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Preface

Composite materials are heterogeneous by nature, and are intended to be,
since only the combination of different constituent materials can give them
the desired combination of low weight, stiffness and strength. At present, the
knowledge has advanced to a level that materials can be tailored to exhibit
certain, required properties. At the same time, the fact that these materials
are composed of various, sometimes very different constituents, make their
mechanical behaviour complex. This observation holds with respect to the
deformation behaviour, but especially with respect to the failure behaviour,
where complicated and unconventional failure modes have been observed.

It is a challenge to develop predictive methods that can capture this complex
mechanical behaviour, either using analytical tools, or using numerical meth-
ods, the finite element method being the most widespread among the latter.
In this respect, developments have gone fast over the past decade. Indeed, we
have seen a paradigm shift in computational approaches to (composite) mate-
rial behaviour. Where only a decade ago it was still customary to carry out
analyses of deformation and failure at a macroscopic level of observation only
– one may call this a phenomenological approach – nowadays this approach is
being progressively replaced by multiscale methods. In such methods it is rec-
ognized a priori that the overall behaviour is highly dependent on local details
and flaws. For instance, local imperfections in spacing and direction of fibres
can be detrimental to the overall bearing capacity of a structure that is com-
posed of such a fibre-reinforced composite material. By upscaling, homoge-
nization or methods that in a single calculation take into account the behaviour
at different scales, an attempt is made to design numerical methods that have
a wider range of applicability – by less reliance on adhoc assumptions – and
are better rooted in the true physical behaviour of the constituent materials.
Yet, few monographs have been published that present an account of recent
developments in the analytical/numerical modelling of composite materials.

This volume – which has grown out of a series of lectures that has been given
at Lublin University of Technology within the framework of the European
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Community Marie-Curie Transfer-of-Knowledge project Modern Composite
Materials Applied in Aerospace, Civil and Sanitary Engineering: Theoretical
Modelling and Experimental Verification (contract MTKD-CT-2004-014058)
– aims to fill this gap. It starts by a comprehensive account of methods that
can be used at macroscopic level, followed by a précis of recent developments
in modelling the failure behaviour of composites at a mesoscopic scale. Going
down further, the third chapter treats fundamental concepts in micromechanics
of composite materials, including the essential concept of the Representative
Volume Element and Eshelby’s method. As recognized widely, failure is sel-
dom a consequence of pure mechanical loadings. Often, thermal effects and
long-term effects for instance due to hygric or chemical actions play an impor-
tant role as well. For this reason the ensuing two chapters are devoted to ther-
mal shocks and the numerical treatment of diffusion phenomena in addition to
mechanical loadings when describing failure in heterogeneous materials. The
volume is completed by a review of fracture mechanics tools for use in the
analysis of failure in composite materials.

Eindhoven and Lublin,
René de Borst and Tomasz Sadowski
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ANALYSIS OF HOMOGENEOUS AND
NON-HOMOGENEOUS PLATES

Holm Altenbach
Lehrstuhl für Technische Mechanik

Zentrum für Ingenieurwissenschaften

Martin-Luther-Universität Halle-Wittenberg

D-06099 Halle (Saale)

Germany

holm.altenbach@iw.uni-halle.de

Abstract Plate theory is an old branch of solid mechanics – the first development of a
general plate theory was made by Kirchhoff more than 150 years ago. After
that many improvements were suggested; at the same time some research was
focussed on the establishment of a consistent plate theory. Plate-like structural
elements are widely used in classical application fields like mechanical and civil
engineering, but also in some new fields (electronics, medicine among others).
This paper gives a brief overview of the main theoretical directions in the theory
of elastic plates. Additional information is available in the literature.

Keywords: structural analysis, plates, homogeneous and non-homogeneous cross-sections

1. Classification of structural models

Plates are structural elements with applications in various branches. The
reason for this is that plates combine high bearing capacities with low weight
(excellent specific stiffness properties). Modern plate structures are made from
different materials – it is common to use classical structural materials like
steel or concrete, but also modern composite materials like laminates. Increas-
ing safety requirements dictate necessity of improving the analysis of plates.
Since all commercial Finite Element codes allowing their analysis have special
plate elements, but the manuals do give not enough theoretical background, an
overview of the modeling approaches in the plate theory will be given.

