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PREFACE

This book deals with the exploration and optimization of response surfaces. This is a
problem faced by experimenters in many technical fields, where, in general, the response
variable of interest is y and there is a set of predictor variables x1, x2,… , xk. For example,
y might be the viscosity of a polymer and x1, x2, and x3 might be the process variables
reaction time, reactor temperature, and the catalyst feed rate in the process. In some systems
the nature of the relationship between y and the x’s might be known “exactly,” based on
the underlying engineering, chemical, or physical principles. Then we could write a model
of the form y= g(x1, x2,… , xk)+ 𝜀, where g is a known (often nonlinear) function and 𝜀
represents the “error” in the system. This type of relationship is often called a mechanistic
model. We consider the more common situation where the underlying mechanism is not
fully understood, and the experimenter must approximate the unknown function g with an
appropriate empirical model y= f(x1, x2,… , xk)+ 𝜀. Usually the function f is a low-order
polynomial, typically either a first-order or second-order polynomial. This empirical model
is called a response surface model.

Identifying and fitting an appropriate response surface model from experimental data
requires some knowledge of statistical experimental design fundamentals, regression mod-
eling techniques, and elementary optimization methods. This book integrates all three of
these topics into what has been popularly called response surface methodology (RSM). We
assume that the reader has some previous exposure to statistical methods and matrix alge-
bra. Formal coursework in basic principles of experimental design and regression analysis
would be helpful, but are not essential, because the important elements of these topics are
presented early in the text. We have used this book in a graduate-level course on RSM for
statisticians, engineers, and chemical/physical scientists. We have also used it in industrial
short courses and seminars for individuals with a wide variety of technical backgrounds.

This fourth edition is a substantial revision of the book. We have rewritten many sections
to incorporate new topics and material, ideas, and examples and to more fully explain some
topics that were only briefly mentioned in previous editions and added a new chapter. We
have also continued to integrate the computer tightly into the presentation, replying on JMP

xiii



xiv PREFACE

and Design-Expert for much of the computing, but also continuing to employ SAS for a
few applications.

Chapters 1 through 4 contain the preliminary material essential to studying RSM. Chapter
1 is an introduction to the general field of RSM, describing typical applications such as (a)
finding the levels of process variables that optimize a response of interest or (b) discovering
what levels of these process variables result in a product satisfying certain requirements or
specifications on responses such as yield, molecular weight, purity, or viscosity. Chapter
2 is a summary of regression methods useful in response surface work, focusing on the
basic ideas of least squares model fitting, diagnostic checking, and inference for the linear
regression model. Chapters 3 and 4 describe two-level factorial and fractional factorial
designs. These designs are essential for factor screening or identifying the correct set of
process variables to use in the RSM study. They are also basic building blocks for many
of the response surface designs discussed later in the text. New topics in these chapters
include additional information on analysis of unreplicated design and the use of nonregular
fractional factorial designs in factor screening experiments.

Chapter 5 presents the method of steepest ascent, a simple but powerful optimization
procedure used at the early stages of RSM to move the process from a region of rel-
atively poor performance to one of greater potential. Chapter 6 introduces the analysis
and optimization of a second-order response surface model. Both graphical and numerical
techniques are presented. A new chapter, Chapter 7, describes techniques for the simul-
taneous optimization of several responses, a common problem in the application of RSM
when experimenters want to extract information about several different characteristics of
the process or product.

Chapters 8 and 9 present detailed information on the choice of experimental designs
for fitting response surface models. Chapter 8 considers suitable metrics for evaluating
the quality of estimation and prediction of a design and focuses on standard designs,
including the central composite and Box–Behnken designs, and the important topic of
blocking a response surface design. A new topic in this chapter is the important new class
of designs called Definitive Screening Designs. Chapter 9 covers small response surface
designs, design optimality criteria, and methods for evaluation of the prediction properties of
response surface models constructed from various designs. We focus on variance dispersion
graphs and fraction of design space plots, which are very important ways to summarize
prediction properties. The section on computer generated designs has been expanded to
describe some of the common algorithms used to generate designs as well as how to
incorporate qualitative factors and multiple design criteria.

