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Preface to the second edition

Almost fifteen years later, and there is little change in our motivation. Mathemat-
ical physics of quantum systems remains a lively subject of intrinsic interest with
numerous applications, both actual and potential.

In the preface to the first edition we have described the origin of this book rooted
at the beginning in a course of lectures. With this fact in mind, we were naturally
pleased to learn that the volume was used as a course text in many points of the
world and we gladly accepted the offer of Springer Verlag which inherited the rights
from our original publisher, to consider preparation of a second edition.

It was our ambition to bring the reader close to the places where real life dwells,
and therefore this edition had to be more than a corrected printing. The field is
developing rapidly and since the first edition various new subjects have appeared;
as a couple of examples let us mention quantum computing or the major progress in
the investigation of random Schrödinger operators. There are, however, good sources
in the literature where the reader can learn about these and other new developments.

We decided instead to amend the book with results about new topics which
are less well covered, and the same time, closer to the research interests of one of
us. The main change here are two new chapters devoted to quantum waveguides
and quantum graphs. Following the spirit of this book we have not aspired to full
coverage — each of these subjects would deserve a separate monograph — but we
have given a detailed enough exposition to allow the interested reader to follow (and
enjoy) fresh research results in this area. In connection with this we have updated
the list of references, not only in the added chapters but also in other parts of the
text in the second part of the book where we found it appropriate.

Naturally we have corrected misprints and minor inconsistencies spotted in the
first edition. We thank the colleagues who brought them to our attention, in particu-
lar to Jana Stará, who indicated numerous improvements. As with the first edition,
we have asked a native speaker to try to remove the foreign “accent” from our
writing; we are grateful to Mark Harmer for accepting this role.

Prague, December 2007 Pavel Exner
Miloslav Havĺıček
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Preface

Relations between mathematics and physics have a long and entangled tradition.
In spite of repeated clashes resulting from the different aims and methods of the
two disciplines, both sides have always benefitted. The place where contacts are
most intensive is usually called mathematical physics, or if you prefer, physical
mathematics. These terms express the fact that mathematical methods are needed
here more to understand the essence of problems than as a computational tool, and
conversely, the investigated properties of physical systems are also inspiring from
the mathematical point of view.

In fact, this field does not need any advocacy. When A. Wightman remarked
a few years ago that it had become “socially acceptable”, it was a pleasant under-
statement; by all accounts, mathematical physics is flourishing. It has long left the
adolescent stage when it cherished only oscillating strings and membranes; nowadays
it has built synapses to almost every part of physics. Evidence that the discipline is
developing actively is provided by the fruitful oscillation between the investigation
of particular systems and synthetizing generalizations, as well as by discoveries of
new connections between different branches.

The drawback of this rapid development is that it has become virtually impos-
sible to write a textbook on mathematical physics as a single topic. There are, of
course, books which cover a wide range of problems, some of them indeed monu-
mental, but even they are like cities which govern the territory while watching the
frontier slowly moving towards the gray distance. This is simply the price we have to
pay for the flood of ideas, concepts, tools, and results that our science is producing.

It was not our aim to write a poor man’s version of some of the big textbooks.
What we want is to give students basic information about the field, by which we
mean an amount of knowledge that could constitute the basis of an intensive one–
year course for those who already have the necessary training in algebra and analysis,
as well as in classical and quantum mechanics. If our exposition should kindle interest
in the subject, the student will be able, after taking such a course, to read specialized
monographs and research papers, and to discover a research topic to his or her
taste. We have mentioned that the span of the contemporary mathematical physics
is vast; nevertheless the cornerstone remains where it was laid by J. von Neumann,
H. Weyl, and the other founding fathers, namely in regions connected with quantum
theory. Apart from its importance for fundamental problems such as the constitution
of matter, this claim is supported by the fact that quantum theory is gradually

ix



x Preface

becoming a basis for most branches of applied physics, and has in this way entered
our everyday life.

The mathematical backbone of quantum physics is provided by the theory of
linear operators on Hilbert spaces, which we discuss in the first half of this book.
Here we follow a well–trodden path; this is why references in this part aim mostly at
standard book sources, even for the few problems which maybe go beyond the stan-
dard curriculum. To make the exposition self–contained without burdening the main
text, we have collected the necessary information about measure theory, integration,
and some algebraic notions in the appendices.

The physical chapters in the second half are not intended to provide a self–
contained exposition of quantum theory. As we have remarked, we suppose that the
reader has background knowledge up to the level of a standard quantum mechan-
ics course; the present text should rather provide new insights and help to reach a
deeper understanding. However, we attempt to describe the mathematical founda-
tions of quantum theory in a sufficiently complete way, so that a student coming
from mathematics can start his or her way into this part of physics through our book.

In connection with the intended purpose of the text, the character of referencing
changes in the second part. Though the material discussed here is with a few excep-
tions again standard, we try in the notes to each chapter to explain extensions of
the discussed results and their relations to other problems; occasionally we have set
traps for the reader’s curiosity. The notes are accompanied by a selective but quite
broad list of references, which map ways to the areas where real life dwells.

Each chapter is accompanied by a list of problems. Solving at least some of
them in full detail is the safest way for the reader to check that he or she has indeed
mastered the topic. The problem level ranges from elementary exercises to fairly
complicated proofs and computations. We have refrained from marking the more
difficult ones with asterisks because such a classification is always subjective, and
after all, in real life you also often do not know in advance whether it will take you
an hour or half a year to deal with a given problem.

Let us add a few words about the history of the book. It originates from courses
of lectures we have given in different forms during the past two decades at Charles
University and the Czech Technical University in Prague. In the 1970s we prepared
several volumes of lecture notes; ten years later we returned to them and rewrote
the material into a textbook, again in Czech. It was prepared for publication in
1989, but the economic turmoil which inevitably accompanied the welcome changes
delayed its publication, so that it appeared only recently.

In the meantime we suffered a heavy blow. Our friend and coauthor, Jǐŕı Blank,
died in February 1990 at the age of 50. His departure reminded us of the bitter
truth that we usually are able to appreciate the real value of our relationships with
fellow humans only after we have lost them. He was always a stabilizing element
of our triumvirate of authors, and his spirit as a devoted and precise teacher is felt
throughout this book; we hope that in this indirect way his classes will continue.

Preparing the English edition was therefore left to the remaining two authors.
It has been modified in many places. First of all, we have included two chapters and
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some other material which was prepared for the Czech version but then left out due
to editorial restrictions. Though the aim of the book is not to report on the present
state of research, as we have already remarked, the original manuscript was finished
four years ago and we felt it was necessary to update the text and references in
some places. On the other hand, since the audience addressed by the English text is
different — and is equipped with different libraries — we decided to rewrite certain
parts from the first half of the book in a more condensed form.

One consequence of these alterations was that we chose to do the translation
ourselves. This decision contained an obvious danger. If you write in a language
which you did not master during your childhood, the result will necessarily contain
some unwanted comical twists reminiscent of the famous character of Leo Rosten.
We are indebted to P. Moylan and, in particular, to R. Healey, who have read the
text and counteracted our numerous petty attacks against the English language;
those clumsy expressions that remain are, of course, our own.

