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In Memoriam—Prof. Alexander G. Bagdoev

Ph.D., DSci., Professor, Corresponding Member of the
Academy of Sciences of Armeni

Co-author of the monograph, our colleague
Professor Alexander Bagdoev died on March 2, 2013,
before he reached 4 months before his 80th
anniversary.

He was a word-class scientist in the field of non-
linear wave processes in continuum mechanics, excel-

\ lent teacher, friendly and sympathetic person.
Alexander Georgievich Bagdoev was born July 9,
1933 in Thilisi (Georgia). After his family moved to
Yerevan (Armenia) in 1950, he graduated from high school with a gold medal. In
the same year, he entered the mechanics and mathematics faculty of Moscow State
University named after
M.V. Lomonosov, where for outstanding studies he was awarded the Stalin
scholarship.

After graduating from Moscow University, he entered for postgraduate educa-
tion at the department of wave and gas dynamics and in 1959 under the supervision
of Professor Arthur Soghomonyan, he defended his thesis devoted to the solution of
problems of penetration of solids or shock waves in a compressible fluid.

After defending his Ph.D. dissertation A.G. Bagdoev returned to Yerevan, where
he took a position in the Institute of Mechanics of Academy of Sciences of
Armenia, where he worked until the end of his days.

In 1972 at Moscow state University, A.G. Bagdoev defended his doctoral thesis
devoted to the problems of determining the peculiarities of the fronts of linear and
nonlinear waves. In 1993, he was awarded the academic title Professor, and in
2000, he was elected a Corresponding Member of Academy of Sciences of
Armenia.

The area of expertise of A.G. Bagdoev is quite broad and applies to a variety of
problems of mechanics of deformable solids, aerohydromechanics. He is the author
of three books and over 350 articles.
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Great attention was paid to the study of nonlinear quasi-monochromatic
modulation waves in various mechanical and optical media. From these nonlinear
evolution equations that take into account the effects of dissipation, were derived
nonlinear Schrédinger equations describing the behavior of the amplitude of the
first harmonic with complex coefficients for which were analytically solved the
problems of narrow beams. In the study of non-linear modulation waves in mag-
netoelastic plates, he proposed and developed a spatial approach to the determi-
nation of natural frequencies, investigated the modulation stability and
sustainability of soliton solutions of evolution equations. A number of linear
time-dependent problems of gas dynamics and dynamic elasticity theory, including
the boundary, as well as nonlinear problem near a caustic were solved.

One of the major achievements made by A.G. Bagdoev in the development of
mechanics is the generalization of the Poincare-Lighthill-Go method for the
two-dimensional wave problems of diffraction and caustic.

In recent years, A.G. Bagdoev further expanded the range of his scientific
interests, trying to apply the his experience of theoretical studies to deterministic
and stochastic processes in economics, physics, sociology, biology, seismology,
and, thus, bring together different areas of natural and humanitarian sciences. The
results of his research in the field of practical philosophy and ethics have been
published in popular and scientific literature.

A.G. Bagdoev was notable for quite active scientific, organizational, and
teaching activities. He was the initiator and main organizer of the international
conferences “Problems of dynamics of interaction of deformable media”, which for
over 30 years were successfully carried out in the city of Goris (Armenia). Among
his students, there are three doctors of sciences, 14 PhDs.

We will always remember Alexander Georgievich Bagdoev. We are proud that
we were fortunate to work with him.

Nizhny Novgorod, Russia Vladimir I. Erofeyev
Yerevan, Armenia Ashot V. Shekoyan



Preface

Wave processes are observed in any field, where matter moves: in electrodynamics,
plasma physics, optics, acoustics, fluid dynamics, complex two-phase media such
as “gas-drip system”, soils of various types, solids with pores filled with liquid, etc.

During wave propagation in various continuous media, the physical properties of
matter play a very important role. The most important properties, which are present
in majority of cases, are nonlinearity, dissipation, dispersion, diffraction, and
heterogeneity.

Linear and nonlinear wave processes are also of special interest for their
applications in various practical problems.

It is interesting to note that despite the difference in the physical nature of wave
processes (acoustic, electromagnetic), they are described by similar equations. One
of the powerful methods of mathematical study (especially, for nonlinear waves) is
the method of evolution equation (or short-wavelengths) and the method of
non-linear modulation equation, the latter equation is often referred to as a non-
linear Schrodinger equation. There are two questions in this aspect: the first one is
how to derive evolution equations from various complex systems of equations
describing wave motion in a medium and the nature of the waves; and the second
one is how to examine the obtained equations that in each case have different types
of modification (different coefficients, order of equations, etc.).