R. de Borst and T. Sadowski (eds.) Lecture Notes on Composite Materials – Current Topics and
Achievements

c© Springer Science+Business Media B.V. 2008



2 H. Altenbach

1.1 Introductional remarks

The basic problems in engineering mechanics are the analysis of strength,
vibration behavior and stability of structures with the help of structural models.
Structural models can be classified, for example, by their

Geometrical (spatial) dimensions

Applied loads

Kinematical and/or statical hypotheses approximating the behavior

A complex structure can be built up of many individual structural elements;
the behavior of the whole structure includes the interaction of all parts.

Let us introduce three basic classes of structural elements. The first one
is the class of three-dimensional structural elements which can be defined as
follows:

A three-dimensional structural element has three spatial dimensions of the same
order; there is no predominant dimension.

Typical examples of geometrically simple, compact structural elements in
the theory of elasticity are shown in Fig. 1.

The second is the class of two-dimensional structural elements which can
be defined as follows:

If two spatial dimensions have the same order, and the third, which is related to
the thickness, is much smaller, one has a two-dimensional structural element.

Typical examples of two-dimensional structural elements in civil engineer-
ing/structural mechanics are shown in Fig. 2.

The last class is related to one-dimensional structural elements which can
be defined as follows:

Two spatial dimensions, which can be related to the cross-section, have the same
order. The third dimension, which is related to the length of the structural ele-
ment, has a much larger order in comparison with the cross-section dimension
orders.

Cube Prisma Cylinder Sphere

Figure 1. Examples of simple three-dimensional structural elements
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Disc Plate Shell Folded structure

Figure 2. Examples of simple two-dimensional structural elements

Truss Beam Torsion beam

Figure 3. Examples of simple one-dimensional structural elements

Typical examples in engineering mechanics are shown in Fig. 3.
It is possible to introduce other classes. For example, in shipbuilding, thin-

walled structural elements are often used. These are thin-walled light-weight
structures with a special profile, and they require an extension of the classical
one-dimensional structural models:

If the spatial dimensions are of significantly different order and the thickness of
the profile is small in comparison to the other cross-section dimensions, and the
cross-section dimensions are much smaller in comparison to the length of the
structure one can introduce quasi-onedimensional structural elements.

Suitable theories for the analysis of quasi-onedimensional structural elements
are:

Thin-walled beam theory (Vlasov-Theory; Vlasov, 1958) and

Semi-membrane theory or generalized beam theory (Altenbach et al.,
1994)

Typical thin-walled cross-section profiles are shown in Fig. 4.

1.2 Two-dimensional structures – definition, applications,
some basic references

Let us introduce the definition of a two-dimensional structure:

A two-dimensional load-bearing structural element is a model for analysis in
Engineering/Structural Mechanics, having two geometrical dimensions which
are of the same order and which are significantly larger in comparison with the
third (thickness) direction.
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Closed cross-section profiles

Open cross-section profiles

Open-closed cross-section profiles

Figure 4. Various profiles of thin-walled structures

This definition does not contain any restriction on the type of loading (in-
plane, transverse, etc.). In addition, the thinness hypotheses (see, e.g., Başar
and Krätzig, 1985) is not specified.

The mathematical consequence is obvious: instead of a three-dimensional
problem, which is represented by a system of coupled partial differential
equations with respect to three spatial coordinates, one can analyze a two-
dimensional problem, which is described by a system of coupled partial
differential equations with respect to two spatial coordinates. The two coor-
dinates represent a surface; the behavior in the thickness direction is approxi-
mated mostly by use of engineering assumptions. The transition from a three-
dimensional to a two-dimensional problem is non-trivial, but the solution ef-
fort decreases significantly and the possibility of solving problems analytically
increases.

Two-dimensional structures have many applications in various branches:
thin homogeneous plates, thin inhomogeneous plates (laminates, sandwiches),
plates with structural anisotropy, moderately thick homogeneous plates, folded
plates, membranes, biological membranes, etc. The main industrial branches
for plate applications are aeronautics and aircraft industries, automotive in-
dustries, shipbuilding industries, vehicle systems, civil engineering, medicine,
. . . .