There are many more people who deserve our thanks: coauthors of our research
papers, colleagues with whom we have had the pleasure of exchanging ideas, and
simply friends who have supported us during difficult times. We should not forget
about students in our courses who have helped just by asking questions; some of
them have now become our colleagues. In view of the book complex history, the
list should be very long. We prefer to thank all of them anonymously. However,
since every rule should have an exception, let us name J. Dittrich, who read the
manuscript and corrected numerous mistakes. Last but not least we want to thank
our wives, whose patience and understanding made the writing of this book possible.

Prague, July 1993 Pavel Exner
Miloslav Havĺıček
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Chapter 1

Some notions from functional
analysis

1.1 Vector and normed spaces

The notion of a vector space is obtained by axiomatization of the properties of
the three–dimensional space of Euclidean geometry, or of configuration spaces of
classical mechanics. A vector (or linear) space V is a set {x, y, . . . } equipped
with the operations of summation, [x, y] �→ x + y ∈ V , and multiplication by a
complex or real number α, [α, x] �→ αx ∈ V , such that

(i) The summation is commutative, x + y = y + x, and associative, (x + y) + z =
x+(y +z). There exist a zero element 0 ∈ V , and an inverse element −x ∈ V,
to any x ∈ V so that x + 0 = x and x + (−x) = 0 holds for all x ∈ V .

(ii) α(βx) = (αβ)x and 1x = x.

(iii) The summation and multiplication are distributive, α(x + y) = αx + αy and
(α + β)x = αx + βx.

The elements of V are called vectors. The set of numbers (or scalars) in the definition
can be replaced by any algebraic field F . Then we speak about a vector space over F ,
and in particular, about a complex and real vector space for F = C, R, respectively.
A vector space without further specification in this book always means a complex
vector space.

1.1.1 Examples: (a) The space C
n consists of n–tuples of complex numbers with

the summation and scalar multiplication defined componentwise. In the same
way, we define the real space R

n.

(b) The space �p, 1 ≤ p ≤ ∞, of all complex sequences X := {ξj}∞j=1 such that∑∞
j=1 |ξj|p <∞ for p <∞ and supj |ξj| <∞ if p =∞, with the summation

and scalar multiplication defined as above; the Minkowski inequality implies
X + Y ∈ �p for X, Y ∈ �p (Problem 2).

1
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(c) The space C(J) of continuous complex functions on a closed interval J ⊂ R

with (αf +g)(x) := αf(x)+g(x). In a similar way, we define the space C(X)
of continuous functions on a compact X and spaces of bounded continuous
functions on more general topological spaces (see the next two sections).

A subspace L ⊂ V is a subset, which is itself a vector space with the same
operations. A minimal subspace containing a given subset M ⊂ V is called the
linear hull (envelope) of M and denoted as Mlin or lin(M). Vectors x1, . . . , xn ∈ V
are linearly independent if α1x1 + · · · + αnxn = 0 implies that all the numbers
α1, . . . , αn are zero; otherwise they are linearly dependent, which means some of them
can be expressed as a linear combination of the others. A set M ⊂ V is linearly
independent if each of its finite subsets consists of linearly independent vectors.

This allows us to introduce the dimension of a vector space V as a maxi-
mum number of linearly independent vectors in V . Among the spaces mentioned in
Example 1.1.1, C

n and R
n are n–dimensional (Cn is 2n–dimensional as a real vec-

tor space) while the others are infinite–dimensional. A basis of a finite–dimensional
V is any linearly independent set B ⊂ V such that Blin = V ; it is clear that
dim V = n iff V has a basis of n elements. Vector spaces V, V ′ are said to
be (algebraically) isomorphic if there is a bijection f : V → V ′, which is linear,
f(αx + y) = αf(x) + f(y). Isomorphic spaces have the same dimension; for finite–
dimensional spaces the converse is also true (Problem 3).

There are various ways to construct new vector spaces from given ones. Let us
mention two of them:

(i) If V1, . . . , VN are vector spaces over the same field; then we can equip the
Cartesian product V := V1× · · · × VN with a summation and scalar multipli-
cation defined by α[x1, . . . , xN ]+ [y1, . . . , yN ] := [αx1 +y1, . . . , αxN +yN ]. The
axioms are obviously satisfied; the resulting vector space is called the direct
sum of V1, . . . , VN and denoted as V1 ⊕ · · · ⊕ VN or

∑⊕
j Vj. The same term

and symbols are used if V1, . . . , VN are subspaces of a given space V such
that each x ∈ V has a unique decomposition x = x1 + · · ·+ xN , xj ∈ Vj.

(ii) If W is a subspace of a vector space V , we can introduce an equivalence
relation on V by x ∼ y if x−y ∈W . Defining the vector–space operations on
the set Ṽ of equivalence classes by αx̃+ ỹ := (αx+y)̃ for some x ∈ x̃, y ∈ ỹ,
we get a vector space, which is called the factor space of V with respect to
W and denoted as V/W .

1.1.2 Example: The space Lp(M, dµ) , p ≥ 1, where µ is a non–negative measure,
consists of all measurable functions f : M → C satisfying

∫
M
|f |pdµ < ∞ with

pointwise summation and scalar multiplication — cf. Appendix A.3. The subset
L0 ⊂ Lp of the functions such that f(x) = 0 for µ–almost all x ∈ M is easily
seen to be a subspace; the corresponding factor space Lp(M, dµ) := Lp(M, dµ)/L0

is then formed by the classes of µ–equivalent functions.
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A map f : V → C on a vector space V is called a functional; if it maps into the
reals we speak about a real functional. A functional f is additive if f(x + y) = f(x)+
f(y) holds for all x, y ∈ V , and homogeneous if f(αx) = αf(x) or antihomogeneous
if f(αx) = ᾱf(x) for x ∈ V, α ∈ C. An additive (anti)homogeneous functional is
called (anti)linear. A real functional p is called a seminorm if p(x + y) ≤ p(x)+p(y)
and p(αx) = |α|p(x) holds for any x, y ∈ V, α ∈ C; this definition implies that p
maps V into R

+ and |p(x)−p(y)| ≤ p(x−y). The following important result is
valid (see the notes to this chapter).

1.1.3 Theorem (Hahn–Banach): Let p be a seminorm on a vector space V . Any
linear functional f0 defined on a subspace V0 ⊂ V and fulfilling |f0(y)| ≤ p(y) for
all y ∈ V0 can be extended to a linear functional f on V such that |f(x)| ≤ p(x)
holds for any x ∈ V .

A map F := V × · · · × V → C is called a form, in particular, a real form if its
range is contained in R. A form F : V × V → C is bilinear if it is linear in both
arguments, and sesquilinear if it is linear in one of them and antilinear in the other.
Most frequently we shall drop the adjective when speaking about sesquilinear forms;
we shall use the “physical” convention assuming that such a form is antilinear in
the left argument. For a given F we define the quadratic form (generated by F ) by
qF : qF (x) = F (x, x); the correspondence is one–to–one as the polarization formula

F (x, y) =
1

4

(
qF (x+y)− qF (x−y)

)
− i

4

(
qF (x+iy)− qF (x−iy)

)

shows. A form F is symmetric if F (x, y) = F (y, x) for all x, y ∈ V ; it is positive
if qF (x) ≥ 0 for any x ∈ V and strictly positive if, in addition, F (x) = 0 holds
for x = 0 only. A positive form is symmetric (Problem 6) and fulfils the Schwarz
inequality,

|F (x, y)|2 ≤ qF (x)qF (y) .