For investigation of wave processes it is important to identify the laws of linear
and nonlinear dispersion, to reveal types of modulation (amplitude, frequency, etc.),
to study problems of stability (instability) of modulation and other types of waves,
in particular, solitons. If wave beam propagation is studied, the important problems
facing the researchers are focusing problems: it is necessary to determine the dis-
tance of focus formation, focal spots, the existence of self-focusing (defocusing),
laws of variation of the beam radius in space and time.

In this monograph the original results are used and developed, which have been
obtained by the authors in their research activity at the Mechanical Engineering
Research Institute of the Russian Academy of Sciences (Nizhny Novgorod, Russia)
and at the Institute of Mechanics of the National Academy of Sciences of Armenia

vii



viii Preface

(Yerevan, Armenia), as well as in their joint research. Study of the self-modulation
effects of elastic waves in media with complex physical and mechanical properties
(interaction of deformation fields with electromagnetic fields, fields of defects, etc.)
is also of great interest.

Features of propagation and interaction of nonlinear strain waves in mechanical
systems are being intensively investigated for the last three decades in many
countries. This is explained, as already mentioned, by numerous physical, technical
and technological applications of such systems. Some monographs on nonlinear
waves in continuous media have been published (e.g., [24, 65, 83, 112, 133, 165,
166, 192, 193, 203, 214, 225, 237, 250, 281, 327, 331, 363, 378, 392, 400]).

This monograph is devoted, in the first place, to the study of wave processes in
media, where interaction of deformation fields with fields of the physical nature is
significant. The content of this monograph does not duplicate the content of the
existing books, but is intended to supplement them, finding its “niche” in this
research field.

The book is based on [9, 17, 18, 25-61, 108, 113, 115-128, 267-276, 286-300,
330-340, 388, 389, 398, 406, 407]. In one way or another, we could represent the
results of our colleagues—“wave-researchers” belonging to different scientific
schools of the former Soviet Union [2, 3, 6, 8, 10-14, 20-23, 62-65, 67-69, 71,
75-77, 80-84, 87-89, 92, 95, 98-101, 103, 107, 130-135, 143, 145, 147, 152-155,
162-164, 176-178, 181-185, 192-194, 196-202, 204, 208-210, 213, 215, 216,
218, 220, 221, 224, 227, 228, 230, 231, 233, 234, 239, 245, 246, 252, 277, 278,
282, 349, 361, 383, 402].

One of the authors (Erofeyev V.1.) recieved support from the Russian Science
Foundation for the work (grant No 14-19-01637).
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Chapter 1
Waves in a Viscous Solid with Cavities

1.1 Introduction

In the nature there are a lot of substances containing cavities, moreover, there are
also artificially created materials, which are used in various devices, for example, in
nanoengineering. In this connection, theoretical and practical interest arises to
investigate physical processes in such media. In particular, it is possible to use
results of studying of wave processes in them for nondestructive testing of prop-
erties of such media.

At present, propagation of waves in a liquid with gas bubbles [38, 202, 203, 281]
has been enough well studied. A following physical model is used in these works:
the acoustic wave travels in a liquid containing bubbles, under its influence the
bubbles start to fluctuate. The equations of hydrodynamics and of fluctuation of
bubbles are employed for theoretical research of such a process.

The analogous physical situation is observed, when the wave propagates in a
solid with cavities. Hence, it is possible to use ideas of hydrodynamics. A similar
attempt has been done in the book [203], where the equation of the theory of
elasticity and the equation of fluctuations of cavities are derived. Only
one-dimensional approach was considered there. In the chapter at issue, develop-
ment of this theory in three-dimensional statement will be given using the mathe-
matical methods developed by A.G. Bagdoev and A.V. Shekoyan [41].

This chapter has been written on the basis of the works [30, 106, 112-114, 216,
217].

