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PREFACE 

Vibration problems dealing with advanced Mathematical and Numerical 
Techniques have extensive application in a wide class of problems in aero-
nautics, aerodynamics, space science and technology, off-shore engineering and 
in the design of different structural components of high speed space crafts and 
nuclear reactors. Different classes of vibration problems dealing with complex 
geometries and non-linear behaviour require careful attention of scientists and 
engineers in pursuit of their research activities. Almost all fields of Engineering, 
Science and Technology, ranging from small domestic building subjected to 
earthquake and cyclone to the space craft venturing towards different planets, 
from giant ship to human skeleton, encounter problems of vibration and dynamic 
loading.  

This being truly an interdisciplinary field, where the mathematicians, physi-
cists and engineers could interface their innovative ideas and creative thoughts 
to arrive at an appropriate solution, Bengal Engineering and Science University, 
Shibpur, India, a premier institution for education and research in engineering, 
science and technology felt it appropriate to organize 8th International Con-
ference on “Vibration Problems (ICOVP-2007)” as a part of its sesquicentenary 
celebration. The conference created a platform and all aspects of vibration 
phenomenon with the focus on the state-of-the art in theoretical, experimental 
and applied research areas were addressed and the scientific interaction, par-
ticipated by a large gathering including eminent personalities and young research 
workers, generated many research areas and innovative ideas.  

This proceedings being published by Spinger containing good number of 
scientific research articles and state-of-the art lecture by the distinguished 
scientists and engineers across the globe will definitely be a good reference for 
the scientists who would be working in the relevant field in theoretical, 
experimental and applied research areas. 

We express our sincere thanks and gratitude to all the guests, participants, 
speakers, sponsors and supporters for their kind patronage and valued cooperation 
to make the conference a grand success. Special thanks are due to Ministry of 
Human Resources, Department of Science and Technology (DST), Council for 
Scientific and Industrial Research (CSIR), Indian Space Research Organization 
(ISRO), Govt. of India, Centre for Applied Mathematics and Computational  
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cooperation and support for the conference and making the publication of the 
proceeding a reality. 

 

Prof. D. Sengupta 
Chairperson Secretary 

Organizing Committee Organizing Committee Organizing Committee 
  ICOVP-2007  ICOVP-2007  ICOVP-2007 
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Co-Ordinator

Science, Saha Institute of Nuclear Physics (SINP), Kolkata, India for their kind 

Prof. N. R. Bandyopadhyay  Prof. B. Mukhopadhyay 



 

“International Conference on Vibration Problems” 

ICOVP-2007 and a short history 

The 8th International Conference on Vibration Problems (ICOVP-2007) took 
place in Shibpur, West Bengal, India, between 1-3 February, 2007. 

First ICOVP was held during October 27-30, 1990 at A.C. College, Jalpaiguri, 
under the co-Chairmanship of two scientists, namely, Professor M. M. Banerjee 
from the host Institution and Professor P. Biswas from the sister organization, 
A.C. College of Commerce, in the name of “International Conference on 
Vibration Problems of Mathematics and Physics”. The title of the Conference 
was changed to the present one during the third conference. 

The Conferences of these series are: 

1. 
2. ICOVP-1993, 4-7 November 1993, A.C. College, Jalpaiguri-India, 
3. ICOVP-1996, 27-29 November 1996, University of North Bengal, India, 
4. ICOVP-1999, 27-30 November 1999, Jadavpur University, West Bengal, 

India, 
5. ICOVP-2001, 8-10 October 2001, (IMASH), Moscow, Russia, 
6. ICOVP-2003, 8-12 September 2003, Tech. Univ. of Liberec, Czech 

Republic, 
7. 
8. ICOVP-2007, 1-3 February 2007, Bengal Engineering and Science 

University, Shibpur, West Bengal, India. 

There was also a pre-conference tutorial for the faculty members of Colleges, 
Universities Scientists from Research Laboratories, Research Scholars and for 
Post-Graduate students. Foreign and Indian scientists delivered lectures in 
pre-conference tutorial which was held on January 30-31, 2007. 

Fifteen very well-known scientists were very kind in accepting our 
invitation to give General Lecture in the conference. These lectures were fol-
lowed by 44 Research Communications. 15 General Lectures and 24 Research 
Communications are included to this Proceedings. There was 13 Session in the 
conference and 5 Technical Sessions in the Pre-Conference Colloquium. 

