Statistical Methods in Healthcare

Editors Frederick W. Faltin | Ron S. Kenett | Fabrizio Ruggeri

Statistical Methods in Healthcare

Statistical Methods in Healthcare

Edited by

Frederick W. Faltin

Founder and Managing Director, The Faltin Group, Cody, WY, USA

Ron S. Kenett

Chairman and CEO, The KPA Group, Raanana, Israel

Fabrizio Ruggeri

Research Director, CNR IMATI, Milan, Italy

This edition first published 2012 © 2012 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Statistical methods in healthcare / [edited by] Frederick W. Faltin, Ron S. Kenett, Fabrizio Ruggeri.

p. ; cm.
Includes bibliographical references and index.
ISBN 978-0-470-67015-6 (cloth)
I. Faltin, Frederick W. II. Kenett, Ron S. III. Ruggeri, Fabrizio.
[DNLM: 1. Statistics as Topic-methods. 2. Data Collection-methods. 3. Delivery of Health Care-statistics & numerical data. WA 950]
362.102'1-dc23

2012009921

A catalogue record for this book is available from the British Library.

ISBN: 978-0-470-67015-6

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India

To Donna, Erin, Travis and Madeline – Frederick W. Faltin

To Jonathan, Alma, Tomer, Yadin, Aviv and Gili – Ron S. Kenett

To Anna, Giacomo and Lorenzo – Fabrizio Ruggeri

Contents

	Forev	word	xix
	Prefa	ce	xxi
	Edito	ors	xxiii
	Cont	ributors	XXV
Par	t One	STATISTICS IN THE DEVELOPMENT OF PHARMACEUTICAL PRODUCTS	
1		ical Aspects in ICH, FDA and EMA Guidelines Sampson and Ron S. Kenett	3
	1.2	Introduction ICH Guidelines Overview ICH Guidelines for Determining Efficacy ICH Quality Guidelines Other Guidelines Statistical Challenges in Drug Products Development and Manufacturing Summary	3 3 5 7 11 14 17 18 19
2		ical Methods in Clinical Trials <i>Irony, Caiyan Li and Phyllis Silverman</i> sis Introduction 2.1.1 Claims 2.1.2 Endpoints 2.1.3 Types of Study Designs and Controls	22 22 23 23 24
	2.2	 Hypothesis Testing, Significance Levels, <i>p</i>-values, Power and Sample Size 2.2.1 Hypothesis Testing 2.2.2 Statistical Errors, Significance Levels and <i>p</i>-values 	25 25 25

3

	2.2.3	Confidence Intervals	26
	2.2.4	Statistical Power and Sample Size	27
2.3		andomization and Blinding/Masking	29
	2.3.1		29
	2.3.2	Randomization	30
	2.3.3	Blinding or Masking	31
2.4	Covaria	ate Adjustment and Simpson's Paradox	32
	2.4.1		32
	2.4.2	Statistical Methods for Covariate Adjustment	34
2.5	Meta-a	nalysis, Pooling and Interaction	35
	2.5.1	Meta-analysis	35
	2.5.2	Pooling and Interaction	37
2.6	Missing	g Data, Intent-to-treat and Other Analyses Cohorts	38
	2.6.1	Missing Data	38
	2.6.2	Intent-to-treat (ITT) and Other Analysis Cohorts	39
2.7	Multipl	icity, Subgroup and Interim Analyses	40
	2.7.1	Multiplicity	40
	2.7.2	Subgroup Analyses	41
	2.7.3	Interim Analyses	42
2.8	Surviva	l Analyses	43
	2.8.1	Estimating Survival Functions	44
	2.8.2	Comparison of Survival Functions	45
2.9	Propen	sity Score	46
2.10	Bayesia	an Versus Frequentist Approaches to Clinical Trials	48
2.11	Adaptiv	ve Designs	50
	2.11.1	Sequential Designs	51
2.12	Drugs '	Versus Devices	53
Refer	ences		54
Furth	er Readi	ng	54
Pharm	nacometi	rics in Drug Development	56
Serge	e Guzy ar	nd Robert Bauer	
Syno	psis		56
3.1	Introdu	ction	56
	3.1.1	Pharmacometrics Definition	56
	3.1.2	Dose-response Relationship	57
	3.1.3	FDA Perspective of Pharmacometrics	57
	3.1.4	When Should We Perform Pharmacometric Analysis?	58
	3.1.5	Pharmacometric Software Tools	58
	3.1.6	Organization of the Chapter	58
3.2	Pharma	cometric Components	59
	3.2.1	Pharmacokinetics (PK)	59
	3.2.2	Pharmacodynamics (PD)	59
	3.2.3	Disease Progression	59
	3.2.4	Simulation of Clinical Trials	59
3.3	Pharma	cokinetic/Pharmacodynamic Analysis	60
	3.3.1	Compartmental Methods	60