1.2 Statement of the Problem and the Basic Equations

We shall consider a semi-infinite isotropic viscous medium (Voigt model) with
cavities, in which the waves with final amplitude (i.e. nonlinear waves with account
of the geometrical, physical and cavity nonlinearities) propagate. The matrix (the
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A.G. Bagdoev et al., Wave Dynamics of Generalized Continua,
Advanced Structured Materials 24, DOI 10.1007/978-3-642-37267-4_1
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basic medium) is considered to be homogeneous. The distance between cavities, 1,
is assumed to be much more than the radius of cavities R (I >> Rg), but much less
than the wavelength A (A < Ry). It is supposed that the pressure in cavities is
negligible and the quasilongitudinal wave propagates in the medium, so it is pos-
sible to assume that pressure upon a cavity is caused by the longitudinal stress

o3 = (A +2p) g% —z (X+q}‘), where z' = NV’, N is a number of cavities in a

volume unit, V' is the cavity volume, V' = Vy + V, Vj is the initial volume of a
cavity, V is the volume of a cavity perturbed by a wave; and p <K A is also supposed.
Under the specified assumptions, on the base of works [41, 203], propagation of a
quasilongitudinal nonlinear wave in terms of Lagrangian coordinates is described
by the following equations:

82u12 82u 32u3
== + (A 1.1
Pge = H 5 W (L1.1)
0%us 0%us 0 (Ou; Ouy
Pogp = MALU + (A +20) o 7 2 + (A 4n )8 (8x1 + 8—)(2)

(1.2)
oV Pus pd% 8u3 Ouy

NO+20 55 T aga o on

.. Ro .- .. 4nRy [0
V+035V—C—§V—GV2+BI(2VV+V2):(2u+k) p00<8—:—NV> (1.3)

where p, is initial density of the matrix, ®3 = ‘f—ﬁ is a square of a resonant
0

frequency, ¢} = LH“ ,G = (16m) ' (9 4 2b; )R w3, By = R’ P=(4p+30+

2A+ 6B +2C), A, B, C are Landau nonlinear factors. Coordinates x; and x, are
chosen in the plane tangent to the unperturbed mode, and x5 is directed along the
wave propagation. It is supposed that u; = u, = 0 in the plane x; = 0, i.e. the
longitudinal wave is major and the weak transverse waves appear during the lon-
gitudinal wave propagation. The transverse waves, as consequence, are weak,
therefore their equations are linearized.

1.3 Derivation of the Evolution Equation

First of all, we will simplify Eq. (1.3), supposing that the characteristic wave
frequency, a, is much less than the resonant frequency (o < wg). Then, the non-
linear term with factor B; in (1.3) is negligible, and the main term of Eq. (1.3) is

F 8u3

:68_)(3’ (1.4)
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where F = 4nRo (A +2p)py "', D = of + FN. Substituting (1.4) into small terms of
Eq. (1.3), it is possible to receive an improved equation of a cavity

(1.5)

_Fow F &u  RF o'w  GF (dus ?
 DOxs D?Ox3022  ¢D?0x308 D \Ox3)

Taking into account (1.4) and (1.5), one can exclude V from (1.2), then an
equation will yield:

(92113 0 Bul (9112 NF 82113
— = (A — | =— 4+ == A2 1—— ) —=
Po 8t2 ( + l/l) 8X3 <8X1 + 8X2> +( + u)< D ) 6x§
NF &*u;  RoNF Pus
—_ e — (A2
D? 0x308  cID? (+2) ox306
82113% +b Pus .
0x3 0X3 8x§8t

+pAus+ (A +2p) (1.6)

+ [P — 2CF°N(A+2p)D 7]

So, Eq. (1.6) should be solved together with Eq. (1.1). We will pass to a new
coordinate T;(l; — X3)cg I_t= T} —t. As the layer with a thickness 1; will be
further considered, it is convenient to choose t; in the form mentioned above, in a
semi-infinite case 1; = 0 and the x5-axis is directed opposite to wave propagation. In
the main order after transition to variable 1, it is possible to receive value of a wave
velocity, c;, with account of presence of cavities:

¢ = cj(1 —NFD ™).
(91.].3

Entering a new function \y; = o Characterizing the velocity of particles of a

medium (matrix) in terms of variables X;, X,, X3, and 1, after an exclusion of the
transverse displacements u; and u, due to (1.1) with account of the accepted orders
[225], the following evolution equation yields

TN (\ul ?T“l‘) aa;? +Ba4‘“‘ 3;% T
where
L=—[u+ (b4 p)(poci—n) ' M,
M; = 2¢;' (1-NFD™") (A +2p) = 2c;py,
=M ¢ [p—2GF*N(A 4 2p)D 7], (18)

d=bc M,
B =FN(L+2u)c; DM,
¥ = RoFN(A +2p)c; %cg 2D *M .
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As it is visible from (1.8), the term with factor B is concerned with dispersion
and is caused by cavities, whereas & and y provide dissipation (3 is caused by
viscosity and vy is related to cavities), thus, p =y = 0 when Ry = 0.

