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Preface

The material in this text is drawn from the author’s 35 years of teaching, research, and indus-
trial experiences in the areas of vibrations, finite elements, dynamics, and feedback control.
The teaching experiences include both undergraduate and graduate course instruction in
vibrations, graduate courses in finite elements and boundary elements, and undergraduate
courses in controls and dynamics. The research experiences include performing sponsored
research for NASA Glenn and Marshall, ONR, ARL, DOE, and a host of industrial com-
panies. The industrial experience is drawn from employment at Southwest Research Insti-
tute, Bently Nevada, and Allis-Chalmers Corp.

The pedagogical motivation for this book resulted from a desire to fulfill the following
perceived needs of college and university students and practicing engineers and scientists for
learning vibrations and finite elements:

1. Provide a convincing and motivational first chapter about “why” the material presented
in the book is important. As was so eloquently expressed in the writings of John Henry
Newman, learning for the sake of exercising the intellectual dimension of the person is an
important activity which enriches our life experience and strengthens our reasoning
faculties with endless benefits. This is very true; however, the application of this knowl-
edge to better understand nature and direct it to better the human condition through engi-
neering practice is also an important motivational benefit for the reader. For this reason,
Chapter 1 provides an overview of everyday vibration experiences, fundamental con-
cepts, deleterious effects of vibrations, and industrial standards. A brief introduction
to the concept of finite elements is also included, which is the most common tool for
vibration analysis in industry and research. Finally, Chapter 1 concludes with a discus-
sion of the concept of active vibration control, which is one area of “smart” technologies
that seem ubiquitous in engineering and popular news.

2. Provide a chapter that contains subjects that need to be initially grasped in order to more
quickly comprehend and utilize the core material that appears in the later chapters. The
preparation subjects include computer coding, mathematical theory, modeling, and kin-
ematic constraints. Quite often, the above subjects are folded into the major areas such as
free and forced vibration theory or are relegated to appendices that in the author’s expe-
rience are rarely referenced. Chapter 2 presents these preparatory subjects in an isolated,
front, and center manner with the goal of providing a solid background for the reader
before he or she embarks on using them in sometimes subtle steps, nested in more com-
plicated vibration theory and problems. Divide and conquer is a very effective strategy in
vibrations, as in all educational pursuits!

This chapter also introduces the student to the use of the symbolic math codes
MAPLE and MATLAB symbolic. These tools are utilized in many of the chapters to
facilitate complicated and tedious algebraic and differential and integral calculus calcu-
lations in an elegant and minimal error manner. Working knowledge of these tools will
aid the reader in many areas of engineering practice which fulfills a holistic learning goal
of engineering education.

The common thread for implementation of structural modeling methods is kinematic
constraints (deformation assumptions). As discussed in Chapter 2, rigid body, assumed
modes (Rayleigh—Ritz), finite elements, and boundary element models all impose

XV
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Preface

kinematic constraints (deformation assumptions) that reduce the dimensionality of a
structural model in order to provide a practical solution path to its governing differential
equations. Understanding this common thread removes some of the apprehension for
learning or instructing assumed modes or finite elements, when they are viewed as exten-
sions of more elementary and familiar kinematic constraints. These may include coupled
rigid body systems or examples from strength of materials, for example, plane sections
remain plane in the beam deformation theory.

. Provide initial chapters that elucidate the understanding and application of Newton’s

laws (Chapter 3) and the energy-based (Chapter 4) approaches (conservation and
Lagrange equations) for deriving governing differential equations. Instructional expe-
rience has so often exposed the inability of students to derive accurate governing dif-
ferential equations, prior to utilizing them to obtain vibration-related response
characteristics such as natural frequencies, transient response, etc. The student’s solution
is maimed by an erroneous governing equation from the start, and the ensuing results are
misleading and often nonsensical. This occurs in spite of the possible mastery of other
modeling, simulation, and presentation skills. Frankly speaking, garbage in leads to gar-
bage out (no matter how polished and visual is its presentation format).

Chapter 4 demonstrates that the most widely used engineering vibration simulation
tool—finite elements—follows naturally from Lagrange equations with the removal of
the kinematic (deformation) constraints (assumptions) of the simpler models. This
requires a somewhat rigorous demonstration that Lagrange’s equations are valid for flex-
ible members and their assemblages in structural systems. Most texts leap over this dem-
onstration by implicitly invoking a variant of “it can be shown.” Thus, it is presupposed
that the demonstration of the generalized force of a coil spring being obtained from the
derivative of its potential energy is sufficient for justifying the application of the same
approach for modeling the elastic properties of a 10 000-degree-of-freedom solar panel
array on a satellite. This approach, although ultimately valid, is deficient for leaving
an important gap in the sound understanding of the approach by the reader. The chapter
also provides detailed derivations of the Lagrange equations for rigid body, assumed
modes, and finite element-type models with a wide variety of stiffness and damping
interconnections.