	3.4	Transla	ting Dynamic Processes into a Mathematical Framework	61
	3.5	Nonlin	ear Mixed-effect Modeling	63
	3.6	Model	Formulation and Derivation of the Log-likelihood	63
	3.7	Review	of the Most Important Pharmacometric Software Characteristics	65
		3.7.1		65
		3.7.2	PDx-MC-PEM	65
		3.7.3	MONOLIX	66
		3.7.4	WinBUGS	66
		3.7.5	S-ADAPT	66
	3.8		um Likelihood Method of Population Analysis	67
	3.9		tudy: Population PK/PD Analysis in Multiple Sclerosis Patients	68
		3.9.1		68
		3.9.2		69
		3.9.3	The PK Model	69
			Platelet Modeling	69
			T1 Lesions Model	69
	3.10		natical Description of the Dynamic Processes Characterizing the	
			Sety/Efficacy System	70
		3.10.1	5 5 5	72
		3.10.2		72
		3.10.3	Calculation of the Cumulative Number of T1 Lesions and the	
			Percentage MRI Improvement	73
		3.10.4	Estimation of the Percentage of Patients to Reach Platelet	
			Counts Below a Certain Threshold Value	73
		3.10.5		74
	3.11	Summa	· ·	75
	3.11	Referen	•	76
4	Intera	active Cli	inical Trial Design	78
	Zvia			
	Syno	nsis		78
	4.1	Introdu	letion	79
	4.2		pment of the Virtual Patient Concept	80
	7.2	4.2.1	• •	80
	4.3		the Virtual Patient Concept to Predict Improved Drug Schedules	86
	т.5	4.3.1	Modeling Vascular Tumor Growth	86
		4.3.2	Synthetic Human Population (SHP)	91
	4.4		teractive Clinical Trial Design (ICTD) Algorithm	94
	7.7	4.4.1	Preclinical Phase: Constructing the PK/PD Module	94
		4.4.2	Phase I: Finalizing and Validating the PK/PD Module	95
		4.4.2	Interim Stage Between Phase I and Phase II: Intensive	75
		4.4.3	Simulations of Short-term Treatments	96
		4.4.4	Phase II and Phase III: Focusing the Clinical Trials	90 96
		4.4.4	Interactive Clinical Trial Design Method as Compared to	90
		4.4.3	Adaptive Clinical Trial Design Methods	99
	4.5	Summe	· ·	100
	4.0	Summa	a1 y	100

CONTENTS Х

		nowledgements	100	
	Refe	rences	100	
5	Stage-wise Clinical Trial Experiments in Phases I, II and III Shelemyahu Zacks			
	Syno	psis	103	
	5.1	Introduction	103	
	5.2	Phase I Clinical Trials	104	
		5.2.1 Up-and-down Adaptive Designs in Search of the MTD	105	
		5.2.2 The Continuous Reassessment Method	107	
		5.2.3 Efficient Dose Escalation Scheme With Overdose		
		Control (EWOC)	109	
	5.3	Adaptive Methods for Phase II Trials	110	
		5.3.1 Individual Dosing	110	
	~ .	5.3.2 Termination of Phase II	111	
	5.4	Adaptive Methods for Phase III	112	
		5.4.1 Randomization in Clinical Trials	112	
		5.4.2 Adaptive Randomization Procedures5.4.3 Group Sequential Methods: Testing Hypotheses	113 119	
	5.5	Summary	119	
		rences	119	
	Refer		120	
6		Management in Drug Manufacturing and Healthcare S. Kenett	122	
	Syno	psis	122	
	6.1	Introduction to Risks in Healthcare and Trends in Reporting Systems	122	
	6.2	Reporting Adverse Events	124	
	6.3	Risk Management and Optimizing Decisions With Data	126	
		6.3.1 Introduction to Risk Management	126	
		6.3.2 Bayesian Methods in Risk Management	128	
		6.3.3 Basics of Financial Engineering and Risk Management	129	
		6.3.4 Black Swans and the Taleb Quadrants	130	
	6.4	Decision Support Systems for Managing Patient Healthcare Risks	131	
	6.5	The Hemodialysis Case Study	137	
	6.6	Risk-based Quality Audits of Drug Manufacturing Facilities	142	
		6.6.1 Background on Facility Quality Audits	142	
		6.6.2 Risk Dimensions of Facilities Manufacturing Drug Products6.6.3 The Site Risk Assessment Structure	143 144	
	6.7	Summary	144	
		rences	152	
	Refer		152	
7		Twenty-first Century Challenges in Drug Development Stark	155	
	Syno	psis	155	
	7.1	The FDA's Critical Path Initiative	155	
	7.2	Lessons From 60 Years of Pharmaceutical Innovation	156	