As with the earlier Conferences of the ICOVP series, the purpose of 
ICOVP-2005 was to bring together scientists with different backgrounds, actively 
working on vibration problems of engineering both in theoretical and applied 

ICOVP-2005, 5-9 September 2005, Işik University, Şile, İstanbul, Turkey, 
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such, but rather in joining different languages, questions and methods developed 
fields. The main objective did not lie, however, in reporting specific results as 

ICOVP-1990, 20-23 October 1990, A.C. College, Jalpaiguri-India, 
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in the respective disciplines and to stimulate thus a broad interdisciplinary 
research. Judging from the lively discussions, the friendly, unofficial and warm 
atmosphere created both in side and outside Conference rooms, this goal was 
achieved. 

The following broad fields have been chosen by the International Scientific 
Committee to be special importance for the ICOVP-2007. 

• Mathematical modeling and computational techniques in sound and 
vibration analysis, 

• Instrumentation and experimental techniques in sound and vibration 
engineering,  

• Structural dynamics: seismic effect, fluid structure interaction, soil 
structure interaction, sensitivity problems, 

• Vibration problems in structural dynamics, structural vibration in non-
linear range and damage mechanics, fracture mechanics, composite and 
granular materials, 

• Analysis of deterministic and stochastic vibration phenomena,  
• Uncertainties in structural dynamics and acoustics, 
• Nonlinear dynamics, stability, bifurcation and chaos and its application,  
• Vibration of transport system, 
• Vibration problems related to Bio-mechanics and Bio-engineering,  
• Vibration in micro-systems,  
• Vibrational Technology in industrial devices and processes, dynamic 

materials of second kind,  
• Nanotechnology in vibration-phononic band gap structures and materials,  
• Signal processing and analysis, 
• Other topics related to vibration problems.  

Other topics concerned with vibration problems, in general, were also open 
as well, but the bulk of presentations were within the above fields. All of the 
lecturers were carefully reviewed by the International Scientific Committee, so 
as to illustrate the newest trends, ideas and the results. 

As the Editor-in-Chief, I would like to express my deep gratitude to the 
Faculty of Bengal Engineering and Science University (BESU) and the Scientific 
Committee and functional committees of the conference for their immeasurable 
efforts to organize this conference. They did a wonderful job for the realization 
of this traditional conference. 

In the meantime, I would like to express my great sympathy, regards and 
thanks to my very best friend Professor M. M. Banerjee who is the “father” of 
these conference series. His efforts are immeasurable to keep this conference 
series as going on successfully.  

x 
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I would also like to thank to Dr. Ahmet KIRIŞ for his great help on the 
editing of the book. 

Finally, on behalf of the Editorial Board, I would like to send our cordial 
thanks to all lecturers for their excellent presentations and careful preparation of 
the manuscripts. We are looking forward to come together at 9th ICOVP 
conference, which will tentatively take place in India in 2009. 

Esin İNAN, 
Editor-in-Chief 
Şile, İstanbul, December 2007 
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FREE VIBRATIONS OF DELAMINATED COMPOSITE 

CYLINDRICAL SHELL ROOFS 

A. KUMAR ACHARYYA*  
AND DIPANKAR CHAKRABORTY 
Department of Civil Engineering, Jadavpur University 

AMIT KARMAKAR 
Department of Mechanical Engineering, Jadavpur University 

Abstract. Recently laminated composites are widely used in civil engineering, 
which may suffer from delamination damage resulting from improper fabrication 
and overloading at service. A review of literature that exists on composite shells 
reveals that the research reports on delaminated shells are very few in number. 
Hence the present endeavor is to work on delaminated simply supported cylin-
drical shell with different extents of delaminations. An eight noded isoparametric 
element with five degrees of freedom per node is used together with Sander’s 
strain displacement relationships and multipoint constraint equations to satisfy 
the compatibility of displacements and rotations along the cracked edges. The 
study reveals that there is a consistent decrease in the fundamental frequency 
value as the area of the delamination damage increases. Further the fundamental 
frequency of angle ply shells undergo relatively more prominent decrease 
compared to that of cross ply shells. It seems that delamination damage brings 
about greater reduction in frequency values as the number of layers increases 
for angle ply shells, especially for symmetric ones. 