Chapter 10 contains more advanced RSM topics, including the use of mean square error
as a design criterion, the effect of errors in controllable variables, split-plot type designs
in a response surface setting, and the use of generalized linear models in the analysis
of response surface experiments. The section on design and analysis of experiments for
computer models has been updated to reflect new developments in this growing area.
Chapter 11 describes how the problem of robust parameter design originally proposed by
Taguchi can be efficiently solved in the RSM framework. We show how RSM not only
makes the original problem posed by Taguchi easier to solve, but also provides much more
information to the analyst about process or system performance. This chapter also contains
much information on robust parameter design and process robustness studies. Chapters 12
and 13 present techniques for designing and analyzing experiments that involve mixtures.
A mixture experiment is a special type of response surface experiment in which the design
factors are the components or ingredients of a mixture, and the response depends on the
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proportions of the ingredients that are present. Some new design techniques are introduced
in these chapters.

We have provided expanded end-of-chapter problems and an updated reference section.
The previous three editions of the text were written to emphasize methods that are useful
in industry and that we have found useful in our own consulting experience. We have
continued that applied focus in this new edition, though much new material has been added.
We develop enough of the underlying theory to allow the reader to gain an understanding
of the assumptions and conditions necessary to successfully apply RSM.

We are grateful to many individuals that have contributed meaningfully to this book. In
particular, Dr. Bradley Jones, Mr. Pat Whitcomb, Dr. Geoff Vining, Dr. Soren Bisgaard,
Dr. Connie Borror, Dr. Rachel Silvistrini, Dr. Scott Kowalski, Dr. Dennis Lin, Dr. George
Runger, Dr. Enrique Del Castillo, Dr. Lu Lu and Dr. Jessica Chapman made many useful
suggestions. Dr. Matt Carlyle and Dr. Enrique Del Castillo also provided some figures that
were most helpful. We also thank the many classes of graduate students that have studied
from the book, as well as the instructors that have used the book. They have made many
helpful comments and suggestions to improve the clarity of the presentation. We have tried
to incorporate many of their suggestions. We also thank John Wiley & Sons for permission
to use and adapt copyrighted material.

Blacksburg, Virginia Raymond H. Myers
Tempe, Arizona Douglas C. Montgomery
Los Alamos, New Mexico Christine M. Anderson-Cook





1
INTRODUCTION

1.1 RESPONSE SURFACE METHODOLOGY

Response surface methodology (RSM) is a collection of statistical and mathematical tech-
niques useful for developing, improving, and optimizing processes. It also has important
applications in the design, development, and formulation of new products, as well as in the
improvement of existing product designs.

The most extensive applications of RSM are in the industrial world, particularly in
situations where several input variables potentially influence performance measures or
quality characteristics of the product or process. These performance measures or quality
characteristics are called the response. They are typically measured on a continuous scale,
although attribute responses, ranks, and sensory responses are not unusual. Most real-
world applications of RSM will involve more than one response. The input variables are
sometimes called independent variables, and they are subject to the control of the engineer
or scientist, at least for purposes of a test or an experiment.

Figure 1.1 shows graphically the relationship between the response variable yield (y) in a
chemical process and the two process variables (or independent variables) reaction time (𝜉1)
and reaction temperature (𝜉2). Note that for each value of 𝜉1 and 𝜉2 there is a corresponding
value of yield y and that we may view these values of the response yield as a surface lying
above the time–temperature plane, as in Fig. 1.1a. It is this graphical perspective of the
problem environment that has led to the term response surface methodology. It is also
convenient to view the response surface in the two-dimensional time–temperature plane,
as in Fig. 1.1b. In this presentation we are looking down at the time–temperature plane and
connecting all points that have the same yield to produce contour lines of constant response.
This type of display is called a contour plot.

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Fourth Edition.
by Raymond H. Myers, Douglas C. Montgomery, and Christine M. Anderson-Cook.
Copyright © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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2 INTRODUCTION

Figure 1.1 (a) A theoretical response surface showing the relationship between yield of a chemical
process and the process variables reaction time (𝜉1) and reaction temperature (𝜉2). (b) A contour plot
of the theoretical response surface.

Clearly, if we could easily construct the graphical displays in Fig. 1.1, optimization of
this process would be very straightforward. By inspection of the plot, we note that yield is
maximized in the vicinity of time 𝜉1 = 4 hr and temperature 𝜉2 = 525◦C. Unfortunately,
in most practical situations, the true response function in Fig. 1.1 is unknown. The field
of response surface methodology consists of the experimental strategies for exploring
the space of the process or independent variables (here the variables 𝜉1 and 𝜉2), empirical
statistical modeling to develop an appropriate approximating relationship between the yield
and the process variables, and optimization methods for finding the levels or values of the
process variables 𝜉1 and 𝜉2 that produce desirable values of the responses (in this case that
maximize yield).