	7.2.1	New-drug Performance Statistics	156
	7.2.2	Currently There are Many Players, but Few Winners	156
	7.2.3	Time to Approval – Standard New Molecular Entities	157
7.3	The C	hallenges of Drug Development	158
		Clinical Trials	158
	7.3.2	The Critical-path Goals	159
		Three Dimensions of the Critical Path	159
	7.3.4	A New-product Development Toolkit	160
		Towards a Better Safety Toolkit	160
		Tools for Demonstrating Medical Utility	160
7.4	A New	/ Era in Clinical Development	160
	7.4.1	Advancing New Technologies in Clinical Development	161
	7.4.2	Advancing New Clinical Trial Designs	161
	7.4.3	Advancing Innovative Trial Designs	162
	7.4.4	Implementing Pharmacogenomics (PGx) During All Stages	
		of Clinical Development	162
7.5	The Q	bD and Clinical Aspects	163
	7.5.1	Possible QbD Clinical Approach	164
	7.5.2	Defining Clinical Design Space	164
	7.5.3	Clinical Deliverables to QbD	164
	7.5.4	Quality by Design in Clinical Development	165
Refere	ences		166

Part Two STATISTICS IN OUTCOMES ANALYSIS

8	The Issue of Bias in Combined Modelling and Monitoring					
	of He	ealth Ou	tcomes	169		
	Olivia A. J. Grigg					
	Syno	psis		169		
	8.1	*	uction	170		
		8.1.1	From the Industrial Setting to the Health Setting:			
			Forms of Bias and the Flexibility of Control Charts	170		
		8.1.2	Specific Types of Control Chart	171		
	8.2	Exam	ple I: Re-estimating an Infection Rate Following a Signal	172		
		8.2.1	Results From a Shewhart and an EWMA Chart	172		
		8.2.2	Results From a CUSUM, and General Concerns About Bias	173		
		8.2.3	More About the EWMA as Both a Chart and an Estimator	174		
	8.3	Exam	ple II: Correcting Estimates of Length-of-stay Measures			
		to Pro	tect against Bias Caused by Data Entry Errors	175		
		8.3.1	The Multivariate EWMA Chart	175		
		8.3.2	A Risk Model for Length of Stay Given Patient Age and Weight	176		
		8.3.3	Risk Adjustment	176		
		8.3.4	Results From a Risk-adjusted Multivariate EWMA Chart	177		
		8.3.5	Correcting for Bias in Estimation Through Regression	178		
	8.4	Discu	ssion	182		
	References					

xii CONTENTS

9		ase Mapping	185			
	Annibale Biggeri and Dolores Catelan					
	Syno	1	185			
	9.1 Introduction					
	9.2	Epidemiological Design Issues	186			
	9.3	6	187			
	9.4	Spatial Data	188			
	9.5	Maps	188			
	9.6	Statistical Models	191			
	9.7	Hierarchical Models for Disease Mapping	192			
		9.7.1 How to Choose Priors in Disease Mapping?	194			
		9.7.2 More on the BYM Model and the Clustering Term	195			
	0.0	9.7.3 Model Checking	200			
	9.8	Multivariate Disease Mapping	200			
	9.9	Special Issues	202			
		9.9.1 Gravitational Models	202			
		9.9.2 Wombling	202			
		9.9.3 Some Specific Statistical Modeling Examples	203			
		9.9.4 Ecological Bias	205			
	0.10	9.9.5 Area Profiling	207			
	9.10 Pofer	Summary rences	210 210			
	Kelei	lences	210			
10	Proce	ess Indicators and Outcome Measures in the Treatment of Acute				
	Myoo	cardial Infarction Patients	219			
		sandra Guglielmi, Francesca Ieva, Anna Maria Paganoni				
		Fabrizio Ruggeri				
	Syno	-	219			
		Introduction	220			
		A Semiparametric Bayesian Generalized Linear Mixed Model	222			
		Hospitals' Clustering	223			
	10.4	11	224			
		Summary	227			
	Refei	rences	228			
11	Meta	-analysis	230			
	Eva Negri					
	Syno	psis	230			
		Introduction	231			
	11.2	Formulation of the Research Question and Definition of				
		Inclusion/Exclusion Criteria	232			
	11.3	Identification of Relevant Studies	233			
	11.4	Statistical Analysis	234			
	11.5	Extraction of Study-specific Information	234			
	11.6	Outcome Measures	235			
		11.6.1 Binary Outcome Measures	235			
		11.6.2 Continuous Outcome Measures	236			

11.7	Estimation of the Pooled Effect	237
	11.7.1 Fixed-effect Models	237
	11.7.2 Random-effects Models	240
	11.7.3 Random-effects vs. Fixed-effects Models	241
11.8	Exploring Heterogeneity	242
11.9	Other Statistical Issues	243
11.10	Forest Plots	243
11.11	Publication and Other Biases	245
11.12	Interpretation of Results and Report Writing	246
11.13	Summary	247
References		