Keywords: delamination, cylindrical shell, finite element, laminated composite, funda-
mental frequency  

______ 
*Corresponding author, anjanboni@rediffmail.com 

Kolkata-700032, India 

Kolkata-700032, India 
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1. Introduction 

Gim1 worked on delaminated plates including the effect of transverse shear 
deformation. He employed the finite element technique and to ensure the 
compatibility of deformation and equilibrium of forces and moments at the 
delamination crack tip, a multiple constraint algorithm was developed and 
incorporated in the code. He considered delaminations at tips of cantilever plates 
and reported the strain energy release rate. Dynamic analysis of composite plates 
and shells with mutiple delamination was reported by Parhi and his colleagues2 
using an 8-noded finite element to study the free vibration and transient res-
ponse with different parametric variations. Effects of delamination on free vibra-
tion characteristics of graphite-epoxy composite pretwisted shallow cylindrical 

3

shells cylindrical configuration is commonest but delamination problems of 
commonly used composite cylindrical shells received very limited attentions 
only. Hence in this paper a free vibration analysis of simply supported dela-
minated composite cylindrical shells with different delamination areas and 
stacking sequences are presented.  

2. Mathematical formulation 

For shallow cylindrical shells the linear inplane strains εx, εy, γxy are 
expressed as 

 

0
, , ,

0
, , ,

0 0
, , , , , ,( )

x x x x

y y y y

xy y x y x y x

u u z
w wv v z
R R

u v u v z

ε α

ε β

γ α β

= = −

= − = − −

= + = + − +

 (1) 

Multipoint constraint equations, used here in the finite element formulation, 
are to satisfy the compatibility of displacements and rotations. These are sug-
gested by Gim1. 

2 A.K. Acharyya et al. 

shells were reported by Karmakar et al . Although among civil engineering 

An eight noded curved quadratic isoparametric finite element with five degrees 
of freedom u, v, w, α, β at each node is employed for solution, where u, v, w are 
displacements at any general point at a distance z from the midplane within the 
shell thickness and α and β are rotations about Y- and X- axes respectively. The 
corresponding midplane displacement components are u0, v0, w0. R is the radius 
of the shell surface. 



3. Numerical examples 

The numerical examples solved in this paper include a benchmark problem and 
number of other problems, which are authors’ own. In each problem, E11, E22 
(elastic moduli), G12, G13, G23 (shear moduli), ν12 (Poisson’s ratio) and ρ 
(density) represent material properties. Length and width of the cylindrical shell 
are represented by a and b along x (beam) and y (arch) directions respectively. 
Similarly length and width of central delamination area of the shell are 
represented by c and d parallel to x and y directions respectively. Shell 
thickness is h. Natural frequency is ω  and non-dimensional natural frequency 
is )(2 2 1 2

22a E hω ω ρ= ⎤⎦ . Fundamental frequencies (Hz) of cylindrical shells 
for different centrally located mid-plane delaminations, solved by Parhi2 and 

problem. Authors’ own problems are about simply supported cylindrical shells. 
The area of delamination zone is varied from zero to 56.25% of the total plan 
area of the shell. Twelve different types of laminations are considered including 
orthotropic, anisotropic, cross and angle plies, both antisymmetric and sym-

(area = c d×

Free Vibrations of Delaminated Composite Cylindrical Shell Roofs 3 

⎤⎦

metric, furnished in Table 2. 

) midplane delaminations for simply supported boundary conditions. 

c a  Parhi2  Present approach 

0 175.55 175.26 

0.25 167.62 167.37 

0.5 158.67 158.40 

0.75 127.39 127.03 
Material: Carbon-epoxy composite 
E11=172.5GPa, E22=6.9GPa, G12=G13=3.45GPa, G23=1.38GPa, 
v12

3

Lamination: (0o/90o)2  

4. Results and discussions 

The results of the fundamental frequencies as obtained by Parhi2 and the present 
method show excellent agreement as evident from Table 1. The other problems 
are studied from different angle and discussed hereafter (Table 2). 