1.1.1 Approximating Response Functions

In general, suppose that the scientist or engineer (whom we will refer to as the experi-
menter) is concerned with a product, process, or system involving a response y that depends
on the controllable input variables 𝜉1, 𝜉2,… , 𝜉k. These input variables are also sometimes
called factors, independent variables, or process variables. The actual relationship can be
written

y = f (𝜉1, 𝜉2,… , 𝜉k) + 𝜀 (1.1)

where the form of the true response function f is unknown and perhaps very complicated, and
𝜀 is a term that represents other sources of variability not accounted for in f. Thus 𝜀 includes
effects such as measurement error on the response, other sources of variation that are
inherent in the process or system (background noise, or common/special cause variation
in the language of statistical process control), the effect of other (possibly unknown)
variables, and so on. We will treat 𝜀 as a statistical error, often assuming it to have a
normal distribution with mean zero and variance 𝜎 2. If the mean of 𝜀 is zero, then

E(y) ≡ 𝜂 = E[f (𝜉1, 𝜉2,… , 𝜉k)] + E(𝜀)
= f (𝜉1, 𝜉2,… , 𝜉k)

(1.2)
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Figure 1.2 (a) Response surface for the first-order model 𝜂 = 50 + 8x1 + 3x2. (b) Contour plot for
the first-order model.

The variables 𝜉1, 𝜉2,… , 𝜉k in Equation 1.2 are usually called the natural variables,
because they are expressed in the natural units of measurement, such as degrees Celsius
(◦C), pounds per square inch (psi), or grams per liter for concentration. In much RSM work
it is convenient to transform the natural variables to coded variables x1, x2,… , xk, which
are usually defined to be dimensionless with mean zero and the same spread or standard
deviation. In terms of the coded variables, the true response function (1.2) is now written as

𝜂 = f (x1, x2,… , xk) (1.3)

Because the form of the true response function f is unknown, we must approximate it.
In fact, successful use of RSM is critically dependent upon the experimenter’s ability to
develop a suitable approximation for f. Usually, a low-order polynomial in some relatively
small region of the independent variable space is appropriate. In many cases, either a first-
order or a second-order model is used. For the case of two independent variables, the
first-order model in terms of the coded variables is

𝜂 = 𝛽0 + 𝛽1x1 + 𝛽2x2 (1.4)

Figure 1.2 shows the three-dimensional response surface and the two-dimensional con-
tour plot for a particular case of the first-order model, namely,

𝜂 = 50 + 8x1 + 3x2

In three dimensions, the response surface for y is a plane lying above the x1, x2 space. The
contour plot shows that the first-order model can be represented as parallel straight lines of
constant response in the x1, x2 plane.

The first-order model is likely to be appropriate when the experimenter is interested in
approximating the true response surface over a relatively small region of the independent
variable space in a location where there is little curvature in f. For example, consider a small
region around the point A in Fig. 1.1b; the first-order model would likely be appropriate
here.
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Figure 1.3 (a) Response surface for the first-order model with interaction 𝜂 = 50 + 8x1 + 3x2 −
4x1x2. (b) Contour plot for the first-order model with interaction.

The form of the first-order model in Equation 1.4 is sometimes called a main effects
model, because it includes only the main effects of the two variables x1 and x2. If there is
an interaction between these variables, it can be added to the model easily as follows:

𝜂 = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽12x1x2 (1.5)

This is the first-order model with interaction. Figure 1.3 shows the three-dimensional
response surface and the contour plot for the special case

𝜂 = 50 + 8x1 + 3x2 − 4x1x2

Notice that adding the interaction term −4x1x2 introduces curvature into the response
function. This leads to different rates of change of the response as x1 is changed for
different fixed values of x2. Similarly, the rate of change in y across x2 varies for different
fixed values of x1.

Often the curvature in the true response surface is strong enough that the first-order
model (even with the interaction term included) is inadequate. A second-order model
will likely be required in these situations. For the case of two variables, the second-order
model is

𝜂 = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽11x2
1 + 𝛽22x2

2 + 𝛽12x1x2 (1.6)

This model would likely be useful as an approximation to the true response surface in a
relatively small region around the point B in Fig. 1.1b, where there is substantial curvature
in the true response function f.