A norm on a vector space V is a seminorm ‖ · ‖ such that ‖x‖ = 0 holds
iff x = 0. A pair (V, ‖ · ‖) is called a normed space; if there is no danger of
misunderstanding we shall speak simply about a normed space V .

1.1.4 Examples: (a) In the spaces C
n and R

n, we introduce

‖x‖∞ := max
1≤j≤n

|ξj| and ‖x‖p :=

(
n∑

j=1

|ξj|p
)1/p

, p ≥ 1 ,

for x = {ξ1, . . . , ξn}; the norm ‖ · ‖2 on R
n is often also denoted as | · |.

Analogous norms are used in �p (see also Problem 8).

(b) In Lp(M, dµ), we introduce

‖f‖p :=

(∫

M

|f |pdµ

)1/p

.
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The relation ‖f‖p =0 implies f(x)=0 µ–a.e. in M , so f is the zero element
of Lp(M, dµ). If we speak about Lp(M, dµ) as a normed space, we always
have in mind this natural norm though it is not, of course, the only possibility.
If the measure µ is discrete with countable support, Lp(M, dµ) is isomorphic
to �p and we recover the norm ‖ · ‖p of the previous example.

(c) By L∞(M, dµ) we denote the set of classes of µ–equivalent functions f :
M → C, which are bounded a.e., i.e., there is c > 0 such that |f(x)| ≤ c
for µ–almost all x ∈ M . The infimum of all such numbers is denoted as
sup ess |f(x)|. We can easily check that L∞(M, dµ) is a vector space and
f �→ ‖f‖∞ := sup ess x∈M |f(x)| is a norm on it.

(d) The space C(X) can be equipped with the norm ‖f‖∞ := supx∈X |f(x)|.

A strictly positive sesquilinear form on a vector space V is called an inner (or
scalar) product. In other words, it is a map (·, ·) from V × V to C such that
the following conditions hold for any x, y, z ∈ V and α ∈ C:

(i) (x, αy+z) = α(x, y) + (x, z)

(ii) (x, y) = (y, x)

(iii) (x, x) ≥ 0 and (x, x)=0 iff x=0

A vector space with an inner product is called a pre–Hilbert space. Any such space
is at the same time a normed space with the norm ‖x‖ :=

√
(x, x); the Schwarz

inequality then assumes the form

|(x, y)| ≤ ‖x‖ ‖y‖ .

The above norm is said to be induced by the inner product. Due to conditions (i)
and (ii) it fulfils the parallelogram identity,

‖x+y‖2 + ‖x−y‖2 = 2‖x‖2 + 2‖y‖2 ;

on the other hand, it allows us to express the inner product by polarization,

(x, y) =
1

4

(
‖x+y‖2 − ‖x−y‖2

)
− i

4

(
‖x+iy‖2 − ‖x−iy‖2

)
.

These properties are typical for a norm induced by an inner product (Problem 11).
Vectors x, y of a pre–Hilbert space V are called orthogonal if (x, y) = 0. A

vector x is orthogonal to a set M if (x, y) = 0 holds for all y ∈ M ; the set of all
such vectors is denoted as M⊥ and called the orthogonal complement to M . Inner–
product linearity implies that it is a subspace, (M⊥)lin = M⊥, with the following
simple properties

(Mlin)⊥ = M⊥ , Mlin ⊂ (M⊥)⊥ , M ⊂ N ⇒ M⊥ ⊃ N⊥ .
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A set M of nonzero vectors whose every two elements are orthogonal is called an
orthogonal set; in particular, M is orthonormal if ‖x‖ = 1 for each x ∈ M . Any
orthonormal set is obviously linearly independent, and in the opposite direction we
have the following assertion, the proof of which is left to the reader.

1.1.5 Theorem (Gram-Schmidt): Let N be an at most countable linearly inde-
pendent set in a pre–Hilbert space V , then there is an orthonormal set M ⊂ V of
the same cardinality such that Mlin = Nlin.

1.2 Metric and topological spaces

A metric on a set X is a map � : X ×X → [0,∞), which is symmetric, �(x, y) =
�(y, x), �(x, y) = 0 iff x = y, and fulfils the triangle inequality,

�(x, z) ≤ �(x, y) + �(y, z) ,

for any x, y, z ∈ X; the pair (X, �) is called a metric space (we shall again for
simplicity often use the symbol X only). If X is a normed space, one can define
a metric on X by �(x, y) := ‖x−y‖; we say it is induced by the norm (see also
Problems 15 and 16).

Let us first recall some basic notions and properties of metric spaces. An ε–
neighborhood of a point x ∈ X is the open ball Uε(x) := { y ∈ X : �(y, x) < ε}.
A point x is an interior point of a set M if there is a Uε(x) ⊂M . A set is open if
all its points are interior points, in particular, any neighborhood of a given point is
open. A union of an arbitrary family of open sets is again an open set; the same is
true for finite intersections of open sets.

The closure M of a set M is the family of all points x ∈ X such that the
intersection Uε(x)∩M �= ∅ for any ε > 0. A point x ∈M is called isolated if there
is Uε(x) such that Uε(x)∩M = {x}, otherwise x is a limit (or accumulation) point
of M . The closure points of M which are not interior form the boundary bd M of
M . A set is closed if it coincides with its closure, and M is the smallest closed set
containing M (cf. Problem 17). In particular, the whole X and the empty set ∅
are closed and open at the same time.

A set M is said to be dense in a set N ⊂ X if M ⊃ N ; it is everywhere
dense if M = X and nowhere dense if X \M is everywhere dense. A metric space
which contains a countable everywhere dense set is called separable. An example is
the space C

n with any of the norms of Example 1.1.4a where a dense set is formed,
e.g., by n–tuples of complex numbers with rational real and imaginary parts; other
examples will be given in the next chapter (see also Problem 18).

A sequence {xn} ⊂ X converges to a point x ∈ X if to any Uε(x) there is
n0 such that xn ∈ Uε(x) holds for all n > n0. Since any two mutually different
points x, y ∈ X have disjoint neighborhoods, each sequence has at most one limit.
Sequences can also be used to characterize closure of a set (Problem 17).

Next we recall a few notions related to maps f : X → X ′ of metric spaces. The
map f is continuous at a point x ∈ X if to any U ′

ε(f(x)) there is a Uδ(x) such
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that f(Uδ(x)) ⊂ U ′
ε(f(x)); alternatively we can characterize the local continuity

using sequences (Problem 19). On the other hand, f is (globally) continuous if the
pull–back f (−1)(G′) of any open set G′ ⊂ X ′ is open in X.