Part Three STATISTICAL PROCESS CONTROL IN HEALTHCARE

12		Use of Control Charts in Healthcare	253		
	Willia	m H. Woodall, Benjamin M. Adams and James C. Benneyan			
	Synop	osis	253		
	12.1	Introduction	253		
	12.2	Selection of a Control Chart	255		
		12.2.1 Basic Shewhart-type Charts	255		
		12.2.2 Use of CUSUM and EWMA Charts	257		
		12.2.3 Risk-adjusted Monitoring	259		
	12.3	Implementation Issues	261		
		12.3.1 Overall Process Improvement System	261		
		12.3.2 Sampling Issues	262		
		12.3.3 Violations of Assumptions	262		
		12.3.4 Measures of Control Chart Performance	263		
	12.4	2.4 Certification and Governmental Oversight Applications			
	12.5	264			
	12.6	265			
	Ackno	265			
	Refere	ences	265		
13	Comn	non Challenges and Pitfalls Using SPC in Healthcare	268		
	Victor	ria Jordan and James C. Benneyan			
	Synop	268			
	13.1	Introduction	268		
	13.2	Assuring Control Chart Performance	269		
	13.3	Cultural Challenges	270		
		13.3.1 Philosophical and Statistical Literacy	270		
		13.3.2 Acceptable Quality Levels	271		
	13.4	Implementation Challenges	272		
		13.4.1 Data Availability and Accuracy	272		
		13.4.2 Rational Subgroups	273		
		13.4.3 Specification Threshold Approaches	273		
		13.4.4 Establishing Versus Maintaining Stability	275		

	13.5	Technic	cal Challenges	276		
		13.5.1	Common Errors	276		
		13.5.2	Subgroup Size Selection	278		
		13.5.3	•	279		
		13.5.4	g Charts	280		
			Misuse of Individuals Charts	281		
		13.5.6	Distributional Assumptions	282		
	13.6	Summa	*	284		
	Refere	ences		285		
14	Six Si	gma in H	ealthcare	286		
	Shirle	y Y. Coler	man			
	Synop	sis		286		
	14.1	Introdu	iction	287		
	14.2	Six Sig	ma Background	288		
	14.3	-	pment of Six Sigma in Healthcare	289		
	14.4		ases and Tools of Six Sigma	292		
	14.5		C Overview	292		
		14.5.1	Define	292		
		14.5.2	Measure	293		
			Analyse	295		
			Improve	296		
			Control	297		
			Transfer	298		
	14.6		ional Issues of Six Sigma	298		
		-	Personnel	298		
		14.6.2	Project Selection	300		
			Training	301		
			Kaizen Workshops	301		
			Organisation of Training	302		
	14.7		ay Forward for Six Sigma in Healthcare	303		
			Variations	303		
		14.7.2				
			of Lean Six Sigma	304		
		14.7.3		305		
		14.7.4	•	306		
	14.8	Summa	· · ·	307		
	Refere			307		
15	Statist	ical Proce	ess Control in Clinical Medicine	309		
	Per Winkel and Nien Fan Zhang					
		Synopsis				
	15.1	Introdu		310		
	15.2	Method		310		
			Control Charts	310		
				311		
		15.2.3	Logistic Regression	311		

	15.2.4	Autocorrelation of Process Measurements	312	
	15.2.5	Simulation	312	
15.3	Clinical	Applications	313	
	15.3.1	Measures and Indicators of Quality of Healthcare	313	
	15.3.2	Applications of Control Charts	314	
15.4	A Cauti	onary Note on the Risk-adjustment of Observational Data	324	
15.5	Summa	ry	328	
Appe	ndix A		328	
	15.A.1	The EWMA Chart	328	
	15.A.2	Logistic Regression	329	
	15.A.3	Autocovariance and Autocorrelation	330	
Ackn	Acknowledgements			
Refer	ences		330	

Part Four APPLICATIONS TO HEALTHCARE POLICY AND IMPLEMENTATION

16	Modeling Kidney Allocation: A Data-driven Optimization Approach Inbal Yahav				
	Syno	psis	335		
	16.1	Introduction	335		
		16.1.1 Literature Review	338		
	16.2	Problem Description	340		
		16.2.1 Notation	340		
		16.2.2 Choosing Objectives	341		
	16.3	Proposed Real-time Dynamic Allocation Policy	342		
		16.3.1 Stochastic Optimization Formulation	342		
		16.3.2 Knowledge-based Real-time Allocation Policy	343		
	16.4	Analytical Framework	344		
		16.4.1 Data	344		
		16.4.2 Model Estimation	344		
	16.5	Model Deployment	345		
		16.5.1 Stochastic Optimization Analysis	346		
		16.5.2 Knowledge-based Real-time Policy	347		
	16.6	350			
	Acknowledgement				
	References				
17		tical Issues in Vaccine Safety Evaluation ck Musonda	353		
	Synopsis				
	17.1	Background	353		
	17.2	Motivation	354		
	17.3	The Self-controlled Case Series Model	354		
	17.4	Advantages and Limitations	357		
	17.5	Why Use the Self-controlled Case Series Method	358		
	17.6 Other Case-only Methods				