During the last few years many scientific papers, textbooks, monographs and
proceedings about the state of the art and recent developments in plate theory
have been published. Some of the most important publications are listed here
without comment.
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Review articles: Naghdi, 1972; Grigolyuk and Kogan, 1972; Grigolyuk
and Seleznev, 1973; Reissner, 1985; Noor and Burton, 1989a,b; Noor
and Burton, 1990a,b; Reddy, 1990; Irschik, 1993; Burton and Noor,
1995; Noor et al., 1996

Monographs and textbooks: Panc, 1975; Ka̧czkowski, 1980; Girkmann,
1986; Timoshenko and Woinowsky Krieger, 1985; Ambarcumyan, 1987;
Gould, 1988; Reddy, 1996; Altenbach et al., 1998; Woźniak, 2001;
Zhilin, 2007

Actual conferences like EUROMECH 444 (Kienzler et al., 2004), Shell
Structures Theory & Applications (Pietraszkiewicz and Szymczak, 2005),
IUTAM Symposium Relation of Shell, Plate, Beam and 3D Models
(Jaiani and Podio-Guidugli, 2008)

1.3 Formulation principles, historical remarks

The plate equations can be deduced as follows (Altenbach, 2000b; Wunder-
lich, 1973):

Starting from a 3D continuum and

Starting from a 2D continuum

If one starts from the 3D continuum there are two possibilities:

The use of hypotheses to approximate the three-dimensional equations
and

The use of mathematical approaches (series expansions, special func-
tions, etc.) to develop a set of two-dimensional equations

All these methods have advantages and disadvantages and it is difficult to say
in advance which is the best method for derivating the governing equations. In
addition, it can often be shown that different methods lead to identical sets of
equations.

Engineers prefer theories which are based on hypotheses. For example, there
are many theories which are based on displacement approximations. Let us
consider the plate geometry as shown on Fig. 5. The three displacements ui in
the classical three-dimensional continuum are now split into in-plane displace-
ments uα and the deflection w. The first theory of plates based on displacement
assumptions, was presented by Kirchhoff, 1850. The modern form of the ba-
sic assumptions, which can be used for homogeneous and non-homogeneous
plates, is

u1(x1, x2, z) ≈ u0
1(x1, x2) − zw,1(x1, x2),

u2(x1, x2, z) ≈ u0
2(x1, x2) − zw,2(x1, x2), (1)

w(x1, x2, z) ≈ w(x1, x2)
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x2, u2
x1, u1

z, w

h

ui = (uα, w)

α, β = 1, 2
i = 1, 2, 3

Figure 5. Plate geometry and displacements

or using the Einstein’s summation convention

uα(xβ , z) ≈ u0
α(xβ) − zw,α(xβ), w(xβ , z) ≈ w(xβ), (2)

where uα(xβ , z) are the three-dimensional displacements, u0
α(xβ) are the dis-

placements of the reference surface (usually this surface is assumed to be the
mid-plane) and w(xβ , z) are the three-dimensional deflections which are ap-
proximately equal to the two-dimensional deflections w(xβ). (. . .),α denotes
the derivative with respect to the in-plane coordinates xα.

Approximately 100 years later this theory was improved (see, for example,
Hencky, 1947; Mindlin, 1951)

uα(xβ , z) ≈ u0
α(xβ) + zϕα(xβ), w(xβ , z) ≈ w(xβ) (3)

In this equations ϕα(xβ) are the cross-section rotations. Comparing both ap-
proaches, one can see that the improvement was realized by introducing ad-
ditional degrees of freedom. Calculating the strains as usual in the theory of
elasticity, one gets

Neither theory takes into account the thickness changes and

The Kirchhoff theory leads to zero transverse shear, while the improved
theory considers transverse shear in an approximate sense

The introduction of independent rotations is in some cases not enough, since
it is assumed that any cross-section will be plane before and after deformation.
For example, for plates made from rubber-like materials, the assumption of
plane cross-section is not valid. A weaker assumption was proposed by Levin-
son (1980) and Reddy (1984) among others

uα(xβ, z) ≈ u0
α(xβ) − [w,α(xβ) + ϕα(xβ)]

4z3

3h2
, w(xβ , z) ≈ w(xβ)

(4)
The latter representation and the Kirchhoff or Mindlin plate equations can be
discussed from the point of view of introducing additional degrees of freedom.
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On the other hand all equations of this type can be understood as some part of
a power series. The first suggestion of this type was made by Lo et al., 1977a.
Some kind of generalization of the power series approach was given in Meenen
and Altenbach, 2001

uα(xβ, z) =
K1∑

q=0

uq
α(xβ)φq(z) +

K2∑

q=0

wq
,α(xβ)ψq(z),

w(xβ , z) =
K2∑

q=0

w(xβ)qχq(z)

(5)

The disadvantage of this approach is that, with an increasing number of terms
in the series the physical interpretation of all terms is impossible.