 

TABLE 1. Fundamental frequencies (Hz) of cylindrical shells for different centrally located  

=0.25, ρ =1600 kg/m , a=b=0.5m, R=1.5m, h=5mmz. 

obtained by the present method are compared in Table 1 as benchmark 



located (area = c d×

c a  Stacking sequence 
 0 0.25 0.5 0.75 

0o 24.252 23.079 21.556 20.765 

90o 22.957 22.509 19.118 16.301 

+45o 37.161 36.377 30.618 25.836 

–45o 37.161 36.377 30.618 25.836 

0o/90o 24.520 24.403 24.182 23.994 

0o/90o/0o 27.050 26.001 24.641 23.959 

+45o/–45o 32.150 32.013 30.860 29.036 

+45o/–45o/+45o 40.195 38.694 29.901 12.245 

(0o/90o)2 26.513 25.321 23.963 19.218 

(0o/90o)S 27.135 26.081 24.696 24.055 

(+45o/–45o)2 44.891 43.056 33.348 26.634 

(+45o/–45o)S 43.383 41.245 10.519 24.241 
E11=25, E22, G12=G13=0.5E22, G23=0.2 E22, v12=0.25, 
a=b, h=0.01b, R=3b. 

4.1. EFFECT OF EXTENT OF DELAMINATION ON NATURAL FREQUENCY 
VALUES 

Firstly introduction of delamination reduces the bending stiffness in the damaged 
zone without any change in mass and hence a decrease in the value of the 
fundamental frequency is quite expected. But for (+45°/–45°)S laminate, the 
fundamental frequency value for c/a = 0.5 is even less than that when c/a = 
0.75. This observation makes the author more curious to study the higher mode 

second and third natural frequencies show a consistent decay as the area of 
damage increases. These observations leaves the room for further research to 
exactly determine the cause of such behaviour. Apparently it seems that the 
fundamental vibration mode in this case has its highest point of bending curvature 
within the delamination zone and hence the reduction of bending stiffness in the 
area of damage has affected the fundamental frequency to a very great extent. 
Secondly orthotropic and cross ply shells are less susceptible to frequency loss 
with introduction of delamination. In fact the fundamental frequency of 0°/90° 
is hardly affected by delamination and three and four layered symmetric cross  
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) midplane delaminations for simply supported boundary conditions. 

frequencies for this laminate, which are shown in Table 3. It is found that the 

TABLE 2. Non-dimensional fundamental frequencies of cylindrical shells for different centrally 



Natural frequency c a  

  0 0.25 0.5 0.75 

First mode  43.383 41.245 10.519 24.241 

Second mode 62.335 60.969 37.648 31.895 

Third mode 69.196 66.744 56.463 37.542 
E11=25  E22,  G12=G13=0.5E22, G23=0.2 E22, v12=0.25, 

 
ply laminates exhibit a marginal loss of about 10% only even when 56.25% of 
the total shell area is damaged. Among angle ply laminates only +45°/–45° 
shell has the frequency value not much affected with the introduction of 
damage. But one observation is true in general that introduction of small area of 

4.2. EFFECT OF STACKING SEQUENCE ON FUNDAMENTAL FREQUENCY 
VALUES 

Firstly the single layered anisotropic laminates perform considerably better than 
orthotropic ones. In the same way, angle ply laminates for undelaminated (c/a = 0) 
and slightly delaminated (c/a = 0.25) turn out to be better than cross ply ones. 
So relative performances of orthotropic and anisotropic laminates can form the 
basis of predicting that of multi-layered laminates for undelaminated and slightly 
delaminated shells. Secondly among two and four layered antisymmetric lami-
nates four layered ones show higher frequency values than two layered ones for 
undelaminated and slightly delaminated shells. Among three and four layered 

Thirdly symmetric cross ply and antisymmetric angle ply laminates are pre-
ferable than the other types in case of four layered laminates. Comparing three 
layered symmetric and four layered antisymmetric laminates, symmetric cross 
ply and antisymmetric angle ply laminates show higher values, as before. 

5. Conclusion 

Firstly the formulation, presented here, can successfully analyze problems of 
cylindrical laminates as established through solution of benchmark problems. 
Secondly for simply supported shells, the fundamental frequency values of 

Free Vibrations of Delaminated Composite Cylindrical Shell Roofs 5 

centrally located at the midplane) for simply supported boundary conditions. 

a=b, h=0.01b, R=3b. 