Figure 1.4 presents the response surface and contour plot for the special case of the
second-order model

𝜂 = 50 + 8x1 + 3x2 − 7x2
11 − 3x2

22 − 4x1x2

Notice the mound-shaped response surface and elliptical contours generated by this model.
Such a response surface could arise in approximating a response such as yield, where we
would expect to be operating near a maximum point on the surface.
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Figure 1.4 (a) Response surface for the second-order model 𝜂 = 50 + 8x1 + 3x2 − 7x1
2 − 3x2

2 −
4x1x2. (b) Contour plot for the second-order model.

The second-order model is widely used in response surface methodology for several
reasons. Among these are the following:

1. The second-order model is very flexible. It can take on a wide variety of functional
forms, so it will often work well as an approximation to the true response surface.
Figure 1.5 shows several different response surfaces and contour plots that can be
generated by a second-order model.

Figure 1.5 Some examples of types of surfaces defined by the second-order model in two variables
x1 and x2. (Adapted with permission from Empirical Model Building and Response Surfaces, G. E.
P. Box and N. R. Draper, John Wiley & Sons, New York, 1987.)
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2. It is easy to estimate the parameters (the 𝛽’s) in the second-order model. The method
of least squares, which is presented in Chapter 2, can be used for this purpose.

3. There is considerable practical experience indicating that second-order models work
well in solving real response surface problems.

In general, the first-order model is

𝜂 = 𝛽0 + 𝛽1x1 + 𝛽2x2 +⋯ + 𝛽kxk (1.7)

and the second-order model is

𝜂 = 𝛽0 +
k∑

j=1

𝛽jxj +
k∑

j=1

𝛽jjx
2
j +

∑ k∑
i<j=2

𝛽ijxixj (1.8)

In some situations, approximating polynomials of order higher than two are used. The
general motivation for a polynomial approximation for the true response function f is
based on the Taylor series expansion around the point x10, x20,… , xk0. For example, the
first-order model is developed from the first-order Taylor series expansion

f ≅ f (x10, x20,… , xk0) + 𝜕f
𝜕x1

||||x=x0

(x1 − x10)

+ 𝜕f
𝜕x2

||||x=x0

(x2 − x20) +⋯ + 𝜕f
𝜕xk

||||x=x0

(xk − xk0)
(1.9)

where x refers to the vector of independent variables and x0 is the vector of inde-
pendent variables at the specific point x10, x20,… , xk0. In Equation 1.9 we have only
included the first-order terms in the expansion, so if we let 𝛽0 = f(x10, x20,… , xk0),
𝛽1 = (𝜕f∕𝜕x1)||x=x0

,… , 𝛽k = (𝜕f∕𝜕xk)||x=x0
, we have the first-order approximating model

in Equation 1.7. If we were to include second-order terms in Equation 1.9, this would lead
to the second-order approximating model in Equation 1.8.

Finally, note that there is a close connection between RSM and linear regression
analysis. For example, consider the model

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 +⋯ + 𝛽kxk + 𝜀

The 𝛽’s are a set of unknown parameters. To estimate the values of these parameters,
we must collect data on the system we are studying. Regression analysis is a branch of
statistical model building that uses these data to estimate the 𝛽’s. Because, in general,
polynomial models are linear functions of the unknown 𝛽’s, we refer to the technique
as linear regression analysis. We will also see that it is very important to plan the data
collection phase of a response surface study carefully. In fact, special types of experimental
designs, called response surface designs, are valuable in this regard. A substantial part of
this book is devoted to response surface designs. Note that analyses and designs need to be
carefully matched. If we are planning to analyze data from our planned experiment using
a first order model, then the design that we select should be well suited for this analysis.
Similarly, if we anticipate curvature similar to what can be modeled with a second-order
model, then a different design should be selected.
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Good response surface designs have been constructed to perform well based on a par-
ticular assumed model, but also have been structured so that they are able to evaluate the
assumptions of the model being analyzed to determine if the experimenter’s initial impres-
sions of the system under study match the true underlying relationship which produced the
data to be analyzed. Hence the experimenter should think carefully about the goals of a
particular experiment and what the anticipated analysis will involve before selecting the
design for data collection.