In addition, the method of hypotheses for the stress and/or the strain (dis-
placement) states was applied in Reissner (1944, 1945, 1947), Bollé (1974a,b)
and Kromm (1953). It is easy to show that, for example, Mindlin’s and Reiss-
ner’s theories containpartly identical equations,but the coefficients differ slightly,
and the interpretations are not the same.

Purely mathematical approaches are mostly based on power series, trigono-
metric functions, or special functions, etc. (see, e.g., Lo et al., 1977a,b;
Kienzler, 1982; Preußer, 1984; Touratier, 1991). The mathematical approaches
are very helpful if one wants to check the accuracy of the given approxima-
tion. A nice comparison of the different approximations in the series approach
is given in Kienzler (2002).

The direct approach is based on the a priori introduction of an two-
dimensional deformable surface. This approach was applied by Günther
(1961), Green et al. (1965), Naghdi (1972), Rothert (1973), Zhilin (1976,
1982), Palmow and Altenbach (1982), Robin (2000), etc. This approach is
still under discussion since the application is not trivial; but the direct theories
are mathematically and physically so strong and as exact as three-dimensional
continuum mechanics.

2. Classical plate theories

Below, we discuss some aspects of classical plate theories. Classical plate
theories are theories based on hypotheses and which are mostly used in engi-
neering practice.

2.1 Small deflections

In contrast to other classifications, here we first discussing two types of mod-
els: small and large deflection models. There are two basic theories used in
practice: the Kirchhoff and the Mindlin theories. In the simplest case, both are
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Kinematical hypotheses
h/min(lx, ly) < 0.1, w/h < 0.2

εz ≈ 0
γxz, γyz ≈ 0

τxy

x

y z

lx

h

hly

σx, σy τxz, τyz
nnn

nnn

Stress distribution

Normal stresses σx, σy and
shear stress τxy linear over h,
τxz, τyz parabolic

Figure 6. Kirchhoff plate – basic assumptions

restricted to small deflections (that means less than 0.2 of the plate thickness).
The basic assumptions of Kirchhoff plate theory are shown in Fig. 6. They can
be summarized as follows: no thickness changes, no transverse shear, linear
distributions of the in-plane stresses, and parabolic distribution of the trans-
verse shear stresses. The model can be applied to plates made of classical
isotropic materials, and for small deflections; it is assumed that any cross-
section it must be plane and orthogonal to the mid-plane before and after de-
formation.

Since the Kirchhoff model omits transverse shear, the Mindlin model is a
suitable improvement. Now the assumption of plane cross-sections before and
after deformation holds valid, but the cross-sections are no longer orthogonal
after deformation. This assumption leads to additional degrees of freedom –
two independent rotations. The basic assumptions of the Mindlin plate theory
are shown in Fig. 7. They can be summarized as follows: no thickness changes,
constant transverse shear, linear distributions of in-plane stresses, and constant
distribution of the transverse shear stresses. The model can be applied to plates
made of composite materials (e.g. sandwiches) and to relatively thick plates.
The Mindlin theory is a transverse shear deformable theory.

2.2 Large deflections

For large deformations, we have two special cases which are important for
engineering praxis: the membrane model and the von Kármán model. The basic
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Kinematical hypotheses
h/min(lx, ly) < 0.2, w/h < 0.2

εz ≈ 0

γxz, γyz ≈ const

τxy

x

y z

lx

h

hly

σx, σy τxz, τyz

nnn

�= nnn

Stress distribution

Normal stress σx, σy and
shear stress τxy

linear over h
τxz, τyz constant over h

Figure 7. Mindlin plate – basic assumptions

assumptions for the first are given in Fig. 8; there are no changes across the
thickness. This model cannot describe shear stresses. Note that the membrane
model is a specific structural model, since we assume a similar behavior under
tension and compression. In practice a membrane is unable to respond com-
pression.

Another way to describe large deflections is through the von Kármán model.
The basic assumptions are shown in Fig. 9. The von Kármán plate theory was
introduced as a engineering theory. The possibility of deducing the basic equa-
tions from the three-dimensional non-linear continuum mechanics is still under
discussion, see, e.g., Ciarlet, 1990. A possible solution is given in Meenen and
Altenbach, 2001.