An important class of continuous maps is represented by homeomorphisms, i.e.,
bijections f : X → X ′ such that both f and f−1 are continuous. It is clear that
in this way any family of metric spaces can be divided into equivalence classes. A
homeomorphism maps, in particular, the family τ of open sets in X bijectively
onto the family τ ′ of open sets in X ′; we say that homeomorphic metric spaces
are topologically equivalent. Such spaces can still differ in metric properties. As an
example, consider the spaces R and (−π

2
, π

2
) with the same metric �(x, y) := |x−y|;

they are homeomorphic by x �→ arctan x but only the first of them contains un-
bounded sets. A bijection f := X → X ′ which preserves the metric properties,
�′(f(x), f(y)) = �(x, y), is called isometry; this last named property implies conti-
nuity, so any isometry is a homeomorphism.

A homeomorphism f : V → V ′ of normed spaces is called linear homeomor-
phism if it is simultaneously an isomorphism. Linearly homeomorphic spaces there-
fore also have the same algebraic structure; this is particularly simplifying in the
case of finite dimension (Problem 21). In addition, if the identity ‖f(x)‖V ′ = ‖x‖V
holds for any x ∈ V we speak about a linear isometry.

A sequence {xn} in a metric space X is called Cauchy if to any ε > 0 there
is nε such that �(xn, xm) < ε for all n, m > nε. In particular, any convergent
sequence is Cauchy; a metric space in which the converse is also true is called
complete. Completeness is one of the basic “nontopological” properties of metric
spaces: recall the spaces R and (−π

2
, π

2
) mentioned above; they are homeomorphic

but only the first of them is complete.

1.2.1 Example: Let us check the completeness of Lp(M, dµ) , p ≥ 1, with a σ–finite
measure µ. Suppose first µ(M) < ∞ and consider a Cauchy sequence {fn} ⊂ Lp.
By the Hölder inequality, it is Cauchy also with respect to ‖ · ‖1, so for any ε > 0
there is N(ε) such that ‖fn−fm‖1 < ε for n, m > N(ε). We pick a subsequence,
gn := fkn , by choosing k1 := N(2−1) and kn+1 := max{kn +1, N(2−n−1))}, so
‖gn+1−gn‖1 < 2−n, and the functions ϕn := |g1|+

∑n−1
�=1 |g�+1−g�| obey

∫

M

ϕndµ ≤ ‖g1‖1 +
n−1∑

�=1

2−� < 1 + ‖g1‖1 .

Since they are measurable and form a nondecreasing sequence, the monotone–
convergence theorem implies existence of a finite limn→∞ ϕn(x) for µ–a.a. x ∈ M .
Furthermore, |gn+p−gn| ≤ ϕn+p−ϕn, so there is a function f which is finite µ-a.e.
in M and fulfils f(x) = limn→∞ gn(x). The sequence {gn} has been picked from a
Cauchy sequence and it is therefore Cauchy also, ‖gn−gm‖p < ε for all n, m > Ñ(ε)
for a suitable Ñ(ε). On the other hand, limm→∞ |gn(x)−gm(x)|p = |gn(x)−f(x)|p
for µ–a.a. x ∈ M , so Fatou’s lemma implies ‖gn−f‖p ≤ ε for all n > Ñ(ε); hence
f ∈ Lp and limn→∞ ‖fn−f‖p = 0 (Problem 24).
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If µ is σ–finite and µ(M) =∞, there is a disjoint decomposition
⋃∞

j=1 Mj = M
with µ(Mj) < ∞. The already proven completeness of Lp(Mj, dµ) implies the

existence of functions f (j) ∈ Lp(Mj, dµ) which fulfil ‖f (j)
n −f (j)‖p → 0 as n→∞;

then we can proceed as in the proof of completeness of �p (cf. Problem 23).
Other examples of complete metric spaces are given in Problem 23. Any metric

space can be extended to become complete: a complete space (X ′, �′) is called the
completion of (X, �) if (i) X ⊂ X ′ and �′(x, y) = �(x, y) for all x, y ∈ X, and (ii)
the set X is everywhere dense in X ′ (this requirement ensures minimality — cf.
Problem 25).

1.2.2 Theorem: Any metric space (X, �) has a completion. If (X̃, �̃) is another
completion of (X, �), there is an isometry f : X ′ → X̃ which preserves X, i.e.,
f(x) = x for all x ∈ X.

Sketch of the proof: Uniqueness follows directly from the definition. Existence is
proved constructively by the so–called standard completion procedure which genera-
lizes the Cantor construction of the reals. We start from the set of all Cauchy
sequences in (X, �). This can be factorized if we set {xj} ∼ {yj} for the sequences
with limj→∞ �(xj, yj) = 0. The set of equivalence classes we denote as X∗ and define
�∗([x], [y]) := limj→∞ �(xj, yj) to any [x], [y] ∈ X∗. Finally, one has to check that
this definition makes sense, i.e., that �∗ does not depend on the choice of sequences
representing the classes [x], [y], �∗ is a metric on X∗, and (X∗, �∗) satisfies the
requirements of the definition.

The notion of topology is obtained by axiomatization of some properties of
metric spaces. Let X be a set and τ a family of its subsets which fulfils the following
conditions (topology axioms):

(t1) X ∈ τ and ∅ ∈ τ .

(t2) If I is any index set and Gα ∈ τ for all α ∈ I; then
⋃

α∈I Gα ∈ τ .

(t3)
⋂n

j=1 Gj ∈ τ for any finite subsystem {G1, . . . , Gn} ⊂ τ .

The family τ is called a topology, its elements open sets and the set X equipped
with a topology is a topological space; when it is suitable we write (X, τ).

A family of open sets in a metric space (X, �) is a topology by definition;
we speak about the metric–induced topology τ�, in particular, the norm–induced
topology if X is a vector space and � is induced by a norm. On the other hand,
finding the conditions under which a given topology is induced by a metric is a
nontrivial problem (see the notes). Two extreme topologies can be defined on any
set X: the discrete topology τd := 2X , i.e., the family of all subsets in X, and the
trivial topology τ0 := {∅, X}. The first of them is induced by the discrete metric,
�d(x, y) := 1 for x �=y, while (X, τ0) is not metrizable unless X is a one–point set.

An open set in a topological space X containing a point x or a set M ⊂ X is
called a neighborhood of the point X or the set M , respectively. Using this concept,
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we can adapt to topological spaces most of the “metric” definitions presented above,
as well as some simple results such as those of Problems 17a, c, 19b, topological
equivalence of homeomorphic spaces, etc. On the other hand, equally elementary
metric–space properties may not be valid in a general topological space.

1.2.3 Example: Consider the topologies τfin and τcount on X = [0, 1] in which
the closed sets are all finite and almost countable subsets of X, respectively. If
{xn} ⊂ X is a simple sequence, xn �=xm for n �=m ; then any neighborhood U(x)
contains all elements of the sequence with the exception of a finite number; hence
the limit is not unique in (X, τfin). This is not the case in (X, τcount) but there only
very few sequences converge, namely those with xn = xn0 for all n ≥ n0, which
means, in particular, that we cannot use sequences to characterize local continuity
or points of the closure.