1.4 The Soliton Solution of the Evolution Equation
of the Fifth Order

In Eq. (1.7) we shall pass to a new function U = %\j}l, then the obtained equation

will be the same as (1.7), but U will be instead of y,, and —6 instead of a. If in the
obtained equation 6 and y are supposed to be equal to zero and B = — [, then,
Kadomtsev-Petviashvili equation [152] will yield with accuracy up to coefficients.
This equation has a soliton solution [249] in the following form:

(Ve
Up = Esech2 (23\/[%2) ; (1.9)

where &; = a1y + byx; +dyx,—kx3, C = [ak — L(b% —&—dg)}a’z, andC>0,a>0,
b, and d, show incline of the plane of the soliton front (§; = const) to the x3-axis.
The normal soliton velocity has the form:

a2

(acy! fk)z +b§+d§.

VZ =

Constants a and k are certain characteristic frequency and wavenumber of the wave
process. We shall seek a solution of the equation for U in the form:

U="U,(&) (1.10)

After substitution of (1.10) into the equation for U and twice integration with
account that U tends to zero, when &; tends to infinity, the following ordinary
differential equation will yield:

d*u du d*u

2 2 n 3 n
a“B,— +3U; — CU, = da +a’y ,

2 ae? " dg, de;]

(1.11)
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For non-zero coefficients 6 and y, which are small in comparison with  (this fact
means smallness of dissipation), a solution of Eq. (1.11) can be found by the
method of slowly varying amplitude [91, 279]. Then a solution should be searched
in the form

U, = UO(EJI) [1 +T3(§1)]7 (112)
and inequalities
d’T; _ dT
T < 1,—— < —> < Ty (1.13)
de? dg,

must be valid.

Inequalities (1.13) mean that because of small dissipation the soliton shape
varies a little and slowly, and function T3(&;) is small. Substituting (1.12) into
Eq. (1.11) and taking into account inequalities (1.13), one can obtain for Tj:

ad dU a3 d’U
7= 04 & dU (1.14)
3U dg,; 3Uo dg;

After substitution of (1.9) into (1.14) the expression for function T5 will take on

the form:
GyC_ (CB,'? ( yC) VC
B, th( a & o+ B, sh 22a\/— . (1.15)

In expression (1.15) Tj tends to infinity, if &; tends to infinity, i.e. inequalities
(1.13) are not satisfied. Therefore the solution (1.15) makes sense only near a
soliton top, then for small &; the solution (1.15) can be rewritten in the form

1

B S ep) ™

Ts =&, [4YCB," — 23] (6aB,) " = T2(6aB,)'&,. (1.16)

From (1.16) follows that T3 > 0, if §; and T, have the same signs; and Tz < 0, if
& and T, have the opposite signs. Distortion of the soliton shape on account of
dissipation is qualitatively shown in Figs. 1.1 and 1.2, where the dotted curve
corresponds to function (1.9) at T3 = 0, and the continuous one—to function U,,. It
is necessary to note that the case T, = 0 is possible, which means that the same
soliton can propagate in a dissipative medium as in a non-dissipative one.
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Fig. 1.1 The soliton profile
for T, >0

Fig. 1.2 The soliton profile
for T, < 0

-- &

1.5 Derivation of the Modulation Equation for Diffraction
and One-Dimensional Problems in the Case
of Quasimonochromatic Waves

As both stationary and non-stationary problems are interesting to us, after substi-

tution of -2- % =C1 & into (1.7), we shall receive:
PV, \Z 33‘1’1 oM PV
LA, = s ‘ 1.17
e, TLA <‘L'1 an) g P TV (L7)

where the factors with primes are derived from factors (1.8) due to multiplication by
—c1. As in the medium there are dispersion and dissipation, it is possible to search
for the solution of Eq. (1.17) in the form of a quasimonochromatic wave

1 . .
U, = E{Al(t/l,xl,xz,t)exp[lom — (v+io)t)]
+ By (1], X1, X2, exp[2iot; — 2(v+i0)t)] + Ci (1], X1, X2, ) +¢.c. },
(1.18)

where A and B, are the amplitudes, accordingly, of the first and second harmonics,
C, is an absolute term, a is a carrying frequency, ® is a modulation frequency, and v
is an absorption factor. A monochromatic fluctuation is set on a border of the
medium for t; = 0. In works [28, 42] it has been shown that dispersion and



1.5 Derivation of the Modulation Equation ... 7

dissipation remain in exponents containing in solutions similar to (1.18), if t; = 0.
This fact isn’t so natural, though the definitive equations of modulation in the basic
orders, as shown in calculations of article [30], are the same.