	17.7	Where the Self-controlled Case Series Method Has Been Used	359
	17.8	Other Issues That were Explored in Improving the SCCM	360
	17.9	Summary of the Chapter	362
	Refer	rences	362
18	Statistical Methods for Healthcare Economic Evaluation		
	Cater	rina Conigliani, Andrea Manca and Andrea Tancredi	
	Syno		365
	18.1	* · · · · · · · · · · · · · · · · · · ·	365
	18.2	Statistical Analysis of Cost-effectiveness	366
	10.2	18.2.1 Incremental Cost-effectiveness Plane, Incremental	500
		Cost-effectiveness Ratio and Incremental Net Benefit	366
		18.2.2 The Cost-effectiveness Acceptability Curve	368
	18.3	Inference for Cost-effectiveness Data From Clinical Trials	369
	10.5	18.3.1 Bayesian Parametric Modelling	370
		18.3.2 Semiparametric Modelling and Nonparametric	570
		Statistical Methods	373
		18.3.3 Transformation of the Data	373
	18.4		375
	10.7	18.4.1 Markov Models	376
	18.5	Further Extensions	378
	10.5	18.5.1 Probabilistic Sensitivity Analysis and Value	570
		of Information Analysis	379
		18.5.2 The Role of Bayesian Evidence Synthesis	380
	18.6	Summary	383
		rences	383
	Kelei		505
19	Costi	ng and Performance in Healthcare Management	386
	Rosa	nna Tarricone and Aleksandra Torbica	
	Syno	psis	386
		Introduction	387
	19.2		
		Opportunity Cost and Shadow Price	387
	19.3	Costing Healthcare Services	388
		19.3.1 Measuring Full Costs of Healthcare Services	389
		19.3.2 Definition of the Cost Object (Output)	389
		19.3.3 Classification of Cost Components (Direct vs.	
		Non-direct Costs)	390
		19.3.4 Selection of Allocation Methods	390
		19.3.5 Calculation of Full Costs	392
	19.4	Costing for Decision Making: Tariff Setting in Healthcare	392
	1711	19.4.1 General Features of Cost-based Pricing and Tariff Setting	393
		19.4.2 Cost-based Tariff Setting in Practice: Prospective Payments	0,00
		System for Hospital Services Reimbursement	394
	19.5	Costing, Tariffs and Performance Evaluation	395
	- / 10	19.5.1 Definition of Final Cost Object	396
		19.5.2 Classification and Evaluation of Cost Components	396
		2.2.2 Chasting and Dividual of Cost Components	570

	19.5.3 Selection of Allocative Methods and Allocative Basis	397
	19.5.4 Calculation of the Full Costs	397
	19.5.5 Results	398
19.6	Discussion	400
19.7	Summary	402
Refere	ences	403

Part Five APPLICATIONS TO HEALTHCARE MANAGEMENT

20	Statistical Issues in Healthcare Facilities Management Daniel P. O'Neill and Anja Drescher		407
	Synop	sis	407
	20.1	Introduction	407
	20.2	Healthcare Facilities Management	409
		20.2.1 Description	409
		20.2.2 Relevant Data	410
	20.3	Operating Expenses and the Cost Savings Opportunities Dilemma	412
	20.4	The Case for Baselining	413
	20.5	Facilities Capital is it <i>Really</i> Necessary?	414
		20.5.1 Facilities Capital Management	414
		20.5.2 A Census of Opportunities	415
		20.5.3 Prioritization and Efficiency Factors	416
		20.5.4 Project Management	417
	20.6	Defining Clean, Orderly and in Good Repair	418
		20.6.1 Customer Focus	418
		20.6.2 Metrics and Methods	419
	20.7	A Potential Objective Solution	420
	20.8	Summary	424
	Refere		425
21	Simulation for Improving Healthcare Service Management <i>Anne Shade</i>		426
	Synop	sis	426
	21.1	Introduction	426
	21.2	Talk-through and Walk-through Simulations	427
	21.3		428
	21.4		429
	21.5	Discrete Event Simulation	429
	21.6	Creating a Discrete Event Simulation	431
	21.7	Data Difficulties	432
	21.8	Complex or Simple?	434
	21.9	Design of Experiments for Validation, and for Testing Robustness	436
	21.10	Other Issues	438
	21.11	Case Study No. 1: Simulation for Capacity Planning	439
	21.12	Case Study No. 2: Screening for Vascular Disease	440
	21.13	Case Study No. 3: Meeting Waiting Time Targets in Orthopaedic Care	441