The assumed modes section of Chapter 4 is included for its intrinsic modeling value
and as an introduction to the finite element approach. The chapter also utilizes bar/truss
elements for the initial presentation of deriving finite element stiffness and mass matrices
and force vectors and for the matrix assembly procedure. The assembly procedure is pre-
sented with significant detail for fully automating in a computer code, for both free and
constrained structures. The method presented is nearly universal and is applied without
significant modification for beams in Chapter 9, 2D and axisymmetric solids and mem-
branes in Chapter 10, and 3D solids in Chapter 11.

Symbolic math examples are provided in both Chapters 3 and 4 to demonstrate their
usage for automating steps in deriving equations of motion, such as substitutions, com-
bination, sorting, integrations, and differentiations, which typically are steps prone to
error when worked by hand.

. Provide a more pedagogically effective approach for instructing free, transient, and

harmonic vibrations as compared with the traditional approach. The major simulation
application areas of vibrations—free vibrations (F), transient forced vibrations (T),
and steady-state forced harmonic vibrations (SSH)—are treated in Chapters 5, 6, and
7, respectively. A pedagogical goal for this arrangement of the text was to provide unin-
terrupted treatments of these three major areas of vibrations. The format of many
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vibrations textbooks is frequently to present F, then T, and then SSH for single-degree-
of-freedom models; next to present F, then T, and then SSH for 2-degree-of-freedom
models; then to present F, then T, and then SSH for multiple-degree-of-freedom models;
and finally to present F, then T, and then SSH for continuous member models. The
author’s pedagogical experience is that a more effective approach is to cover F for 1,
2, and multiple degree of freedom and continuous members and then present similar
learning sequences for T and finally for SSH. Instructing free vibrations from single
degree of freedom through continuous members without multiple circulations through
transient and SSH vibrations seems far less confusing and more effective and logical.
A similar conclusion holds for treatments of transient vibrations and steady-state har-
monic vibrations. In the author’s opinion, the format of prior texts, as outlined above,
has lost a significant justification with the advent of modern math tools, which have
greatly lessened the solution difficulties encountered in transitioning from single-
degree-of-freedom to 2-degree-of-freedom to N-degree-of-freedom models.

Chapter 5 expands the conventional content covered in free vibrations by including
treatment of rotating systems with gyroscopic moments, the destabilizing effect of cir-
culatory forces, flexible unconstrained structures, orthogonal damping matrices, and
unstable systems. Likewise, Chapter 6 expands the conventional content covered in tran-
sient vibrations by including response spectrums, modal condensation for general
M, K, and C systems, flexible unconstrained structures, base excitation, participation fac-
tor and modal effective mass, and numerical integration methods. Finally, Chapter 7
expands the conventional content covered in steady-state harmonic response by includ-
ing peak amplitude and frequency for the simple single-degree-of-freedom oscillator
(SDOFO), parameter identification methods for the SDOFO, high spot-heavy spot
and influence coefficient balancing for a simple Jeffcott rotor, demonstration that reso-
nance may occur in any general M, K, and C linearized vibrating system, use of recep-
tances for the synthesis of substructures and mode shape identification, and use of the
modal assurance criterion (MAC) for mode shape correlation.

. Provide a treatment of techniques for improving computational efficiency for larger-
order models by utilizing approximate methods. Large-scale finite element models are
utilized throughout industry and in research and economic solutions are typically a neces-
sity. Long run times inhibit use of optimization approaches such as genetic algorithm
guided design which requires a large multitude of simulations with parameter variations.
Modal condensation for accelerating system transient solutions is covered very thor-
oughly in Chapter 6, including use of the modal acceleration method. Chapter 7 also
introduces a receptance approach for economically determining the response of coupled
substructures through receptance synthesis. Chapter 8 covers other areas for economic,
large-order system model solutions including Guyan reduction-static condensation, sub-
structures—superelements, modal synthesis, eigenvalue—eigenvector perturbations with
reanalysis, and the Rayleigh quotient approach.