TABLE 3. Non-dimensonal natural frequencies of (+45°/– 45°)  laminate (area of damage = c × d,  s

no case, considered here, the loss is more than 5%. 
damage (c/a = 0.25) hardly affects the fundamental frequency value and in 

c/a = 0 and c/a = 0.25. For higher delamination areas some deviation is noted. 
symmetric laminates four layered ones show increased frequency values for



delaminated shells are always less than the corresponding undelaminated shells
for all types of stacking sequences. Thirdly the relative performances of single 
layered anisotrpic laminates are better than the orthotropic ones. Fourthly 
undamaged (c/a = 0) and slightly damaged shells (c/a = 0.25) show that 
variation of fundamental frequencies is not more than 5%. Also for the same 
case it is seen that angle ply shells perform better than cross ply shells. So 
performances of multi-layered shells can be predicted from single layered 
shells. Moreover in this case increase in number of layers has positive effect on 
frequency values and symmetric cross ply and antisymmetric angle ply lami-
nates show better performances that the other types. Fifthly moderately damaged 
(c/a = 0.5) and highly damaged (c/a = 0.75) shells show cross ply shells are 
less susceptible to frequency loss than angle ply ones. Among the angle ply 
laminates frequency loss is more for symmetric ones. 
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COMPUTATIONAL DYNAMIC ANALYSIS OF SINGLE-MASS 

FREELY SHAKING CONVEYERS WITH CENTRIFUGAL 

VIBRATION EXCITER 

FÜSUN ALIŞVERİŞÇİ* 

University, 34349, Istanbul, Turkey 

Abstract. Single-mass freely shaking (vibrational) conveyers with a centrifugal 
vibration exciter transmit their load based on the jumping method. The trough is 
oscillated by a common unbalanced-mass driver. This vibration causes the load 
to move forward and upward. The moving loads jump periodically and move 
forward with relatively small vibration. The movement is strictly related to 
the vibrational parameters. This is applicable in laboratory conditions in the 
industry that accommodate a few grams of loads, up to those that accommodate 
tons of loading capacity. In this study, the variation of motional parameters has 
been represented graphically using the software Mathematica with respect to 
i) vibrational parameters, ii) parameter of the unbalanced mass, iii) operation 
mode, iv) friction coefficient, and v) angle of attack. The proper parameters for 
the transport of the numerous loads and the transportation velocity can be 
chosen with the help of the graphics. The results obtained in this study have been 
compared with the experimental results in the pertaining literature, and have 
been found to be well matched. 

Keywords: shaking (vibrational) conveyers, operation mode, unbalanced mass 

1. Introduction 

In the shaking conveyers, the load moves relative to the trough and the force of 
the load pressure on the trough’s bottom is variable. The load periodically rises 

______ 
*afusun@yildiz.edu.tr 

Department of Mechanical Engineering, Y ld z Technical 
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(‘jumps’) above the trough and moves in small jerks. For the load to move in 
the desired direction, the drive must be mounted so that the line of action of the 
excitation force is at an angle of β  to the longitudinal axis of the conveyer. 

A suspended shaking conveyer with a freely oscillating single-mass system 
(Fig. 1a) consists of a load-carrying element (pipe or trough) (1) which is freely 
suspended on the elastic tie-dampers (3) from a stationary structure, and is oscil-
lated in a directed manner by a centrifugal driver (4). The conveyer is equipped 
with a safety belt to hold the trough in the event of occasional breakage of the 
elastic ties. The loading and unloading connections of a vibrating pipe of a 
shaking conveyer are connected to stationary structures, such as bunkers or 
funnels, by means of flexible corrugated pipe connections (2) made of strong 
fabric, rubber, or plastics. The drive is in the form of a doubled centrifugal 
(inertia-type unbalanced) vibration exciter (Fig. 1b). The drive may be arranged 
above or below the load-carrying element. 

2. Dynamics of the motion  

trough, the following equation is obtained: 

 X x xF m a f m a= → =∑  (1) 

were f  represents the frictional force affecting the load, m  is the mass of the 
load, and Xa  is the horizontal component of the trough’s acceleration. 