	21.14	Case Study No. 4: Bed Capacity Implications Model (BECIM)	442
	21.15	Summary	443
	Refere	nces	444
22	Statistical Issues in Insurance/payor Processes		
	Melissa Popkoski		
	Synop	sis	445
	22.1	Introduction	445
	22.2	Prescription Drug Claim Processing and Payment	446
		22.2.1 General Process: High-level Outline	446
		22.2.2 Prescription Drug Plan Part D Claims Payment Process	447
	22.3	Case Study: Maximizing Part D Prescription Drug Claim	
		Reimbursement	450
	22.4	Looking Ahead	453
	22.5	Summary	454
	Refere	nce	455
23	Quality	y of Electronic Medical Records	456
		Gregori and Paola Berchialla	100
	Synop	SIS	456
	23.1	Introduction	456
	23.2	Quality of Electronic Data Collections	459
		23.2.1 Administrative Databases	461
		23.2.2 Health Surveys	461
		23.2.3 Patient Medical Records	462
		23.2.4 Clinical Trials	462
		23.2.5 Clinical Epidemiology Studies	462
	23.3	Data Quality Issues in Electronic Medical Records	462
	23.4	Procedure to Enhance Data Quality	464
		23.4.1 Clinical Vocabularies	466
		23.4.2 Ontologies	466
		23.4.3 Potential Technical Challenges for EMR Data Quality	467
		23.4.4 Data Warehousing	469
	23.5	Form Design and On-entry Procedures	469
		23.5.1 Data Capture	470
		23.5.2 Data Input	470
		23.5.3 Error Prevention	471
		23.5.4 Physician-entered Data	471
	23.6	Quality of Data Evaluation	472
	23.7	Summary	475
	Refere	nces	475

Index

Foreword

Twenty-five years ago we launched an interesting experiment, 'The National Demonstration Project for Quality Improvement in Healthcare'. It was a modest experiment bringing together twenty-one healthcare providers with twenty-one top industrial companies to explore whether industrial quality methods would work in healthcare settings. The results of this experiment were published as *Curing Health Care: New Strategies for Quality Improvement*. The statistical methods used by most of these healthcare providers were fairly basic tools of quality improvement; yet, many of the improvements were significant.

Looking back this many years later, there was no reason to be surprised by these results. Statistical methods had been used in many areas of healthcare for almost as many years as statistical methods had been used by any organization. Florence Nightingale was one of the first honorary members of the American Statistical Association, an organization that celebrated its 150th anniversary twenty-two years ago. Her pioneering work using clear, simple graphical methods to discover causes of death in hospitals during the Crimean War and alter British barracks was well known and celebrated. Basic, simple statistical methods to explore, understand and present data are as effective in healthcare applications as in any other endeavour.

But somehow, the science of quality control and quality improvement had passed healthcare by. Starting with Shewhart's control chart in 1924, statistical quality control had progressed quickly during the Second World War, and had been widely adopted and used by post-war Japan to become a leading producer of high-quality products. It had been rediscovered in the United States in the 1980s, and widely applied throughout the world in the 1980s and 1990s by companies in almost every competitive industry. Healthcare had evolved many methods of quality assurance, risk management and quality measurement, for the most part independent of what was happening in industry.

In some areas of healthcare, particularly in drug and medical device development and production, sophisticated methods had been created and widely used. Researchers in biostatistics, biometrics and clinical trials had developed and employed some of the most advanced statistical methods, and in turn contributed much to the statistical literature. These methods, however, did not seem to translate easily to the practice of continuous quality improvement in hospital-based care or general clinical practice. There was a considerable gap between what we knew how to do and what we were doing.

xx FOREWORD

The National Demonstration Project evolved into the Institute for Healthcare Improvement, and the growing network of healthcare providers became increasingly adept in learning from sources outside of healthcare, adapting these methods to healthcare applications, and sharing encouraging results with each other. It was not only the statistical tools. The healthcare organizations picked up the methods of putting these tools to use in a scientific approach to improvement using PDSA (Plan-Do-Check/Study-Act), Juran's Quality Improvement Steps, Motorola/General Electric's Define-Measure-Analyse-Improve-Control (Six Sigma Quality), and full-scale implementations of the Toyota Production System (Lean).

Healthcare organizations around the world have formed collaboratives, networks and notfor-profit organizations to share these methods and statistical tools. Thousands of doctors, nurses and other practitioners now routinely attend healthcare quality conferences and daily participate in online courses, web-based sharing and local working groups. Organizations such as the Institute for Healthcare Improvement have tried to structure some of this learning through devices such as IHI's *Improvement Roadmap* and the Open School, but there has not been a simple place to find the statistical tools used in healthcare improvement until now.