Some of these difficulties can be solved by introducing a more general notion of
convergence. A partially ordered set I is called directed if for any α, β ∈ I there
is γ ∈ I such that α ≺ γ and β ≺ γ. A map of a directed index set I into a
topological space X, α �→ xα, is called a net in X. A net {xα} is said to converge
to a point x ∈ X if to any neighborhood U(x) there is an α0 ∈ I such that
xα ∈ U(x) for all α � α0. To illustrate that nets in a sense play the role that
sequences played in metric spaces, let us mention two simple results the proofs of
which we leave to the reader (Problem 29).

1.2.4 Proposition: Let (X, τ) , (X ′, τ ′) be topological spaces; then

(a) A point x ∈ X belongs to the closure of a set M ⊂ X iff there is a net
{xα} ⊂M such that xα → x.

(b) A map f : X → X ′ is continuous at a point x ∈ X iff the net {f(xα)}
converges to f(x) for any net {xα} converging to x.

Two topologies can be compared if there is an inclusion between them, τ1 ⊂ τ2,
in which case we say that τ1 is weaker (coarser) than τ2; while the latter is stronger
(finer) than τ1. Such a relation between topologies has some simple consequences
— see, e.g., Problem 32. In particular, continuity of a map f : X → Y is preserved
when we make the topology in Y weaker or in X stronger. In other cases it may
not be preserved; for instance, Problem 3.9 gives an example of three topologies,
τw ⊂ τs ⊂ τu, on a set X := B(H) and a map f : X → X which is continuous with
respect to τw and τu but not τs.

1.2.5 Example: A frequently used way to construct a topology on a given X
employs a family F of maps from X to a topological space (X̃, τ̃). Among all
topologies such that each f ∈ F is continuous there is one which is the weakest; its
existence follows from Problem 30, where the system S consists of the sets f (−1)G)
for each G ⊂ τ̃ , f ∈ F . We call this the F–weak topology.
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For any set M in a topological space (X, τ) we define the relative topology τM

as the family of intersections M ∩ G with G ⊂ τ ; the space (M, τM) is called
a subspace of (X, τ). Other important notions are obtained by axiomatization of
properties of open balls in metric spaces. A family B ⊂ τ is called a basis of a
topological space (X, τ) if any nonempty open set can be expressed as a union of
elements of B. A family Bx of neighborhoods of a given point x ∈ X is called a
local basis at x if any neighborhood U(x) contains some B ∈ Bx. A trivial example
of both a basis and a local basis is the topology itself; however, we are naturally
more interested in cases where bases are rather a “small part” of it. It is easy to see
that local bases can be used to compare topologies.

1.2.6 Proposition: Let a set X be equipped with topologies τ, τ ′ with local bases
Bx, B′

x at each x ∈ X. The inclusion τ ⊂ τ ′ holds iff for any B ∈ Bx there is
B′ ∈ B′

x such that B′ ⊂ B.

To be a basis of a topology or a local basis, a family of sets must meet certain
consistency requirements (cf. Problem 30c, d); this is often useful when we define a
particular topology by specifying its basis.

1.2.7 Example: Let (Xj, τj), j = 1, 2, be topological spaces. On the Cartesian
product X1 ×X2 we define the standard topology τX1×X2 determined by τj, j =
1, 2, as the weakest topology which contains all sets G1 × G2 with Gj ∈ τj, i.e.,
τX1×X2 := τ(τ1× τ2) in the notation of Problem 30b. Since (A1×A2)∩ (B1×B2) =
(A1 ∩ B1) × (A2 ∩ B2), the family τ1 × τ2 itself is a basis of τX1×X2 ; a local basis
at [x1, x2] consists of the sets U(x1) × V (x2), where U(x1) ∈ τ1, V (x2) ∈ τ2 are
neighborhoods of the points x1, x2, respectively. The space (X1 × X2, τX1×X2) is
called the topological product of the spaces (Xj, τj), j = 1, 2.

Bases can also be used to classify topological spaces by the so–called countability
axioms. A space (X, τ) is called first countable if it has a countable local basis at
any point; it is second countable if the whole topology τ has a countable basis. The
second requirement is actually stronger; for instance, a nonseparable metric space
is first but not second countable (cf. Problem 18; some related results are collected
in Problem 31). The most important consequence of the existence of a countable
local basis, {Un(x) : n = 1, 2, . . .} ⊂ τ , is that one can pass to another local basis
{Vn(x) : n = 1, 2, . . .}, which is ordered by inclusion, Vn+1 ⊂ Vn, setting V1 := U1

and Vn+1 := Vn ∩ Un+1. This helps to partially rehabilitate sequences as a tool in
checking topological properties (Problem 33a).

The other problem mentioned in Example 1.2.3, namely the possible nonunique-
ness of a sequence limit, is not related to the cardinality of the basis but rather to the
degree to which a given topology separates points. It provides another classification
of topological spaces through separability axioms:

T1 To any x, y ∈ X, x �=y, there is a neighborhood U(x) such that y �∈ U(x).

T2 To any x, y ∈ X, x �=y, there are disjoint neighborhoods U(x) and U(y).
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T3 To any closed set F ⊂ X and a point x �∈ F , there are disjoint neighborhoods
U(x) and U(F ).

T4 To any pair of disjoint closed sets F, F ′, there are disjoint neighborhoods
U(F ) and U(F ′).

A space (X, τ) which fulfils the axioms T1 and Tj is called Tj–space, T2–spaces
are also called Hausdorff, T3–spaces are regular, and T4–spaces are normal . For
instance, the spaces of Example 3 are T1 but not Hausdorff; one can find examples
showing that the whole hierarchy is nontrivial (see the notes). In particular, any
metric space is normal. The question of limit uniqueness that we started with is
answered affirmatively in Hausdorff spaces (see Problem 29).

1.3 Compactness

One of the central points in an introductory course of analysis is the Heine–Borel the-
orem, which claims that given a family of open intervals covering a closed bounded
set F ⊂ R, we can select a finite subsystem which also covers F . The notion of
compactness comes from axiomatization of this result. Let M be a set in a topo-
logical space (X, τ). A family P := {Mα : α ∈ I} ⊂ 2X is a covering of M if⋃

α∈I Mα ⊃ M ; in dependence on the cardinality of the index set I the covering
is called finite, countable, etc.We speak about an open covering if P ⊂ τ . The set
M is compact if an arbitrary open covering of M has a finite subsystem that
still covers M ; if this is true for the whole of X we say that the topological space
(X, τ) is compact. It is easy to see that compactness of M is equivalent to com-
pactness of the space (M, τM) with the induced topology, so it is often sufficient to
formulate theorems for compact spaces only.

1.3.1 Proposition: Let (X, τ) be a compact space, then

(a) Any infinite set M ⊂ X has at least one accumulation point.

(b) Any closed set F ⊂ X is compact.

(c) If a map f : (X, τ)→ (X ′, τ ′) is continuous, then f(X) is compact in (X ′, τ ′).