(a) (b) 

centre) (b) Two equal unbalanced centrifugal vibration exciters. 
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the load on the trough. When the equation of motion is written according to the 
The following derivation can be made for the maximum velocity attained by

Newton’s second law along the horizontal axis (X − axis) for the load on the 

Fig. 1 (a) Single-mass freely shaking conveyers with centrifugal vibration exciter ( IC − inertia 
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If Xma  is greater than the maximum value of the frictional force max( )f , 
the load starts to slide on the trough. Therefore, the maximum friction force can 
be expressed as follows: 

 max sf Nµ=  (2) 

where sµ  represents the static friction and N  is the normal force. 
The equation of motion along the vertical axis (Y − axis) for the load on 

trough can be written as 

 YN m g m a= +  (3) 

If equation (3) is substituted into equation (2) at the beginning of the slide of 
the load, maxf  is obtained as follows: 

 max ( ).s Yf m g aµ= +  (4) 

Recalling that the load starts to slide on the trough when maxxma f>  and 
using equation (4), the condition of sliding of the load on the trough may be 
expressed with the following inequality: 

 ( ).X s Ya g aµ> +  (5) 

By arranging inequality (5), the horizontal component of the acceleration of 
the load is obtained by using the kinetic friction constant kµ  as follows: 

 ( ).X k Ya g aµ= +  (6) 

If equation (6) is integrated as shown below, the horizontal component of 
the velocity of the load can be expressed as1,2 

 
0 0

( ) . .
t t

X k Y X k k YV g a dt V g t a dtµ µ µ= + → = +∫ ∫   (7) 

The vertical motion of the load is the same as the motion of the trough until 
g− . 

Thereafter, the load is separated from the trough. 

3. Forced vibration of the motion 

In a doubled centrifugal driver (Fig. 1b), the two equal unbalanced masses (1) 
are mounted on two gear wheels (3) (or on two shafts (2)) which are engaged 
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the normal force vanishes or the acceleration of trough reaches the value of 



with each other. As the wheels rotate, the centrifugal force P  appears. The 
longitudinal components of the centrifugal forces of the two unbalanced masses 

yP  are added together and the transverse components of the centrifugal forces 

of the two unbalanced masses xP  counter balance each other. The equation of 
motion according to the Newton’s second law along the y -axis for the shaking 
conveyer3 can be obtained as: 

 
2

0 0 sin ,m rc ky y y t
m m m

ω ω+ + =  (8) 

where k  is the stiffness of the elastic ties, c  is the internal resistance, 0m  is 
the total unbalanced mass of a centrifugal exciter, 0r  is the eccentricity of the 
unbalanced masses, and m  is the total mass of vibrating elements of the 
conveyer including the attached mass of the load. If the natural frequency, 
viscous damping factor, forced amplitude, and the angular frequency ratio in 
this equation are defined as 

 2
0 0, (2 ) , ( ) , ,n n nk m c m A m r mω ζ ω η ω ω= = = =  (9) 

respectively, then the differential equation (8) can be expressed as: 

 ( )22 22 sin .n n ny y y A tζω ω ω η ω+ + =   (10) 

The solution of the differential equation (10) is obtained as4: 

 ( ) sin( ).y tω ω φ= Φ −  (11) 

The amplitude of vibrations of the load-carrying element of a freely shaking 
conveyer can be determined by solving the differential equation of the forced 
oscillations of the inertia centre of the system (Fig. 1). The amplitude function, 
and the phase difference can be expressed as 

 ( ) ( )AGω ωΦ = , 2

2arctan
1
ςηφ
η

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 (12) 

respectively, where ( )G ω  is the amplitude magnification factor 

 
2

2 2 2
( ) .

(1 ) (2 )
G ηω

η ςη
=

− +
 (13) 

The components of y  along the trough and perpendicular to the trough with 
β  (the angle of attack) can be obtained as: 
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 ( )sin( )cos , ( )sin( )sin .X Yy t y tω ω φ β ω ω φ β= Φ − = Φ −  (14) 

The components of the velocity and acceleration can be found by taking the 
first and second derivatives of the equation (14). 