Substituting (1.18) into (1.17) for the highest orders, we will receive the fol-
lowing dispersion relations:

o=0op,v=0cd o'y (1.19)

In the next approximations two problems are distinguished: a diffraction problem
and a one-dimensional problem, for which the different orders of quantities take
place. In both cases it is possible to obtain the following modulation equation for
the first harmonics

+L'A A

o <8A1 L da 8A1> ad’QO%A,
A T dmy A 3 dm2 972
ot da 0t} / 2 do? 0T} (1.20)

= (io. — 3v — im)? %ATBI exp(—2vt)) + o (i — v — i0)*C1A |,

where Q = o + ® — iv is a complex linear frequency. In the one-dimensional

problem the coefficient at 0;?2‘ is calculated using the equation
0  dQ o
— 4+ ——=0, (L.21)
ot = OJa ot

which has been obtained from the main term of Eq. (1.20).
The equation for the amplitude B; of the second harmonic after rejection of
derivatives (it is possible, if ®t] > 1) will yield for both problems in the form:

4(30 — iv — 6io*y)B; = o/0AT. (1.22)

In the diffraction problem the absolute term C; has an order & or v&>, where ¢ is
a certain small parameter characterizing an order of y;, and a0 ~ ¢ “1x 12~ € 1/2,
then the term with C; in (1.20) can be neglected.

If to exclude, in accordance with (1.21), the derivative with respect to t in the

term it is possible to obtain an equation for C; in the one-dimensional

>*C,
ator,
problem:

2 Y] A 2 2A 2
<ﬂ_%’)_2ia3y’)aclz_g<va| i oA )exp(—2vr’1). (1.23)

o ot? 2 ot} or?
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Two cases are considered for interpretation of Eq. (1.23):

(1) vt} > 1, ie. exp(—2vt|) = 0 and, according to (1.23), C; ~ 0. Hence, sim-
ilarly to the diffraction problem, the absolute term doesn’t give contribution
into Eq. (1.20);

Al ?|A,
(2) vt} < 1, that means va| | < ? (|,} ,2| and from (1.23) follows
3 21
4 (—w TR ¥ oczy')Cl = oA, % (1.24)
ol ol

In the one-dimensional problem, a linear equation appears from (1.20) in the first
case. In the second case, excluding B and C; from Eq. (1.20) by means of (1.22)
and (1.24) and taking into account o > ®, v, one can obtain the following equation:

i(aA, N dQ@A1> 1d*Q8%A,
ot | da O 2 do2 912
i 1 ! (1.25)

- “7 [2(—303 Fiv— 6io*y) T — (2iv — 30 — 2ia4y')*1} NI
It should be noted that, in contrast to the diffraction problem, contribution of C;
into the nonlinear term is substantial.

In the diffraction problem from (1.20), taking into account smallness of 2 o7 ,7‘ and
omitting C,, one can find
. [OA;  dQOA, , o%a|Af [P A} exp(—2vT))
— 4+ ——— | +LA A = - 1.26
10(( ot * do O7] ) LALLM 8(iv — 30 — 6ioty') (1.26)

1.6 Problem Statement about Wave Fields in the Case
of a Layer

First of all, we consider a problem about acoustic waves in a resonator similarly to
the optical problem about waves in a non-dissipative interferometer [184]. In this
case it is supposed that there are two acoustic mirrors located symmetrically with
respect to the plane x5 = 0. In fact, these mirrors are surfaces of a constant phase for
the waves propagating to the right and to the left sides, each of which satisfies a
boundary condition on the appropriate mirror. In such a statement u; = 0 at x3 =0
due to symmetry. This problem corresponds to an acoustic interferometer [184], in
which the left mirror is a source of oscillations, and there is a flat rigid reflector on
the right. In this case the specified statement is reduced to the previous problem, in
which there are two waves. Similarly, in the case when there is a layer, one end
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surface of which is free from stresses and oscillations are set at the other one, it is
possible to consider that there are two waves propagating towards to each other. In
this case, the wave running to the right satisfies the condition on a radiator, and the
wave reflected from the free surface together with the falling wave satisfies the
condition on the free surface. This conclusion follows from comparison of propa-
gation of an elastic one-dimensional linear wave in a layer with the simple case. It
should be noted that g—gi = 0 at x3 = 0 and u;3 = exp(—iat) at x3 = 1;. The solution