1.1.2 The Sequential Nature of RSM

Most applications of RSM are sequential in nature. That is, at first some ideas are generated
concerning which factors or variables are likely to be important in the response surface
study. This usually leads to an experiment designed to investigate these factors with a view
toward verifying the role of the factors in influencing the response and eliminating the
unimportant ones. This type of experiment is usually called a screening experiment. Often
at the outset of a response surface study there is a rather long list of variables that could
be important in explaining the response. The objective of factor screening is to reduce this
list of candidate variables to a relative few so that subsequent experiments will be more
efficient and require fewer runs or tests. We refer to a screening experiment as phase zero of
a response surface study. Since interest in a screening experiment lies in understanding the
gross behavior of the system and how factors are related to the response, a first-order model
is commonly selected. The class of response surface designs which are used for screening
experiments are well suited for gaining understanding about the main effects from different
independent variables and comparing their relative contributions to changes in the response
values. Since this represents an early stage in the planned sequence of experiments, the
goal is to determine which of the factors are more influential on the response while using as
small a fraction of the total experimental budget as possible. You should never undertake a
response surface analysis until a screening experiment has been performed to identify the
important factors.

Once the important independent variables are identified, phase one of the response
surface study begins. In this phase, the experimenter’s objective is to determine where the
collected data lie relative to an ideal response. Often, there are two possible outcomes with
the current levels or settings of the independent variables resulting in a value of the response
that is near the optimum (such as the point B in Fig. 1.1b), or the process is operating in
some other region that is (possibly) remote from the optimum (such as the point A in
Fig. 1.1b). If the current settings or levels of the independent variables are not consistent
with optimum performance, then the experimenter must determine a set of adjustments to
the process variables that will move the process toward the optimum. This phase of response
surface methodology makes considerable use of the first-order model and an optimization
technique called the method of steepest ascent. These techniques will be discussed and
illustrated in Chapter 5.

Phase two of a response surface study begins when the process is near the optimum.
At this point the experimenter usually wants a model that will accurately approximate
the true response function within a relatively small region around the optimum. Because
the true response surface usually exhibits curvature near the optimum (refer to Fig. 1.1),
a second-order model (or very occasionally some higher-order polynomial) will be used.
Once an appropriate approximating model has been obtained, this model may be analyzed
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to determine the optimum conditions for the process. Chapter 6 will present techniques for
the analysis of the second-order model and the determination of optimum conditions.

Response surface designs for modeling the response near the optimum are again selected
to match the anticipated analysis. Often, the plan is to characterize the relationship between
the response and the key independent variables using the second-order model of the form
in Equation 1.8. Designs are constructed to be able to estimate the response for input
factor combinations around the expected optimum, where curvature in the relationship is
common. Since this stage of experimentation is focused on determining a best set of input
values for which the process to operate, a generous portion of the experimental budget is
generally reserved for this portion of the process.

A final stage of experimentation, which generally does not require sophisticated response
surface designs or a large portion of the experimental budget, is a confirmatory experi-
ment. This data collection is generally simple and small, but is designed to confirm that
the identified optimum that was obtained in phase two can be achieved by setting the
independent variables at the designated settings.

This sequential experimental process is usually performed within some region of the
independent variable space called the operability region. For the chemical process illus-
trated in Fig. 1.1, the operability region is 0 hr < 𝜉1 ≤ 7 hr and 100◦C ≤ 𝜉2 ≤ 800◦C.
Suppose we are currently operating at the levels 𝜉1 = 2.5 hr and 𝜉2 = 500◦C, shown as
point A in Fig. 1.6. Now it is unlikely that we would want to explore the entire region of
operability with a single experiment. Instead, we usually define a smaller region of interest
or region of experimentation around the point A within the larger region of operability.
Typically, this region of experimentation is either a cuboidal region, as shown around the
point A in Fig. 1.6, or a spherical region, as shown around point B. The choice of response
surface design matches the specified region of experimentation.

Figure 1.6 The region of operability and the region of experimentation.



1.1 RESPONSE SURFACE METHODOLOGY 9

The sequential nature of response surface methodology allows the experimenter to learn
about the process or system under study as the investigation proceeds. This ensures that
over the course of the RSM application the experimenter will learn the answers to questions
such as (1) the location of the region of the optimum, (2) the type of approximating function
required, (3) the proper choice of experimental designs, (4) how much replication is neces-
sary, and (5) whether or not transformations on the responses or any of the process variables
are required. Because the nature of a response surface study has multiple stages with dif-
ferent goals, there are several improtant aspects that need to be managed throughout the
process. First, many studies have budget constraints that will dicate how much and what data
can be collected. It is important to plan for all of the stages of the study and to allow for ade-
quate resources to be available to effectively answer the important questions in each phase.

