv

Then Bernard Roy discusses "pre-theoretical" assumptions of MCDA and gives an overview of the field. Bernard Roy, besides making many important theoretical contributions, engaged himself in thorough reflections on the meaning and the value of MCDA, proposing some basic key concepts that are accepted throughout the MCDA community.

5.2 Part II: Foundations of MCDA

This part of the book is related to a fundamental problem of MCDA, the representation of preferences. Classically, for example in economics, it is supposed that preference can be represented by a utility function assigning a numerical value to each action such that the more preferable an action, the larger its numerical value. Moreover, it is very often assumed that the comprehensive evaluation of an action can be seen as the sum of its numerical values for the considered criteria. Let us call this the classical model. It is very simple but not too realistic. Indeed, there is a lot of research studying under which conditions the classical model holds. These conditions are very often quite strict and it is not reasonable to assume that they are satisfied in all real-world situations. Thus, other models relaxing the conditions underlying the classical model have been proposed. This is a very rich field of research, which is first of all important for those interested in the theoretical aspects of MCDA. However, it is also of interest to readers engaged in applications of MCDA. In fact, when we adopt a formal model it is necessary to know what conditions are supposed to be satisfied by the preferences of the DM. In the two chapters of this part, problems related to the representations of preferences are discussed.

Stefano Moretti, Meltem Öztürk, and Alexis Tsoukiàs present a very exhaustive review of preference modeling, starting from classical results but arriving at the frontier of some challenging issues of scientific activity related to fuzzy logic and non-classical logic.

Denis Bouyssou and Marc Pirlot discuss the axiomatic basis of the different models to aggregate multiple criteria preferences. We believe that this chapter is very important for the future of MCDA. Initially, the emphasis of MCDA research was on proposal of new methods. But gradually the necessity to understand the basic conditions underlying each method and its specific axiomatization became more and more apparent. This is the first book on MCDA with so much space dedicated to the subject of foundations of MCDA.

5.3 Part III: Outranking Methods

In this part of the book the class of outranking-based multiple criteria decision methods is presented. Given what is known about the decision-maker's preferences

xxvi J.R. Figueira et al.

and given the quality of the performances of the actions and the nature of the problem, an outranking relation is a binary relation S defined on the set of potential actions A such that aSb if there are enough arguments to decide that a is at least as good as b, whereas there is no essential argument to refute that statement [23]. Methods which strictly apply this definition of outranking relation are the ELECTRE methods. They are very important in many respects, not least historically, since ELECTRE I was the first outranking method [2].

However, within the class of outranking methods we generally consider all methods which are based on pairwise comparison of actions. Thus, another class of very well-known multiple criteria methods, PROMETHEE methods, is considered in this part of the book. Besides ELECTRE and PROMETHEE methods, many other interesting MCDA methods are based on the pairwise comparison of actions. José Figueira, Vincent Mousseau, and Bernard Roy present the ELECTRE methods; Jean-Pierre Brans and Yves De Smet present the PROMETHEE methods; and Jean-Marc Martel and Benedetto Matarazzo review the rich literature of other outranking methods.

5.4 Part IV: Multi-attribute Utility and Value Theories

In this part of the book we consider multiple attribute utility theory (MAUT). This MCDA approach tries to assign a utility value to each action. This utility is a real number representing the preferability of the considered action. Very often the utility is the sum of the marginal utilities that each criterion assigns to the considered action. Thus, this approach very often coincides with what we called the classical approach before. As we noted in commenting Part I, this approach is very simple at first glance. It is often applied in real life, e.g., every time we aggregate some indices by means of a weighted sum, we are applying this approach. Despite its simplicity, the approach presents some technical problems. The first is related to the axiomatic basis and the construction of marginal utility functions (i.e., the utility functions relative to each single criterion), both in case of decision under certainty and uncertainty. These problems are considered by James Dyer in a comprehensive chapter about the fundamentals of this approach.