Faltin, Kenett and Ruggeri have brought together leading researchers and practitioners in statistical methods to provide a wealth of methods in one place. Starting with some of the most sophisticated methods used in the development of pharmaceutical products and medical devices, and ending with applications to healthcare management, they have managed to cover amazing ground. The chapters on control charts bring together some of the best methods of statistical process control (SPC) in healthcare, and even cover some of the abuses in the use of control charts. The chapter 'Six Sigma in Healthcare' gives a remarkably thorough discussion of both Six Sigma and how it is being applied by many healthcare organizations in Europe and the USA.

But this book goes much further than the typical statistics text and addresses serious policy issues such as kidney allocation and offers advanced statistical methods as an approach to this critical problem. Another critical issue in healthcare, vaccine safety evaluation, is also addressed. In this time of crises in healthcare costs, the economics of healthcare is becoming a major issue. Here too, statistical methods have a large part to play.

The core of healthcare is, of course, clinical outcomes. Statistical methods play a critical role in outcomes analysis. Bias in modelling and monitoring health outcomes are addressed in a chapter by Grigg. Biggeri and Catelan discuss disease tracking. Guglielmi, Ieva, Paganoni and Ruggeri address process indicators and outcome measures in an important area, and Negri gives an excellent discussion of the special tool of meta-analysis.

We no longer need to discuss the value of statistical tools and quality improvement methods in healthcare. The value has been demonstrated thousands of times. What is needed is a comprehensive compilation of these tools in one place written by careful, knowledgeable authors. We should all be grateful to Faltin, Kenett and Ruggeri for providing it.

A. Blanton Godfrey Dean, College of Textiles and Joseph D. Moore Distinguished University Professor North Carolina State University and Chair of the Board of Directors (2009–2012) Institute for Healthcare Improvement

Preface

This book has its origins in the confluence of two realizations. First, that the availability and quality of healthcare is the defining issue of our time. And second, that statistics as a discipline pervades every aspect of the healthcare field.

Statistical Methods in Healthcare illustrates the spectrum of statistical applications to healthcare. From pharmaceuticals to health economics, drug product development to facilities management, clinical outcomes to electronic medical records, risk assessment to organ allocation, statistics has permeated every corner of healthcare. Accordingly, we have assembled here an array of chapters, prepared by a broadly international group of leading authors, which address all of these topics, and many more. Our objective was not to touch upon every area of statistical application in healthcare – that would be impossible. Rather, our purpose has been to span, as best we can, the diverse domains to which statistics has been applied and, thereby, to contribute to the evolution of statistical methods in healthcare applications.

The book consists of 23 chapters organized in five parts:

Part One: Statistics in Development of Pharmaceutical Products

This part consists of chapters dealing with clinical trials, pharmacometrics, risk management in drug product development, statistical aspects in current regulatory guidelines, and future challenges in drug development.

Part Two: Statistics in Outcomes Analysis

The second part deals with monitoring healthcare and diseases, a detailed case study on the treatment of acute myocardial infarction patients, and a chapter dedicated to meta-analysis.

Part Three: Statistical Process Control in Healthcare

Applications of statistical process control in healthcare are gaining widespread acceptance. In this part we present examples from healthcare, clinical studies and applications of Six Sigma in healthcare.

Part Four: Applications to Healthcare Policy and Implementation

This part is focused on aspects of policy and implementation, including healthcare economics, benchmarking, vaccination policy and allocation procedures in kidney transplant surgery.

Part Five: Applications to Healthcare Management

This final part covers various aspects of healthcare delivery as a service, including payment procedures, electronic medical records and facilities management.

Not surprisingly, such an effort has been the work of contributors from many fields. *Statistical Methods in Healthcare* integrates contributions from statisticians, economists, physicians, epidemiologists, operations researchers, actuaries and managers, among others. The outcome captures perspectives from all of these disciplines, providing an integrated interdisciplinary view reflecting the richness and complexity of healthcare applications.

Our hope and belief is that this collective effort will prove valuable to those in a wide array of professions which in some way touch upon healthcare. Not only statisticians, but researchers, physicians and administrators will find here statistical applications with detailed examples representing a variety of problems, models and methodologies. Students and practitioners alike will discover opportunities to innovate via the use of statistical methods.

We'd like to acknowledge and thank the many people whose contributions have made this work possible. These include, first and foremost, our esteemed colleagues who have contributed chapters to the work, and the outstanding editorial, production and copy-editing teams at Wiley, who followed up our work together on *The Encyclopedia of Statistics in Quality and Reliability* with another successful outing. And of course, our thanks go especially to our families, for their patience with us while we were preoccupied or otherwise disengaged throughout the duration of this project.