Proof: To check (a) it is obviously sufficient to consider countable sets. Suppose
M = {xn : n = 1, 2, . . .} has no accumulation points; then the same is true for
the sets MN := {xn : n ≥ N}. They are therefore closed and their complements
form an open covering of X with no finite subcovering. Further, let {Gα} be an
open covering of F ; adding the set G := X \F we get an open covering of X. Any
finite subcovering G of X is either contained in {Gα} or it contains the set G;
in the latter case G \G is a finite covering of the set F . Finally, the last assertion
follows from the appropriate definitions.
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Part (a) of the proposition represents a particular case of a more general result
(see the notes) which can be used to define compactness; another alternative defini-
tion is given in Problem 36. Compactness has an important implication for the way
in which the topology separates points.

1.3.2 Theorem: A compact Hausdorff space is normal.

Proof: Let F, R be disjoint closed sets and y ∈ R. By assumption, to any x ∈ F
one can find disjoint neighborhoods Uy(x) and Ux(y). The family {Uy(x) : x ∈ F}
covers the set F , which is compact in view of the previous proposition; hence there
is a finite subsystem {Uy(xj) : j = 1, . . . , n} such that Uy(F ) :=

⋃n
j=1 Uy(xj) is a

neighborhood of F . Moreover, U(y) :=
⋂n

j=1 Uxj
(y) is a neighborhood of the point

y and U(y) ∩ Uy(F ) = ∅. This can be done for any point y ∈ R giving an open
covering {U(y) : y ∈ R} of the set R; from it we select again a finite subsystem
{U(yk) : k = 1, . . . , m} such that U(R) :=

⋃m
k=1 U(yk) is a neighborhood of R

which has an empty intersection with U(F ) :=
⋂m

k=1 Uyk
(F ).

1.3.3 Theorem: Let X be a Hausdorff space, then

(a) Any compact set F ⊂ X is closed.

(b) If the space X is compact, then any continuous bijection f : X → X ′ for X ′

Hausdorff is a homeomorphism.

Proof: If y �∈ F , the neighborhood U(y) from the preceding proof has an empty
intersection with F , so y �∈ F . To prove (b) we have to check that f(F ) is closed in
X ′ for any closed F ⊂ X; this follows easily from (a) and Proposition 1.3.1c.

A set M in a topological space is called precompact (or relatively compact) if
M is compact. A space X is locally compact if any point x ∈ X has a precompact
neighborhood; it is σ–compact if any countable covering has a finite subcovering.

Let us now turn to compactness in metric spaces. There, any compact set is
closed by Theorem 1.3.3 and bounded — from an unbounded set we can always select
an infinite subset which has no accumulation point. However, these conditions are
not sufficient. For instance, the closed ball S1(0) in �2 is bounded but not compact:
its subset consisting of the points Xj := {δjk}∞k=1 , j = 1, 2, . . ., has no accumulation
point because ‖Xj−Xk‖ =

√
2 holds for all j �= k.

To be able to characterize compactness by metric properties we need a stronger
condition. Given a set M in a metric space (X, �) and ε > 0, we call a set Nε

an ε–lattice for M if to any x ∈ M there is a y ∈ Nε such that �(x, y) ≤ ε
( Nε may not be a subset of M but by using it one is able to construct a 2ε–
lattice for M which is contained in M ). A set M is completely bounded if it has a
finite ε–lattice for any ε > 0; if the set X itself is completely bounded we speak
about a completely bounded metric space. If M is completely bounded, the same is
obviously true for M . Any completely bounded set is bounded; on the other hand,
any infinite orthonormal set in a pre–Hilbert space represents an example of a set
which is bounded but not completely bounded.
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1.3.4 Proposition: A σ–compact metric space is completely bounded. A completely
bounded metric space is separable.

Proof: Suppose that for some ε > 0 there is no finite ε–lattice. Then X \Sε(x1) �= ∅
for an arbitrarily chosen x1 ∈ X, otherwise {x1} would be an ε–lattice for X. Hence
there is x2 ∈ X such that �(x1, x2) > ε and we have X \(Sε(x1)∪Sε(x2)) �= ∅ etc.;
in this way we construct an infinite set {xj : j = 1, 2, . . .} which fulfils �(xj, xk) > ε
for all j �= k, and therefore it has no accumulation points. As for the second part,
if Nn is a (1/n)–lattice for X, then

⋃∞
n=1 Nn is a countable everywhere dense set.

1.3.5 Corollary: Let X be a metric space; then the following conditions are equiv-
alent:

(i) X is compact.

(ii) X is σ–compact.

(iii) Any infinite set in X has an accumulation point.

1.3.6 Theorem: A metric space is compact iff it is complete and completely
bounded.

Proof: Let X be compact; in view of Proposition 1.3.4 it is sufficient to show that
it is complete. If {xn} is Cauchy, the compactness implies existence of a convergent
subsequence so {xn} is also convergent (Problem 24). On the other hand, to prove
the opposite implication we have to check that any M := {xn : n = 1, 2, . . .} ⊂ X
has an accumulation point. By assumption, there is a finite 1–lattice N1 for X,
hence there is y1 ∈ N1 such that the closed ball S1(y1) contains an infinite subset
of M . The ball S1(y1) is completely bounded, so we can find a finite (1/2)–lattice
N2 ⊂ S1(y1) and a point y2 ∈ N2 such that the set S1/2(y2) ∩ M is infinite.
In this way we get a sequence of closed balls Sn := S21−n(yn) such that each of
them contains infinitely many points of M and their centers fulfil yn+1 ∈ Sn. The
closed balls of doubled radii then satisfy S21−n(yn+1) ⊂ S22−n(yn) and M has an
accumulation point in view of Problem 26.

1.3.7 Corollary: (a) A set M in a complete metric space X is precompact iff
it is completely bounded. In particular, if X is a finite–dimensional normed
space, then M is precompact iff it is bounded.

(b) A continuous real–valued function f on a compact topological space X is
bounded and assumes its maximum and minimum values in X.

Proof: The first assertion follows from Problem 25. If M is compact, it is bounded
so M is also bounded. To prove the opposite implication in a finite–dimensional
normed space, we can use the fact that such a space is topologically isomorphic to
C

n (or R
n in the case of a real normed space — see Problem 21). As for part (b),

the set f(X) ⊂ R is compact by Proposition 1.3.1c, and therefore bounded. Denote
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α := supx∈X f(x) and let {xn} ⊂ X be a sequence such that f(xn)→ α. Since X
is compact there is a subsequence {xkn} converging to some xs and the continuity
implies f(xs) = α. In the same way we can check that f assumes a minimum value.

1.4 Topological vector spaces

We can easily check that the operations of summation and scalar multiplication
in a normed space are continuous. Let us now see what would follow from such a
requirement when we combine algebraic and topological properties. A vector space
V equipped with a topology τ is called a topological vector space if

(tv1) The summation maps continuously (V × V, τV ×V ) to (V, τ).

(tv2) The scalar multiplication maps continuously (C×V, τC×V ) to (V, τ).

(tv3) (V, τ) is Hausdorff.

In the same way, we define a topological vector space over any field. Instead of
(tv3), we may demand T1–separability only because the first two requirements imply
that T3 is valid (Problem 39).