: Pu; _ 29U
of the wave equation ot =1 axt
absence of initial conditions looks like

[ ay]™ o o
u3 = - |cos—| exp|exp|i—x3 —iat |+ exp| —i—xz—iat]|. (1.27)
2 Ci Ci C1

Thus, for a monochromatic wave the solution in the resonator represents two
waves running towards to each other. Similarly, in the case of quasimonochromatic
waves of type (1.18) there are two waves propagating towards to each other and
their amplitudes will be slowly varying functions on account of dispersion, dissi-
pation, nonlinearity and diffraction.

The same conclusion can be made for the resonator, when us (x5 = 0) = 0. In this
case it is necessary to change a sign before the second term in the formula for us
and to divide by i sinc—“lll instead of cosine.

under these boundary conditions in the

Formula (1.27) for u; can be also represented in the form:

Ci

- 1
+ exp [i()g —Hl)% - ioct] } Z (—1)"exp <2i%>.

n=0

w = {exp {i(M “) - i“t} (1.28)

For the high-frequency waves (o> ¢ 111_1), only the terms in the brace give the
contribution to asymptotic of a solution. These terms correspond to the falling wave
and to the wave reflected from the plane, i.e. eikonals 1, and t,, where
Ty = (X3 + ll)Cfl —t.

In this case, as follows from (1.28), the boundary condition at x5 = 1; satisfies
only the first terms in square brackets, and the remaining terms will cancel in pairs.
The condition at the free surface is automatically satisfied by the first two terms.
Thus, the boundary conditions are satisfied by the first two terms in (1.28), which
can be taken as the waves propagating to the left and to the right, and the remaining
terms (up to sign for the free boundary problem and precisely for the problem of the
reflector) periodically repeat the first two terms of (1.28) and can be included in
these two waves, that leads to the problem statement mentioned above.

In works [28, 30, 42, 153] the solution of the quasi-linear systems of equations is
given for high-frequency asymptotics in the form of two functions, each of which
depends on its eikonal. Under the assumption that average values of the unknown
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functions in their eikonals are equal to zero in the major orders of infinitesimal, the
set of equations describing the waves propagating to the right (once primed, the
eikonal t;) and to the left (double primed, the eikonal t,) break up into two
independent nonlinear equations. The values of the functions, averaged on eikonals,
are equal to zero. This condition is valid both for diffraction problems, where c,,
are negligible, and for one-dimensional problems, where ¢; = ¢, (c; is a constant
term of the reflected wave). Equation (1.7) will be for the falling wave. For the

reflected waves it is necessary in Eq. (1.7) to change t; by 1, and y; by {, = %L:j

Equations (1.18)—(1.26) should be written similarly—replacing subscript “1” with
“2” in the amplitudes and eikonals.

1.7 A Diffraction Problem for Narrow Beams

Considering % = 11in Eq. (1.26) and % = 0 for the stationary problem, one can

obtain equation

. OA
10‘8—111 +LALA1 = (Xl +X2) |A1|2A1, (129)

where

oo 21!
£ = < {9032 + (v — 60*y") } exp(—2vt}),

% = 3085, = (v—6aty)E.

In the case of resonator the same equation is derived for the falling wave A’ and
for the reflected wave in (1.29) A; should be changed by A[ and 1| by
th = (x3+1;) c;!. Therefore, we will further write solutions for Eq. (1.29).

Taking

Ay = ajexp(io), (1.30)

where @, is an excited eikonal and a, is a real amplitude, we shall substitute (1.30)
into Eq. (1.29), separate imaginary and real parts, pass to cylindrical coordinates for
an axisymmetric problem, we will receive the equation for a; and ¢. Substituting
(1.30) into Eq. (1.29), separating imaginary and real parts, passing to cylindrical
coordinates for an axisymmetric problem, we will receive the equation for a; and ¢.
They have the form

—oa)

o, . ay dd\°  Ldar
+L — ap 8[‘ +?W—Xlal7 (131)
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8211 8a1 80)1 82(,01 al 8(&)1 3
L 42L——" L fLaj > + L= =
*ou R e R