4. The graphics of the motion  

The graphical representations of the dynamic analysis obtained by Mathematica 
software are shown in Figs. 2-5 below. 

n
(resonance region), it is observed that the amplitude at small viscous damping 
factor increases (Fig. 2a). Even though the load transmission velocity is higher 
in this region, the lifetime of the system is shorter as a result of the additional 
dynamic loads. 
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• *  loadtrough   ,3.3 ,C = 7C =trough , 1.8C =
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η =ω ω  For the values close to 1 of the angular frequency ratio

Fig. 2 (a) The change in the amplitude magnification factor depending on the angular frequency 
ratio (b) Diverse  velocity of rotating unbalanced mass according to attack angle-operation mode. 

time graph of the trough and the load in horizontal direction from the first movement until the steady 
state. 

Fig. 3 (a) The vertical position of the trough and the load at diverse operation modes (b) The velocity-
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030β =025 ,β =020 ,β =0.2 ,sµ = 0.4 ,sµ = 0.6 ,sµ = 0.8sµ =
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2 ,A mm= 2.5 ,A mm= 3 ,A mm= 4A mm= 0 0.05 ,m kg= 0 0.1 ,m kg= 0 0.18 ,m kg= 0 0.25m kg=
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according to the  operation mode (b) The time passed for the load to reach maximum velocity at 
diverse angles of attack depending on the C  operation mode. 

Fig. 4 (a) The time passed for the load to reach maximum velocity at diverse friction coefficients 

Fig. 5 (a) Displacement of the load in one second at diverse amplitude values depending on velocity 
of the rotating unbalanced mass (b) at diverse unbalanced mass values. 

C  is the coefficient defining the dynamic working conditions (dynamic 
forces acting on the driver and other conveyer elements) of an oscillating 
conveyer and the motion style of the load particles. If 1C < , the load is always 
in contact with the trough of the conveyer and the load is not disengaged from 
the trough. If 1C > , the load is disengaged from its conveyer trough at some 
instants and moves in micro-jumps. For the values 1 3.3C< < , the load particle 
will be launched upward as soon as it reaches the trough ground (Fig. 3a). The 
most efficient movement of the load particles on a shaking conveyer ( 1)C >  
depends on the correct chosen time, when a particle falls on the trough. During 
the forward motion of the plane, the particle must be caught by the plane, and it 
must move with the plane until it is disengaged from the plane in the shortest 
possible time period. The most suitable displacement of the load and the most 
suitable style of transportation are achieved through the equivalence of the 
disengagement time interval from the trough to one complete oscillation period 
(Fig. 3a). 
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5. Conclusions 

In this study, the graph of the displacement by the load in one second depending 
on the velocity of the rotating unbalanced mass (Fig. 5a, b) is drawn for 
numerous amplitude values and the unbalanced mass values. Fig. 2, 3, 4 
illustrate the changes necessary for the load to reach the maximum velocity, 
depending on the static friction coefficient and the angle of attack (Fig. 4a, b). 
The numerical calculations are performed with the help of the software 
Mathematica  The graphs drawn in this study are compared with the experi-
mental results in the literature, and it has been observed that they are well-
matched. Using these graphs, the most proper parameters can be chosen. In this 
system at the load transmission; especially the coefficient of friction, the 
coefficient of spring, the coefficient of amortization of the elastic ties, the angle 
of attack, the values of the unbalanced mass, the radius of rotation, and  
the velocity of rotation must be well-arranged. 
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The velocity of the load increases until it equals to the velocity of the trough 
and the motion continues at this velocity (Fig. 3b). 

The following values are used for drawing of the graphics [3, 4] (Fig. 3, 4): 
the spring constant 62550 /k N m= , the friction coefficient 0.5sµ = , the 
operation mode max[( ) ( )]YC a sin gβ= , the eccentricity of the unbalanced 
masses 0 0.2r m= , and the angular frequency ratio 1nη ω ω= = . 
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ON THE APPLICATION OF CONSTANT DEFLECTION CONTOUR 

METHOD TO NON-LINEAR VIBRATION ANALYSIS OF ELASTIC 

PLATES AND SHELLS 
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Jalpaiguri-735101, W.B., India 