. Provide an in-depth presentation of finite elements that far surpasses the conventional
content of only 2D Euler—Bernoulli beams and present an implementation algorithm that
is universally applicable among the various types of elements and treats both fixed and
time-varying boundary conditions. This goal reflects the author’s experiences with finite
elements in industry and research, namely, various types of elements are utilized and in
most cases 3D models are inevitably required. Chapter 9 presents theory and examples
for 2D Euler—Bernoulli and 2D and 3D Timoshenko beams with shear deformation
effects. The Timoshenko beam development includes a truly “consistent mass matrix”
utilizing the Timoshenko shape functions, derived from the solution of the beam’s static
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governing equations, in the kinetic energy expression for deriving the element mass
matrix. Most developments employ a lumped mass formulation or an “inconsistent”
mass matrix formulation utilizing Timoshenko beam shape functions for displacements
and Euler—Bernoulli (Hermite cubic polynomials) shape functions for velocities in the
beam’s kinetic energy expression. A general approach and accompanying 2D beam-
frame example are provided for the case of imposed motion excitation at boundary points
in a finite element model. The Timoshenko beam theory presented is for general 3D
frames including I beams, box beams, etc. The matrix assembly algorithm presented
in Chapter 4 is again utilized for all beam-frame models in Chapter 9. The standard for-
mat of only including 2D Euler—Bernoulli beams in vibration texts is clearly surpassed in
Chapter 10 which includes treatment of 2D solid elements for plane stress and plane
strain and axisymmetric and 2D vibrating membranes. Detailed algorithms are provided
for determining stresses at interior and surface points for use in high-cycle fatigue stud-
ies. Both bilinear (2 node) and quadratic (9 node) isoparametric element formulations are
presented. The extra (incompatible) shape function approach is utilized in order to accel-
erate convergence especially in 2D bending-type problems. Most commercial finite ele-
ment codes utilize automated mesh generators with lower-order finite element models.
The formulation for a constant strain triangle is presented for this purpose. The
MATLAB code MESH2D is utilized for creating an automated triangular element mesh,
which is then solved for natural frequencies and mode shapes. Large-order problems cre-
ate large systems of linear algebraic equations that must be solved for the unknown nodal
vibrations. The corresponding matrices may be highly sparse as described by a small
bandwidth to order ratio. This fact may be exploited to economize on the required com-
putation time for solving the equations. A banded solver assembly procedure and coding
are provided and demonstrated with a steady-state harmonic vibration response example.

Chapter 11 provides theory, assembly procedures, and an example for a general
8-node, 3D solid (brick) hexahedral isoparametric element including extra (incompati-
ble) shape functions for improved bending deformation modeling. The example reveals
modes and natural frequencies that are absent from the corresponding 2D solid and
Timoshenko beam models. A detailed discussion is provided for determining interior
and surface point stresses for usage in high-cycle fatigue studies.

. Provide an intermediate-level treatment of active vibration control (AVC) which is often

categorized as an area of smart structures and materials. The need for lightweight, high-
performance structures, vehicles, machines, and devices that may be required to function
in extreme environments and adapt to various operating conditions has spawned a vast
amount of research and development efforts in AVC. Chapter 12 provides in-depth treat-
ments of both electromagnetic and piezoelectric actuator types, ideal (infinite) and finite
bandwidth modeling and effects, and closed-loop stability and steady-state response
determination. Closed-loop feedback control models that assume infinite bandwidths
for all feedback components (sensors, controllers, power amplifiers, and actuators) are
prone to miss unstable poles that appear in the as-built system and preclude the use
of predetermined design feedback gains. This point is elucidated by both theory and
example in Chapter 12. Examples are provided for systems with electromagnetic actua-
tors or with piezoelectric stack or patch (layer) actuators.

. Provide an appendix which contains a summary of the basic equations of elasticity (equi-

librium, constitutive law, strain displacement, compatibility, strain energy) for easy ref-
erence when deriving the assumed modes and finite element stiffness matrices.

All chapters have a generous number of EXERCISES. Limitations on the size and cost

of the textbook precluded including the EXERCISES within the textbook. The exercises are
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accessible from a dedicated website (www.wiley.com/go/palazzolo), which is maintained
by Wiley. The website contains a wide variety of intermediate to challenging exercises.
A typed solution manual for the exercises is available from Wiley for instructors.

MATLAB and MAPLE codes are utilized in the examples throughout the text and
in the exercise solutions. Many of the code listings are contained in the chapters or in
Appendices B-F. The remaining codes are provided in a dedicated website (www.wiley.
com/go/palazzolo) maintained by Wiley for instructors.