This book includes an accompanying website www.wiley.com/go/statistical_methods_healthcare

Editors

Frederick W. Faltin Founder and Managing Director The Faltin Group 25 Casper Drive Cody, WY 82414, USA

Ron S. Kenett

Chairman and CEO, The KPA Group KPA Ltd, PO Box 2525 Hattaassia Street, 25 Raanana 43100, Israel and Research Professor Università degli Studi di Torino 10134 Turin, Italy

Fabrizio Ruggeri

Research Director CNR IMATI Via Bassini 15 I-20133 Milano, Italy

Contributors

Benjamin M. Adams

Department of Information Systems Statistics and Operations Management University of Alabama Tuscaloosa, AL USA

Zvia Agur

Optimata Ltd. Ramat Gan, Israel and Institute for Medical Biomathematics (IMBM) Bene Ataroth, Israel

Robert Bauer

ICON Development Solutions University Blvd. Ellicot City, MD USA

James C. Benneyan Healthcare Systems Engineering Institute Northeastern University Boston, MA USA

Paola Berchialla Department of Public Health and Microbiology University of Torino Turin Italy

Annibale Biggeri

Department of Statistics 'G. Parenti' University of Florence Florence, Italy and Biostatistics Unit ISPO Cancer Prevention and Research Institute Florence, Italy

Dolores Catelan

Department of Statistics 'G. Parenti' University of Florence Florence, Italy and Biostatistics Unit ISPO Cancer Prevention and Research Institute Florence, Italy

Shirley Y. Coleman Industrial Statistics Research Unit Newcastle University Newcastle upon Tyne UK

Caterina Conigliani Department of Economics University of Roma Tre Rome Italy

xxvi CONTRIBUTORS

Anja Drescher

Operations Analytics Integrated Facilities Management Jones Lang LaSalle Americas, Inc. Minnetonka, MN USA

Dario Gregori

Unit of Biostatistics, Epidemiology and Public Health Department of Cardiac, Thoracic and Vascular Sciences University of Padova Padua Italy

Olivia A. J. Grigg

CHICAS School of Health and Medicine Lancaster University Lancaster UK

Alessandra Guglielmi Department of Mathematics Politecnico di Milano Milan Italy

Serge Guzy

POPPHARM Albany, CA USA

Francesca Ieva Department of Mathematics Politecnico di Milano Milan Italy

Telba Irony

General and Surgical Devices Branch Center for Devices and Radiological Health US Food and Drug Administration Silver Spring, MD USA

Victoria Jordan

Office of Performance Improvement University of Texas MD Anderson Cancer Center Houston, TX USA

Caiyan Li

Baxter Healthcare Corporation Round Lake, IL USA

Andrea Manca

Centre for Health Economics The University of York, York UK

Patrick Musonda

School of Medicine, Norwich Medical School University of East Anglia Norwich, UK and Centre for Infectious Disease Research in Zambia (CIDRZ) Lusaka, Zambia

Eva Negri

Department of Epidemiology Istituto di Ricerche Farmacologiche 'Mario Negri' Milan Italy

Daniel P. O'Neill

Healthcare Solutions Jones Lang LaSalle Americas, Inc. Chicago, IL USA

Anna Maria Paganoni

Department of Mathematics Politecnico di Milano Milan Italy

Melissa Popkoski

Pharmacy Administrative Services Horizon Blue Cross Blue Shield of New Jersey Newark, NJ USA

Allan Sampson

Department of Statistics University of Pittsburgh Pittsburgh, PA USA

Anne Shade

Good Decision Partnership Ingleneuk, Strathdrynie Dingwall, Scotland UK

Phyllis Silverman

General and Surgical Devices Branch Division of Biostatistics Center for Devices and Radiological Health US Food and Drug Administration Silver Spring, MD USA

Yafit Stark

Innovative R&D Division TEVA Pharmaceutical Industries, Ltd. Netanya Israel

Andrea Tancredi

Department of Methods and Models for Economics, Territory and Finance University of Roma 'La Sapienza' Rome Italy

Rosanna Tarricone

Department of Policy Analysis and Public Management Centre for Research on Health and Social Care Management – CERGAS Università Bocconi Milan Italy

Aleksandra Torbica

Department of Policy Analysis and Public Management Centre for Research on Health and Social Care Management – CERGAS Università Bocconi Milan Italy

Per Winkel

The Copenhagen Trial Unit Centre for Clinical Intervention Research Rigshospitalet, Copenhagen University Hospital Copenhagen Denmark

William H. Woodall

Department of Statistics Virginia Tech Blacksburg, VA USA

Inbal Yahav

The Graduate School of Business Department of Information Systems Bar Ilan University Israel

Shelemyahu Zacks

Department of Mathematical Sciences Binghamton University Binghamton, NY USA

Nien Fan Zhang

Statistical Engineering Division National Institute of Standards and Technology Gaithersburg, MD USA