Abstract. The present paper aims at establishing the validity of the constant 
deflection contour (CDC) method to the nonlinear analysis of plates of arbitrary 
shapes vibrating at large amplitude. It begins with a review of the basic ideas 
developed earlier by the present author. The deduction of the governing dif-
ferential equations have been established. The author has made an attempt here 
to develop the concept of constant deflection contour method and specifically to 
make its introduction into the nonlinear analysis of plates. A combination of the 
constant deflection contour method and the Galerkin procedure has been 
employed for solution. The numerical results obtained for the illustrative pro-
blems are in excellent agreement with those of available studies. Application 
of the present analysis to structures with complicated geometry has also been 
attempted in this paper. It has been demonstrated that this method provides a 
powerful tool to tackle problems involving structures with uncommon boundaries. 
The comparison of the present results with others strongly supports this. The 
analysis carried out in this paper may readily be applied to other geometrical 
structures and as a byproduct the static deflection is also obtainable.  
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1. Introduction 

The paucity of literature concerning nonlinear (large amplitude) vibration ana-
lysis is, probably, due to the fact that the two basic Von Kármán field equations 
extended to the dynamic case, involved the deflection and the stress functions in a 
coupled form. Moreover, these equations are of fourth order, posing analytical 
problems and necessitating a numerical approach. Large amplitude vibration 
analysis has been treated well by many authors mostly for plates and shells 
having regular shapes1-3 and almost all problems involved considerable amount 
of mathematical computation. Simplified approaches had been attempted4,5 but 
later on some reservations were made and the accuracy of the modifications 
were questioned.6,7 Recently a new idea has been put forward by Banerjee8 to 
study the dynamic response of structures of arbitrary shapes based on “constant 
Deflection Contour” method. Mazumdar and others9-13 have previously developed 
the method. However, the application of this method has been restricted to linear 
cases only. 

2. Some preliminary remarks on the Constant Deflection Contour 
Method 

The fundamental concept of the constant deflection contour method may be best 
explained by considering transverse vibrations of a plate, referred to a system of 
orthogonal coordinates Oxyz for which Oz is the transverse direction (positively 
downward). The horizontal plane Oxy coincides with the middle plane of the 
plate. Consider such a plate statically deflected, vibrating freely or forced to 
vibrate, all due to normal static or dynamic loads. 

 
 

Fig. 1 Iso-deflection Curves.
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When the plate vibrates in a normal mode then at any instant tθ , the 
intersections between the deflected surface and the parallels z = constant will 
yield contours which after projection onto z = 0 surface are a set of level curves, 
u(x,y) = constant, called the “Lines of Equal Deflections”10, which are iso-
amplitude contours. 

The boundary of the plate, irrespective of any combination of support, is 
also a simple curve uC  belonging to the family of lines of equal deflections. 

As defined by Mazumdar9 the family of nonintersecting curves may be 
denoted by uC , for uC , 0 *u u≤ ≤ , so that uC (u = 0) is the boundary and uC  
coincides with the point(s) at which the maximum u = u* is obtained. 

3. Deduction of basic equations (a different approach) 

The usual procedure is to consider Kármán type field equations extended to the 
dynamic case 

 4 ( , ) ttD w hS w q h wφ ρ∇ = + −  (1) 

 4 ( / 2) ( , ),E S w wφ∇ = −  (2) 

in which the flexural rigidity D and the two-dimensional Laplacian operator 2∇  
are defined by 

 
3

2 ,
12(1 )

EhD
ν

=
−

       
2 2

2
2 2x y

∂ ∂
+ ≡ ∇

∂ ∂
 (3) 

load, ρ  the material density, w is the deflection function and φ  the Airy stress 
function. In addition a suffix is taken as an indication of partial differentiation 
with respect to the implied variable and the operator S is defined by  

 ( , ) 2xx yy xy xy yy xxS I J I J I J I J= − +  (4) 

It should be noted here that the use of the stress function is equivalent to 
disregard of inertia terms in the equations of in-plane motions of the particles of 
the plate. This assumption is legitimate when the oscillations primarily take 
place in the transverse direction, perpendicular to the middle plane of the plate. 
We choose the deflection function and the stress function in the separable form3 

 ( , , )    ( , ) ( )w x y t h W x y F t= , 2( , , )    ( , )  ( )x y t h x y F tφ = Φ  (5) 

where F(t) is an unknown function of time to be determined. 

with h the thickness of the plate, E the Young’s modulus, q the uniform normal 
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