Second, since the knowledge gained in early phases of the study help to determine
what subsequent experiments will study, it is important to plan how the different phases
will connect to each other, and what information can be leveraged from early phases.
Thirdly, the selection of a model for the analysis of the data from each phase is based on
current understanding of the underlying process. It is important to think of the sequence of
experiments as a mechanism for not having to make too many assumptions at any stage,
Running a large complicated experiment that has many untested assumptions can lead to
costly errors and wasting of resources. Hence, a series of smaller experiments can verify
some assumptions early in the sequence and can allow the experimenter to proceed in later
stages with greater confidence.

Lastly, we again mention the connection between the choice of experiment and the
planned analysis. Before jumping in to collect data, the goals of each phase should be
clearly defined, and the nature of the response surface design selected should reflect the
goals and the planned analysis. Since there are often surprises when collecting and analyzing
data, it is helpful to consider what could go wrong with the experiment and to have a plan
for how to deal with some of these surprises. A substantial portion of this book—Chapters
3, 4, 8, and 9—is devoted to designed experiments useful in RSM.

1.1.3 Objectives and Typical Applications of RSM

Response surface methodology is useful in the solution of many types of industrial prob-
lems. Generally, these problems fall into three categories:

1. Mapping a Response Surface over a Particular Region of Interest. Consider the
chemical process in Fig. 1.1b. Normally, this process would operate at a particular
setting of reaction time and reaction temperature. However, some changes to these
normal operating levels might occasionally be necessary, perhaps to produce a prod-
uct that meets other specific customer requirements. If the true unknown response
function has been approximated over a region around the current operating condi-
tions with a suitable fitted response surface (say a second-order surface), then the
process engineer can predict in advance the changes in yield that will result from any
readjustments to the input variables, namely, time and temperature.

2. Optimization of the Response. In the industrial world, a very important problem is
determining the conditions that optimize the process. In the chemical process of
Fig. 1.1b, this implies determining the levels of time and temperature that result in
maximum yield. An RSM study that began near point A in Fig. 1.1b would eventually
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lead the experimenter to the region near point B. A second-order model could then be
used to approximate the yield response in a narrow region around point B, and from
examination of this approximating response surface the optimum levels or condition
for time and temperature could be chosen.

3. Selection of Operating Conditions to Achieve Specifications or Customer Require-
ments. In most response surface problems there are several responses that must be
simultaneously considered. For example, in the chemical process of Fig. 1.1, suppose
that in addition to yield, there are two other responses: cost and concentration. We
would like to maintain yield above 70%, while simultaneously keeping the cost below
$34/pound; however, the customer has imposed specifications for concentration such
that this important physical property must be 65±3 g/liter.

One way that we could solve this problem is to obtain response surfaces for all three
responses—yield, cost, and concentration—and then superimpose the contours for these
responses in the time–temperature plane, as illustrated in Fig. 1.7. In this figure we have
shown the contours for yield = 70%, cost = $34/pound, concentration = 62 g/liter, and con-
centration = 68 g/liter. The unshaded region in this figure represents the region containing
operating conditions that simultaneously satisfy all requirements on the process.

In practice, complex process optimization problems such as this can often be solved
by superimposing appropriate response surface contours. However, it is not unusual to
encounter problems with more than two process variables and more complex response
requirements to satisfy. In such problems, other optimization methods that are more effective
than overlaying contour plots will be necessary, and can often not only identify a region
which satisfies the minimal customer requirements, but also find an optimal combination
of input variables to achieve ideal performance. We will discuss methodology for solving
these types of problems in Chapter 7.

Figure 1.7 The unshaded region showing the conditions for which yield ≥70%, cost ≤$34/pound,
and 62 g/liter ≤ concentration ≤ 68 g/liter.
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1.1.4 RSM and the Philosophy of Quality Improvement

During the last few decades, industrial organizations in the United States and Europe
have become keenly interested in quality and process improvement. Statistical methods,
including statistical process control (SPC) and design of experiments, play a key role in
this activity. Quality improvement is most effective when it occurs early in the product and
process development cycle. It is very difficult, expensive, and inefficient to manufacture
a poorly designed product. Industries such as semiconductors and electronics, aerospace,
automotive, biotechnology and pharmaceuticals, medical devices, chemical, and process
industries are all examples where experimental design methodology has resulted in shorter
design and development time for new products, as well as products that are easier to
manufacture, have higher reliability, have enhanced field performance, and meet or exceed
customer requirements.