Limitations on the size and cost of the textbook precluded including sections on test
instrumentation and sensors, nonlinear vibrations, and random vibrations. These are all very
important subjects although much can be obtained on instrumentation and sensors by web
search. Other texts that are readily accessible to students have introductory sections on non-
linear and random vibrations. The author has taught nonlinear vibrations at Texas A&M for
the past 12 years and is planning a specialized book in this area.


http://www.wiley.com/go/palazzolo
http://www.wiley.com/go/palazzolo
http://www.wiley.com/go/palazzolo
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About the Companion Website

This book is accompanied by a companion website:
www.wiley.com/go/palazzolo

This website includes:

e Appendices B through F which contain listings of MATLAB and MAPLE Codes for
major examples in the text

e Exercises

e Matlab and Maple Codes

Exercises will be updated to reflect reader comments and the database of exercises will be
expanded. This technological innovation will make the text a ‘living” document, whilst

having an expanding and polished Exercises section on a website reduces the size and cost
of the book.
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Chapter 1

Background, Motivation,
and Overview

1.1 INTRODUCTION

The word “university” is derived from the word “universal” (Newman, 1927) in that the
university is the foremost setting for teaching universal knowledge. Philosophy, chemistry,
agriculture, mechanics, theology, biology, and so on are all topics of learning, teaching, and
exploring at the true university. The study of vibrations is a microcosm of the ideal univer-
sity, encompassing aspects of dynamics, fluid mechanics, structural deformation and
fatigue, electromagnetism, feedback control, sound, and other phenomena. Confronting
this, the eager investigator feels great satisfaction in drawing ideas from each area and then
forging solutions to vibration problems. As an athlete develops calves and biceps, shoulders,
and forearms and then enjoys using these in harmony and mutual support in competition, so
the vibration engineer delights in recognizing and using many disciplines to tame vibrations.

With its arsenal of anomalies—fastener looseness, structural member fatigue and
failure, noise, internal rubs in machinery, human fatigue and distractions, optical instrumen-
tation and machining errors, and so on—vibration continues to present formidable engineer-
ing challenges and to limit energy efficiency and cost reduction in machinery and structures
in the twenty-first century. New machinery that pushes the envelopes of efficiency and
power density; new structures that stretch the imagination in size, materials, light weights,
and locations; and new vehicles that propel us through land, air, sea, and space with ever
increasing speed and comfort level all hold great promise for an efficient and convenient
future. These advances will come at a price though and vibration will be there to collect
its due. The author extends his best wishes for success to those who meet the vibration chal-
lenges that continue to arise in mankind’s quest to subdue nature and use its awesome forces
for peace, human dignity, and prosperity.

1.2 BACKGROUND

The following sections provide discussions of many important aspects of vibration. The
intent of this section is to provide some basic background material to facilitate understanding
of the following sections. Vibration is the study of dynamic motions of mechanical, struc-
tural, or anatomical components or systems about their static equilibrium configurations.
The motion may be sinusoidal periodic, complex periodic, quasiperiodic, transient, chaotic,
or random. Monotone (single-frequency) sinusoidal vibration is characterized by an
equilibrium position x.q and the dynamic displacement amplitude (A,), phase angle (¢.),
frequency (f), and period (T') as shown in Figure 1.2.1.

Vibration Theory and Applications with Finite Elements and Active Vibration Control, First Edition. Alan B. Palazzolo.
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x(f) A

(Increasing time)

eq (— —
> ¢
Figure 1.2.1 Pure tone sinusoidal vibration
The period and frequency are related by
1 . .
f= T cycles/sorHz, ®=2xzf circular frequency inrad/s (1.2.1)
Period markers are seen to occur at 0, 27/w, 4n/w, .... This may represent a once per

revolution event on a rotating shaft or just some arbitrarily referenced pulse that indicates
the beginning of a new forcing period. The motion is described using the expression

x(t) =Aycos(wt+¢,) (1.2.2)

The positive peaks occur when the argument of the cosine function is a multiple of 2z,
that is,

Oty + ¢, =2an n=1,2,... (1.2.3)

which implies

2 4 6
t,,,,e{ 7 _: dm_¢. On d’} (1.2.4)
w W w W @ w

Thus, it is seen by comparison of (1.2.4) and Figure 1.2.1 that the phase angle ¢, has a
physical interpretation, namely, it provides a measure of the time between x(f) experiencing
a positive peak and the occurrence of a period marker. This time lag is

At, = (2 (1.2.5)

(0]

The velocity and acceleration expressions are obtained by differentiating (1.2.2)

W(1) =x(t) = A, cos(wt +p,) (1.2.6)
a(t) = v(t) =i (r) = Agcos(wt + b, ) (1.2.7)
where
A =wA,, b=+
2 (1.2.8)

A =wA, =’A,, ¢a=¢v+g=¢x+7r

The motion depicted in Figure 1.2.1 could result from displacing or striking the com-
ponent and allowing it to freely vibrate as in the case of a swing, traffic light, car antenna,