Yannis Siskos, Vangelis Grigoroudis, and Nikolaos Matsatsinis present the very well-known UTA methods, which on the basis of the philosophy of the aggregation—disaggregation approach and using linear programming build a MAUT model that is as consistent as possible with the DM's preferences expressed in actual previous decisions or on a "training sample". The philosophy of aggregation—disaggregation can be summarized as follows: How is it possible to assess the decision-maker's preference model leading to exactly the same decision as the actual one or at least the most "similar" decision?

Thomas Saaty presents a very well-known methodology to build utility functions, the AHP (Analytic Hierarchy Process), and its more recent extension, the ANP (Analytic Network Process). AHP is a theory of measurement that uses pairwise

Introduction xxvii

comparisons along with expert judgments to deal with the measurement of qualitative or intangible criteria. The ANP is a general theory of relative measurement used to derive composite priority ratio scales from individual ratio scales that represent relative measurements of the influence of elements that interact with respect to control criteria. The ANP captures the outcome of dependence and feedback within and between clusters of elements. Therefore AHP with its dependence assumptions on clusters and elements is a special case of the ANP.

Carlos Bana e Costa, Jean-Claude Vansnick, and Jean-Marie De Corte present another MCDA methodology based on the additive utility model. This methodology is MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Technique). It is an MCDA approach that requires only qualitative judgments about differences of values of attractiveness of one action over another action to help an individual or a group to quantify the relative preferability of different actions. In simple words, the MACBETH approach tries to answer the following questions: How can we build an interval scale of preferences on a set of actions without forcing evaluators to produce direct numerical representations of their preferences? How can we coherently aggregate these qualitative evaluations using an additive utility model?

5.5 Part V: Non-classical MCDA Approaches

Many approaches have been proposed in MCDA besides outranking methods and multi-attribute utility theory. In this part of the book we try to collect information about some of the most interesting proposals. First, the question of uncertainty in MCDA is considered. Theo Stewart and Ian Durbach discuss risk and uncertainty in MCDA. It is necessary to distinguish between internal uncertainties (related to decision-maker values and judgments) and external uncertainties (related to imperfect knowledge concerning consequences of actions). The latter, corresponding to the most accepted interpretation of uncertainty in the specialized literature, has been considered in the chapter. Four broad approaches for dealing with external uncertainties are discussed. These are multi-attribute utility theory and some extensions; stochastic dominance concepts, primarily in the context of pairwise comparisons of alternatives; the use of surrogate risk measures such as additional decision criteria; and the integration of MCDA and scenario planning.

Salvatore Greco, Benedetto Matarazzo, and Roman Słowiński present the decision rule approach to MCDA. This approach represents the preferences in terms of "if..., then..." decision rules such as, for example, "if the maximum speed of car x is at least 175 km/h and its price is at most \$12000, then car x is comprehensively at least medium". This approach is related to rough set theory and to artificial intelligence. Its main advantages are the following. The DM gives information in the form of examples of decisions, which requires relatively low cognitive effort and which is quite natural. The decision model is also expressed in a very natural way by decision rules. This permits an absolute transparency of the methodology for the

xxviii J.R. Figueira et al.

DM. Another interesting feature of the decision rule approach is its flexibility, since any decision model can be expressed in terms of decision rules and, even better, the decision rule model can be much more general than all other existing decision models used in MCDA.

Michel Grabisch and Christophe Labreuche present the fuzzy integral approach that is known in MCDA for the last two decades. In very simple words this methodology permits a flexible modeling of the importance of criteria. Indeed, fuzzy integrals are based on a capacity which assigns an importance to each subset of criteria and not only to each single criterion. Thus, the importance of a given set of criteria is not necessarily equal to the sum of the importance of the criteria from the considered subset. Consequently, if the importance of the whole subset of criteria is smaller than the sum of the importances of its individual criteria, then we observe a redundancy between criteria, which in some way represents overlapping points of view. On the other hand, if the importance of the whole subset of criteria is larger than the sum of the importances of its members, then we observe a synergy between criteria, the evaluations of which reinforce one another. On the basis of the importance of criteria measured by means of a capacity, the criteria are aggregated by means of specific fuzzy integrals, the most important of which are the Choquet integral (for cardinal evaluations) and the Sugeno integral (for ordinal evaluations).