2.3 Kirchhoff plate

Let us discuss briefly some basic features of the classical theories. As we
mentioned earlier the first set of equations was given within the framework
of the Kirchhoff plate theory. The possible loading cases in plate theory are
shown in Fig. 10. The basic kinematic relations of the Kirchhoff plate are illus-
trated in Fig. 11. In the Mindlin theory, the rotations are independent entities;
in Kirchhoff theory they are derivatives of the deflection, and so have simple
geometrical interpretation.
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No shear stresses!

x

y
z

lx

h

h

ly

σx, σy

(tension stresses)

Stress distribution
Assumptions
h� min(lx, ly), w/h ≥ 0.5
τxy, τxz, τyz, σz ≈ 0

Figure 8. Membrane – basic assumptions

Stress distribution

h

h

h

τxyσx, σy

shear rigid model
τxz, τyz

shear deformable model
τxz, τyz

Assumptions
h/min(lx, ly) < 0.1,
0.2 < w/h < 5

shear rigid
εz, γxz, γyz ≈ 0

shear deformable
εz ≈ 0, γxz, γyz ≈ const

Figure 9. Von Kármán plate – basic assumptions
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x1, u1

u 2
, x

2 x3, w

l1

l2

h
Plate midsurfaceSingle load

Edge moment

Line load
Edge force

Surface load

Figure 10. Loading of a plate

x1

x2

x3

dx1

dx1

dx2

dx2

x3

x3

x3

x3

x3

x3

h

h

x1, u1

x3x3

w(x1, x2)w(x1, x2)

ϕ1 ≈ ∂w

∂x1
ϕ2 ≈ ∂w

∂x2

u1(x1, x2, x3) u2(x1, x2, x3)

x2, u2

Undeformed state

w(x1, x2)
Deformed state

l2

l1

Figure 11. Kinematics of the Kirchhoff plate

In addition, in plate theory stress resultants are used instead of stresses. Such
resultants are known from the strength of materials. For the Kirchhoff plate
there are bending and torque moments and shear forces. They are shown in
Fig. 12 for the equilibrium state.

The formulation of the boundary conditions for the Kirchhoff plate is non-
trivial and widely discussed in the literature, see Altenbach et al. (1998) among
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Figure 12. Stress resultants of the Kirchhoff plate

others. The reason for this is that the deflections of the Kirchhoff plate are de-
scribed by partial differential equation of the fourth order, but in the general
case one has to prescribe three boundary conditions at each edge. This prob-
lem is better solved in the framework of the Mindlin or Reissner theory (both
are based on sixth order equation for the deflection). In addition, the Kirchhoff
theory is characterized by a special description of the edge and corner forces.

Let us summarize the basic equations of the Kirchhoff theory for a rectangu-
lar plate with constant bending stiffness K (Δ is the two-dimensional Laplace
operator)

Bending equation for simply supported plate

KΔΔw(x1, x2) = q(x1, x2)

Bending equation for elastically supported plate

KΔΔw(x1, x2) = q(x1, x2) − cw(x1, x2)

Bending vibration equation for simply supported plate

KΔΔw(x1, x2, t) + ρhẅ(x1, x2, t) = q(x1, x2, t)

Bending vibration equation for elastically supported plate

KΔΔw(x1, x2, t) + ρhẅ(x1, x2, t) = q(x1, x2, t) − cw(x1, x2, t)

In these equations ρ, h, q, c are the density of the plate material, the plate
thickness, the distributed external transverse load and the Winkler foundation
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property, respectively. The dot denotes the time derivative. The bending stiff-
ness can be calculated in the simplest case of constant thickness and elastic
properties as K = Eh3/12(1 − ν2) with E as the Young’s modulus and ν
as the Poisson ratio. As shown in Altenbach et al. (1996) and Altenbach et al.
(2004) this approach can be easily extended to laminates (Classical Laminate
Theory).

2.4 Mindlin plate

The kinematics of the Mindlin plate differ from the Kirchoff kinematics:
now two additional rotational degrees of freedom are introduced (Fig. 13). The
basic equations of the Mindlin theory can be presented as follows:

GhS(Δw + Φ) + q = ρhẅ,

K

2
[(1 − ν)Δψ1 + (1 + ν)Φ,1] −GhS(ψ1 + w,1) =

ρh3

12
ψ̈1,

K

2
[(1 − ν)Δψ2 + (1 + ν)Φ,2] −GhS(ψ2 + w,2) =

ρh3

12
ψ̈2

Here the abbreviation ψ1,1 + ψ2,2 = Φ is used. In addition, G is the shear
modulus and hS is the corrected plate thickness (see, e.g., Altenbach et al.,

x1 x2

x3x3

ψ1

ψ1

ψ2

ψ2

w

−w,1

−w,2

x1, u1

x2, u2

x3, w

Figure 13. Kinematics of the Mindlin plate