A useful tool in topological vector spaces is the family of translations,
tx : V → V , defined for any x ∈ V by tx(y) := x+ y. Since t−1

x = t−x, the
continuity of summation implies that any translation is a homeomorphism; hence
if G is an open set, then x + G := tx(G) is open for all x ∈ V ; in particular, U
is a neighborhood of a point x iff U = x + U(0), where U(0) is a neighborhood
of zero. This allows us to define a topology through its local basis at a single point
(Problem 40).

Suppose a map between topological vector spaces (V, τ) and (V ′, τ ′) is simul-
taneously an algebraic isomorphism of V, V ′ and a homeomorphism of the corre-
sponding topological spaces, then we call it a linear homeomorphism (or topological
isomorphism). As in the case of normed spaces (cf. Problem 21), the structure of a
finite–dimensional topological vector space is fully specified by its dimension.

1.4.1 Theorem: Twofinite–dimensionaltopologicalvectorspaces, (V, τ) and (V ′, τ ′),
are linearly homeomorphic iff dim V = dim V ′. Any finite–dimensional topological
vector space is locally compact.

Proof: It is sufficient to construct a linear homeomorphism of a given n–dimensional
(V, τ) to C

n. We take a basis {e1, . . . , en} ⊂ V and construct f : V → C
n by

f
(∑n

j=1 ξjej

)
:= [ξ1, . . . , ξn]; in view of the continuity of translations we have to

show that f and f−1 are continuous at zero. According to (tv1), for any U(0) ∈ τ
we can find neighborhoods Uj(0) such that

∑n
j=1 xj ∈ U(0) for xj ∈ Uj(0) , j =

1, . . . , n and f−1 is continuous by Problem 42a. To prove that f is continuous
we use the fact that V is Hausdorff: Proposition 1.3.1 and Theorem 1.3.3 together
with the already proven continuity of f−1 ensure that Sε := {x∈V : ‖f(x)‖ = ε}
= f (−1)(Kε) is closed for any ε > 0; we have denoted here by Kε the ε–sphere
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in C
n. Since 0 �∈ Sε, the set G := V \ Sε is a neighborhood of zero, and by

Problem 42b there is a balanced neighborhood U ⊂ G of zero; this is possible only
if ‖f(x)‖ < ε for all x ∈ U .

Next we want to discuss a class of topological vector spaces whose properties are
closer to those of normed spaces. In distinction to the latter the topology in them is
not specified generally by a single (semi)norm but rather by a family of them. Let
P := {pα : α ∈ I} be a family of seminorms on a vector space V where I is an
arbitrary index set. We say that P separates points if to any nonzero x ∈ V there
is a pα ∈ P such that pα(x) �= 0. It is clear that if P consists of a single seminorm
p it separates points iff p is a norm. Given a family P we set

Bε(p1, . . . , pn) := {x ∈ V : pj(x) < ε , j = 1, . . . , n } ;

the collection of these sets for any ε > 0 and all finite subsystems of P will be
denoted as BP

0 . In view of Problem 40, BP
0 defines a topology on V which we

denote as τP .

1.4.2 Theorem: If a family P of seminorms on a vector space V separates points,
then (V, τP) is a topological vector space.

Proof: By assumption, to a pair x, y of different points there is a p ∈ P such that
ε := 1

2
p(x − y) > 0. Then U(x) := x + Bε(p) and U(y) := y + Bε(p) are disjoint

neighborhoods, so the axiom T2 is valid. The continuity of summation at the point
[0, 0] follows from the inequality p(x+y) ≤ p(x)+p(y); for the scalar multiplication
we use p(αx−α0x0) ≤ |α− α0| p(x0) + |α| p(x−x0).

A topological vector space with a topology induced by a family P separat-
ing points is called locally convex. This name has an obvious motivation: if x, y ∈
Bε(p1, . . . , pn), then pj(tx+(1− t)x) ≤ tpj(x)+ (1− t)pj(x) holds for any t ∈ [0, 1]
so the sets Bε(p1, . . . , pn) are convex. The convexity is preserved at translations, so
the local basis of τP at each x ∈ V consists of convex sets (see also the notes).

1.4.3 Example: The family P := {px := |(x, ·)| : x ∈ V } in a pre–Hilbert space V
generates a locally convex topology which is called the weak topology and is denoted
as τw; it is easy to see that it is weaker than the “natural” topology induced by the
norm.

1.4.4 Theorem: A locally convex space (V, τ) is metrizable iff there is a countable
family P of seminorms which generates the topology τ .

Proof: If V is metrizable it is first countable. Let {Uj : j = 1, 2, . . .} be a local
basis of τ at the point 0. By definition, to any Uj we can find ε > 0 and a
finite subsystem Pj ⊂ P such that

⋂
p∈Pj

Bε(p) ⊂ Uj. The family P ′ :=
⋃∞

j=1Pj

is countable and generates a topology τP ′
which is not stronger than τ := τP ;

the above inclusion shows that τP ′
= τ . On the other hand, suppose that τ is

generated by a family {pn : n = 1, 2, . . .} separating points; then we can define
a metric � as in Problem 16 and show that the corresponding topology satisfies
τ� = τ (Problem 43).
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A locally convex space which is complete with respect to the metric used in the
proof is called a Fréchet space (see also the notes).

1.4.5 Example: The set S(Rn) consists of all infinitely differentiable functions
f : R

n → C such that

‖f‖J,K := sup
x∈Rn

|xJ(DKf)(x)| <∞

holds for any multi–indices J := [j1, . . . , jn] , K := [k1, . . . , kn] with jr, kr non–
negative integers, where xJ := ξj1

1 . . . ξjn
n , DK := ∂|K|/∂ξk1

1 . . . ∂ξkn
n and |K| :=

k1 + · · · + kn. It is easy to see that any such f and any derivative DKf (as well
as polynomial combinations of them) tend to zero faster than |xJ |−1 for each J ;
we speak about rapidly decreasing functions. It is also clear that any ‖ · ‖J,K is a
seminorm, with ‖f‖0,0 = ‖f‖∞, and the family P := {‖ · ‖J,K} separates points.
The corresponding locally convex space S(Rn) is called the Schwartz space; one can
show that it is complete, i.e., a Fréchet space (see the notes).

An important subspace in S(Rn) consists of infinitely differentiable functions
with a compact support; we denote it as C∞

0 (Rn). It is dense,

C∞
0 (Rn) = S(Rn) , (1.1)

with respect to the topology of S(Rn) (Problem 44).

1.5 Banach spaces and operators on them

A normed space which is complete with respect to the norm–induced metrics is called
a Banach space. We have already met some frequently used Banach spaces —
see Example 1.2.1 and Problem 23. In view of Problem 21, any finite–dimensional
normed space is complete; in the general case we have the following completeness
criterion, the proof of which is left to the reader (see also Example 1.5.3b below).

1.5.1 Theorem: A normed space V is complete iff to any sequence {xn} ⊂ V
such that

∑∞
n=1 ‖xn‖ < ∞ there is an x ∈ V such that x = limn→∞

∑n
k=1 xk (or

in short, iff any absolutely summable sequence is summable).