Helen Moshkovich, Alexander Mechitov, and David Olson present the verbal decision methods MCDA. This is a class of methods originated from the work of one of the MCDA pioneers, the late Oleg Larichev. The idea of verbal decision analysis is to build a decision model using mostly qualitative information expressed in terms of a language that is natural for the DM. Moreover, measurement of criteria and preference elicitation should be psychologically valid. The methods, besides being mathematically sound, should check the DM's consistency and provide transparent recommendations.

Most real-world decision problems take place in a complex environment where conflicting systems of logic, uncertain, and imprecise knowledge, and possibly vague preferences have to be considered. To face such complexity, preference modeling requires the use of specific tools, techniques, and concepts which allow the available information to be represented with the appropriate granularity. In this perspective, fuzzy set theory has received a lot of attention in MCDA for a long time. Didier Dubois and Patrice Perny try to provide a tentative assessment of the role of fuzzy sets in decision analysis, taking a critical standpoint on the state-of-the-art, in order to highlight the actual achievements and trying to better assess what is often considered debatable by decision scientists observing the fuzzy decision analysis literature.

5.6 Part VI: Multiobjective Optimization

The classical formulation of an operations research model is based on the maximization or minimization of an objective function subject to some constraints. A very

Introduction xxix

rich and powerful arsenal of methodologies and techniques has been developed and continues to be developed within operations research. However, it is very difficult to summarize all the points of view related to the desired results of the decision at hand in only one objective function. Thus, it seems natural to consider a very general formulation of decision problems where a set of objective functions representing different criteria have to be "optimized". To deal with these types of problems requires not only to generalize the methodologies developed for classical single-objective optimization problems, but also to introduce new methodologies and techniques permitting to compare different objectives according to the preferences of the DM. In this part of the book we tried to give adequate space to these two sides of multiobjective programming problems.

Gabriele Eichfelder and Johannes Jahn discuss recent developments of vector and set optimization. Based on the concept of a pre-order, optimal elements are defined. In vector optimization, properties of optimal elements and existence results are gained. Further, an introduction to vector optimization with a variable ordering structure is given. In set optimization basic concepts are summed up.

Margaret Wiecek, Matthias Ehrgott, and Alexander Engau present their view of the state-of-the-art in continuous multiobjective programming. After an introduction they formulate the multiobjective program (MOP) and define the most important solution concepts. They summarize properties of efficient and nondominated sets and review optimality conditions and solution techniques for MOPs and approximation of efficient and nondominated sets. They discuss also specially structured problems including linear, nonlinear, parametric, and bi-level MOPs, and finally they present a perspective on future research directions.

Within the general field of multiobjective programming, research on combinatorial optimization problems with multiple objectives has been particularly active. Matthias Ehrgott, Xavier Gandibleux, and Anthony Przybylski review exact methods for multiobjective combinatorial optimization problems, covering extensions of single objective algorithms to the multiobjective case, scalarization approaches, the two-phase method and branch and bound algorithms.

Masahiro Inuiguchi, Kosuke Kato, and Hideki Katagiri review fuzzy multicriteria optimization focusing on possibilistic treatments of objective functions with fuzzy coefficients and on interactive fuzzy stochastic multiple objective programming approaches.

Dylan Jones and Mehrdad Tamiz present a review of the field of goal programming describing the current range of goal programming variants and the range of techniques that goal programming has been combined or integrated with is discussed. A range of modern applications of goal programming are also given.

Kaisa Miettinen, Jussi Hakanen, and Dmitry Podkopaev give an overview of interactive methods for solving multi-objective optimization problems. In interactive methods, the decision-maker progressively provides preference information so that her or his most satisfactory Pareto optimal solution can be found. The basic features of several methods are introduced and some theoretical results are provided. In addition, references to modifications and applications as well as to other methods are indicated. As the role of the decision-maker is very important