RSM is an important branch of experimental design in this regard. RSM is a critical
technology in developing new processes, optimizing their performance, and improving the
design and/or formulation of new products. It is often an important concurrent engineering
tool, in that product design, process development, quality, manufacturing engineering,
and operations personnel often work together in a team environment to apply RSM. The
objectives of quality improvement, including reduction of variability and improved product
and process performance, can often be accomplished directly using RSM.

1.2 PRODUCT DESIGN AND FORMULATION (MIXTURE PROBLEMS)

Many product design and development activities involve formulation problems, in which
two or more ingredients are mixed together. For example, suppose we are developing a
new household cleaning product. This product is formulated by mixing several chemical
surfactants together. The product engineer or scientist would like to find an appropriate
blend of the ingredients so that the grease-cutting capability of the cleaner is good, and so
that it generates an appropriate level of foam when in use. In this situation the response
variables—namely, grease-cutting ability and amount of foam—depend on the percentages
or proportions of the individual chemical surfactants (the ingredients) that are present in
the product formulation.

There are many industrial problems where the response variables of interest in the
product are a function of the proportions of the different ingredients used in its formulation.
This is a special type of response surface problem called a mixture problem.

While we traditionally think of mixture problems in the product design or formula-
tion environment, they occur in many other settings. Consider plasma etching of silicon
wafers, a common manufacturing process in the semiconductor industry. Etching is usually
accomplished by introducing a blend of gases inside a chamber containing the wafers. The
measured responses include the etch rate, the uniformity of the etch, and the selectivity
(a measure of the relative etch rates of the different materials on the wafer). All of these
responses are a function of the proportions of the different ingredients blended together in
the etching chamber.

There are special response surface design techniques and model-building methods for
mixture problems. These techniques are discussed in Chapters 12 and 13.
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1.3 ROBUST DESIGN AND PROCESS ROBUSTNESS STUDIES

It is well known that variation in key performance characteristics can result in poor product
and process quality. During the 1980s, considerable attention was given to this problem, and
methodology was developed for using experimental design, specifically for the following:

1. For designing products or processes so that they are robust to environment conditions.

2. For designing or developing products so that they are robust to component variation.

3. For minimizing variability in the output response of a product around a target value.

By robust, we mean that the product or process performs consistently on target and is
relatively insensitive to factors that are difficult to control.

Professor Genichi Taguchi used the term robust parameter design (or RPD) to describe
his approach to this important class of industrial problems. Essentially, robust parameter
design methodology strives to reduce product or process variation by choosing levels of
controllable factors (or parameters) that make the system insensitive (or robust) to changes
in a set of uncontrollable factors that represent most of the sources of variability. Taguchi
referred to these uncontrollable factors as noise factors. These are the environmental factors
such as humidity levels, changes in raw material properties, how the customer will use the
product, product aging, and component variability referred to in 1 and 2 above. We usually
assume that these noise factors are uncontrollable in the field, but can be controlled during
product or process development for purposes of a designed experiment.

Considerable attention has been focused on the methodology advocated by Taguchi,
and a number of flaws in his approach have been discovered. However, there are many
useful concepts in his philosophy, and it is relatively easy to incorporate these within the
framework of response surface methodology. In Chapter 11 we will present the response
surface approach to robust design and process robustness studies.

1.4 USEFUL REFERENCES ON RSM

The origin of RSM is the seminal paper by Box and Wilson (1951). They also describe the
application of RSM to chemical processes. This paper had a profound impact on industrial
applications of experimental design, and was the motivation of much of the research in the
field. Many of the key research and applications papers are cited in this book.

There have also been five review papers published on RSM: Hill and Hunter (1966),
Mead and Pike (1975), Myers et al. (1989), Myers et al. (2004) and Anderson-Cook et al.
(2009a). The paper by Myers (1999) on future directions in RSM offers a view of research
needs in the field. There are also two other full-length books on the subject: Box and Draper
(1987) and Khuri and Cornell (1996). A second edition of the Box and Draper book was
published in 2007 with a slightly different title [Box and Draper (2007)]. An edited volume
by Khuri (2006) considers some specialized RSM topics. The monograph by Myers (1976)
was the first book devoted exclusively to RSM.