Given a noncomplete norm space, we can always extend it to a Banach space by
the standard completion procedure (Problem 46). A set M in a Banach space X
is called total if Mlin = X . Such a set is a basis if M is linearly independent and
dimX < ∞, while an infinite–dimensional space can contain linearly independent
total sets, which are not Hamel bases of X (cf. the notes to Section 1.1).

1.5.2 Lemma: (a) If M is total in a Banach space X , then any set N ⊂ X dense
in M is total in X .

(b) A Banach space which contains a countable total set is separable.
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Proof: Part (a) follows from the appropriate definitions. Suppose that M =
{x1, x2, . . .} is total in X and Crat is the countable set of complex numbers with ra-
tional real and imaginary parts; then the set L := {

∑n
j=1 γjxj : γj ∈ Crat, n <∞}

is countable. Since Crat is dense in C, we get L = X .

1.5.3 Examples: (a) The set P(a, b) of all complex polynomials on (a, b) is an
infinite–dimensional subspace in C[a, b] := C([a, b]). By the Weierstrass theo-
rem, any f ∈ C[a, b] can be approximated by a uniformly convergent sequence
of polynomials; hence C[a, b] is a complete envelope of (P(a, b), ‖ · ‖∞). The
set {xk : k = 0, 1, . . . } is total in C[a, b], which is therefore separable.

(b) Consider the sequences Ek := {δjk}∞j=1 in �p, p ≥ 1. For a given X := {ξj} ∈
�p, the sums Xn :=

∑n
j=1 ξjEj are nothing else than truncated sequences, so

limn→∞ ‖X−Xn‖p = 0. Hence {Ek : k = 1, 2 . . .} is a countable total set and
�p is separable. Notice also that the sequence {ξjEj}∞j=1 is summable but it
may not be absolutely summable for p > 1.

(c) Consider next the space Lp(Rn, dµ) with an arbitrary Borel measure µ on
R

n. We use the notation of Appendix A. In particular, J n is the family of all
bounded intervals in R

n ; then we define S(n) := {χJ : J ∈ J n}. It is a subset
in Lp and the elements of its linear envelope are called step functions; we can
check that S(n) is total in Lp(Rn, dµ) (Problem 47). Combining this result
with Lemma 1.5.2 we see that the subspace C∞

0 (Rn) is dense in Lp(Rn, dµ); in
particular, for the Lebesgue measure on R

n the inclusions C∞
0 (Rn) ⊂ S(Rn) ⊂

Lp(Rn) yield

(C∞
0 (Rn))p = (S(Rn))p = Lp(Rn) . (1.2)

(d) Given a topological space (X, τ) we call C∞(X) the set of all continuous
functions on X with the following property: for any ε > 0 there is a compact
set K ⊂ X such that |f(x)| < ε outside K. It is not difficult to check that
C∞(X) is a closed subspace in C(X) and C0(X) = C∞(X), where C0(X)
is the set of continuous functions with compact support (Problem 48). In the
particular case X = R

n, C∞
0 (Rn) is dense in C∞(Rn) (see the notes), so

(C∞
0 (Rn))∞ = (S(Rn))∞ = C∞(Rn) . (1.3)

There are various ways in, which it is possible to construct new Banach spaces
from given ones. We mention two of them (see also Problem 49):

(i) Let {Xj : j = 1, 2, . . .} be a countable family of Banach spaces. We denote
by X the set of all sequences x := {xj} , xj ∈ Xj, such that

∑
j ‖xj‖j <∞ ,

and equip it with the “componentwise” defined summation and scalar mul-
tiplication. The norm ‖X‖⊕ :=

∑
j ‖xj‖j turns it into a Banach space; the

completeness can be checked as for �p (Problem 23). The space (X , ‖ · ‖⊕) is
called the direct sum of the spaces Xj , j = 1, 2, . . ., and denoted as

∑⊕
j Xj.
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(ii) Starting from the same family {Xj : j = 1, 2, . . .}, one can define another
Banach space (which is sometimes also referred to as a direct sum) if we change
the above norm to ‖X‖∞ := supj ‖xj‖j replacing, of course, X by the set of
sequences for which ‖X‖∞ < ∞. The two Banach spaces are different unless
the family {Xj} is finite; the present construction can easily be adapted to
families of any cardinality.

A map B : V1 → V2 between two normed spaces is called an operator; in
particular, it is called a linear operator if it is linear. In this case we conventionally
do not use parentheses and write the image of a vector x ∈ V1 as Bx. In this book
we shall deal almost exclusively with linear operators, and therefore the adjective
will usually be dropped. A linear operator B : V1 → V2 is said to be bounded if
there is a positive c such that ‖Bx‖2 ≤ c‖x‖1 for all x ∈ V1; the set of all such
operators is denoted as B(V1, V2) or simply B(V ) if V1 = V2 := V . One of the
elementary properties of linear operators is the equivalence between continuity and
boundedness (Problem 50).

The set B(V1, V2) becomes a vector space if we define on it summation and
scalar multiplication by (αB + C)x := αBx + Cx. Furthermore, we can associate
with every B ∈ B(V1, V2) the non–negative number

‖B‖ := sup
S1

‖Bx‖2 ,

where S1 := {x ∈ V1 : ‖x‖1 = 1 } is the unit sphere in V1 (see also Problem 51).

1.5.4 Proposition: The map B �→ ‖B‖ is a norm on B(V1, V2). If V2 is complete,
the same is true for B(V1, V2), i.e., it is a Banach space.

Proof: The first assertion is elementary. Let {Bn} be a Cauchy sequence in B(V1, V2);
then for all n, m large enough we have ‖Bn−Bm‖ < ε, and therefore ‖Bnx−Bmx‖2 ≤
ε‖x‖1 for any x ∈ V1. As a Cauchy sequence in V2, {Bnx} converges to some
B(x) ∈ V2. The linearity of the operators Bn implies that x �→ Bx is linear,
B(x) = Bx. The limit m→∞ in the last inequality gives ‖Bx−Bnx‖2 ≤ ε‖x‖1, so
B ∈ B(V1, V2) by the triangle inequality, and ‖B−Bn‖ ≤ ε for all n large enough.

The norm on B(V1, V2) introduced above is called the operator norm. It has an
additional property: if C : V1 → V2 and B : V2 → V3 are bounded operators, and
BC is the operator product understood as the composite mapping V1 → V3, we have
‖B(Cx)‖3 ≤ ‖B‖ ‖Cx‖2 ≤ ‖B‖ ‖C‖ ‖x‖1 for all x ∈ V1, so BC is also bounded
and

‖BC‖ ≤ ‖B‖ ‖C‖ . (1.4)

Let V1 be a subspace of a normed space Ṽ1. An operator B : V1 → V2 is called
a restriction of B̃ : Ṽ1 → V2 to the subspace V1 if Bx = B̃x holds for all x ∈ V1,
and on the other hand, B̃ is said to be an extension of B; we write B = B̃ |\ V1 or
B ⊂ B̃. Another simple property of bounded operators is that they can be extended
uniquely by continuity.