(1.32)
In Egs. (1.31) and (1.32) r is a cylindrical radial coordinate. We shall seek a
solution of these equations in the form

r2

a = blfl’1 exp {—5 (rlfl)ﬂ ,
, (1.33)

T
o, =oi(u)+ ERII(TI),

where f; is a dimensionless width of the beam, o, is a wave phase incursion on the
axis of the beam, aRlcl’l is a variable radius of curvature of the wave front, b; and
r; are the amplitude and radius of the beam on border x3 = 1;. Substituting (1.33)
into the equations for a; and ¢, we will receive, by the ordinary way [28, 41], the
following equations

o dfy b

_ ah L 1.34
bOUoLfdr  2Lf (134)

d (e} -1 -1 _
ax = —2(oLrif)  —x,bi(af}) ™ =Gf? (1.35)

d*f; M y,vb?
¢h _™M 1.36
d’t/lz f? + O(Lf] ( )
where

M = o ?[L%r;* +2y,biLr;? — x3b}]. (1.37)

For the reflected wave, Eqgs. (1.34)—(1.37) are valid, where subscript “1” should
be replaced by “2” for Ry, oy, fi, by, and r;. The other quantities must be with
primes.

1.8 Boundary Conditions

As a statement of problems for an interferometer and free border are similar, we will
start from the free border. For mechanical quantities it is necessary to set conditions
at the end surfaces of a layer (x3 = 0 and x5 = 1;). The first of them in a plane
(x3 =1y) or 7] = 0 relates to the falling wave. It is supposed that in this plane the
beam with a Gaussian profile is given and following conditions are satisfied:
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df(0) B 2L X222
dv ~Fu0=0F _;[Rl (0)—3b1L] (1.38)

fl(o) = 17

We shall solve Egs. (1.34)—(1.36) with boundary conditions (1.38). For the
reflected wave, boundary conditions are set in the plane x3 = 0, in which it is
supposed that 63, = 637 = 633 = 0. In the highest order these equations are split, as
we study only a beam of quasilongitudinal waves. The condition o33 = 0 gives in
the highest order

8113:0

Ix (1.39)

In the highest order, condition 63, = 63 = 0 is automatically satisfied. Substituting
into (1.39) u3 = uj + uf, where u} corresponds to the falling wave and u}—to the

reflected one [28, 35, 42], passing in expressions |y, = — i’;% and {, = — ?91:; from
coordinates 1, and 1, to X3, taking into account aa_x3 = icl" a?T’ we shall obtain the
following boundary condition for x; = 0:

Uy =~ (1.40)

Substituting solution (1.18) for 1:’1.2 = }—‘1 into (1.40) and taking into account only
the first harmonics, one can obtain A; = —A,, where A, is the reflected wave
amplitude. After substitution of eikonal solutions (1.30) and, then, relations (1.33),
into the last equation, the following conditions can be received for the beam

parameters in the plane x5 = 0, 1} = lic7":

1 1 1 |
bl B _bz’fl <_l) B f2 <_2)7Rl (_1) B R2 (_1),
C1 C1 C1 C1
1 L\ df;(lic;! df, (1ic7!
o) =o(er) Mo - e
Cy Ci dr; dt,

Conditions (1.34)—(1.36) for the reflected wave should be solved with boundary
conditions (1.41). From the second condition (1.41) follows that r; = r, everywhere.

In the case of interferometer, condition (1.38) takes place for the falling wave
and relation uz = 0 will be instead of condition (1.39). Conditions (1.41) remain
valid, but the first equality will be changed by b; = b,.

(1.41)
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1.9 The Equation of Dimensionless Width of a Beam
for Nonparaxial Rays

Equations (1.34)—(1.36) have been received for paraxial rays by equating of zero
and second powers of the radial coordinate. The more general approach for non-
paraxial rays consists in a choice of Eqs. (1.34) and (1.35), taking place on a beam
axis, and the integrated law of conservation following from Eq. (1.29) is taken
instead of Eq. (1.36). In the case y, = 0, this method has been used in [41], where it
was shown that the solution has the same form, as for paraxial beams, but the factor
¥, 1is replaced by %, that better displays the nature of the numerical solution of the
Schrodinger equation. For y, # 0, when the nonlinear absorption is taken into

account, we multiply Eq. (1.29) by %‘AT‘,‘, where A] is a complex-conjugate quantity

to A;. We will multiply by %é,l the equation conjugated to (1.29) and after sum-

marizing these two equations we will integrate them on cylindrical coordinates r
and 0. Then, for a case of an axisymmetric problem we shall obtain:

Ld /oo
2dt)

T OA* 0A,
=i AP (Al — A dr.
1X2/| 1| < 181./1 la‘fll)r T
o

oA, ?
! +%|A1|4

W rdr

(1.42)

Substituting value of Ay, like in (1.30), and using (1.34) and (1.35), one can receive
the following equation instead of (1.36):

b2\ L2 byl 3biy2 2,2
1" / 1A2 / — 141 1A2 ) ¢-3 2Y1 02
fr= (fl + 4ozf1> {fl Koczr‘l1 * 20212 tow )fl Ty fi }

b? 1 Sydbiv /L
2 ovee (6 a0+ T (5 b i o
1 1

(1.43)

The received Eq. (1.43) with boundary conditions (1.38) and (1.41) should be
solved numerically. As the numerical solving of Egs. (1.43) and (1.36) have
identical difficulty, it is preferable to solve more precise Eq. (1.43). Under the
assumptions of small and high dissipations it is possible to put ¥, equal to zero in
the whole of the brace. The result will be the same as for Eq. (1.36), but y; should
be changed by y, /4.
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1.10 The Solution of the Equation for Dimensionless
Width of a Beam for Paraxial Rays

We will search for the solution of Eq. (1.36) in the cases of weak and strong
absorption. In the first case vt; and vt, are small, and it is possible to consider
exponents entering in y; » equal to one. In the case of strong absorption it is possible
to consider exponents as zero, and the problem will be linear. In both cases of
strong and weak absorption the second term in the right-hand side of Eq. (1.36) can
be rejected.

In accordance with the aforesaid, solution of (1.36) for M < 0 and M > 0 with
account of (1.38) looks like

MF F \?

For the reflected wave with account of boundary conditions (1.41) solution
(1.36) has the form

M 2 M
f2=|F+ } ) +Fifi(0)] + 59—is—, 1.45
= |F ) RO e 099
where F; = dglr(,o),r’ = —x3c; L, 7" =xsc7l.

Thus, the solutions of narrow beams in wave guides have been obtained that
enable one to study their focusing.

1.11 The Analysis of Solutions for Narrow Beams

We shall consider only the case of focal spots, which corresponds to M > 0, F < 0.
The received formula is suitable both for v <1f, and for ' > t{,, where

(1.46)

Formula (1.46) yields from the condition % =0.

At the value of 1, for which 16 <0, the focal stain is inside the layer, in the case
176 > 0 it is out of the layer and, at last, if r{) = 0, the focal stain is on the layer
border. The last case will be for 1 = —c,F (F> + M), then formula (1.44) becomes
simpler and takes on the form:
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M

2=
'"F24+M

+(F24+M) (7). (1.47)

For the reflected wave, we shall consider only the case M’ > 0. Formula (1.44)
can be also written in the form

M 2
ff:F2+M+(F2+M) (7 —1)" (1.48)

_¢ E +M dfl()

1,0 then the sign of

0
mined by the sign of tj. If ‘EO<0 then dg( ) >0 and d(ff(/,m > 0, and the sign

dfl and df2

is deter-

“plus” should be taken in (1.45).

“minus” is chosen in (1.45). In both cases the second square bracket in formula
(1.45) can be written in the form

) <0 for T, > 0, then the sign

[7 + Fyf1(0)].

The focal stain of the reflected wave can be found from the condition gfﬁ =0.

Then, equating (1.47) to zero, one can get
15 = —Fif(0). (1.49)

IfF, <0, rg is located inside the layer, whereas rf) is situated out of the layer.
And vise versa for F; > 0: ‘EZ is located out of the layer, whereas 176 is situated inside
the layer.

In the case, when 1) = dfi(/ ) — dgzr(,,o) =0, formula (1.45) with account of

£2(0) = M(F*> +M) ' can be written in the form:

2M/

; M'(F? + M)
*11(0)

M

(") +£3(0) = (") +M(F>+M) . (1.50)

So, v, =0 and 1) = 0, i.e. both focal points are located on a free border of a
medium.

1.12 Transition to an One-Dimensional Case. The
Analysis of Dispersion Properties of Plane Waves

Propagation of a longitudinal wave in a porous material along x3-axis can be
described by the following set of two nonlinear equations (as a one-dimensional
equation will be further considered in the chapter, for convenience, the designations
for coordinate x5 and for the + u; are changed, accordingly, by x and u):



