Smallholder Tree Growing for Rural Development and Environmental Services

Lessons from Asia

Advances in Agroforestry

Volume 5

Series Editor: P.K.R. Nair School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, U.S.A.

Aims and Scope

Agroforestry, the purposeful growing of trees and crops in interacting combinations, began to attain prominence in the late 1970s, when the international scientific community embraced its potentials in the tropics and recognized it as a practice in search of science. During the 1990s, the relevance of agroforestry for solving problems related to deterioration of family farms, increased soil erosion, surface and ground water pollution, and decreased biodiversity was recognized in the industrialized nations too. Thus, agroforestry is now receiving increasing attention as a sustainable land-management option the world over because of its ecological, economic, and social attributes. Consequently, the knowledge-base of agroforestry is being expanded at a rapid rate as illustrated by the increasing number and quality of scientific publications of various forms on different aspects of agroforestry.

Making full and efficient use of this upsurge in scientific agroforestry is both a challenge and an opportunity to the agroforestry scientific community. In order to help prepare themselves better for facing the challenge and seizing the opportunity, agoroforestry scientists need access to synthesized information on multi-dimensional aspects of scientific agroforesty.

The aim of this new book-series, *Advances in Agroforestry*, is to offer state-of-the art synthesis of research results and evaluations relating to different aspects of agroforestry. Its scope is broad enough to encompass any and all aspects of agroforestry research and development. Contributions are welcome as well as solicited from competent authors on any aspect of agroforestry. Volumes in the series will consist of reference books, subject-specific monographs, peer-reviewed publications out of conferences, comprehensive evaluations of specific projects, and other book-length compilations of scientific and professional merit and relevance to the science and practice of agroforestry worldwide.

For other titles published in this series, go to www.springer.com/series/6904

Denyse J. Snelder • Rodel D. Lasco Editors

Smallholder Tree Growing for Rural Development and Environmental Services

Lessons from Asia

Editors Denyse J. Snelder Institute of Environmental Sciences (CML) Leiden University Leiden The Netherlands

Rodel D. Lasco World Agroforestry Centre (ICRAF) Country Office Philippines Laguna The Philippines

ISBN: 978-1-4020-8260-3 e-ISBN: 978-1-4020-8261-0

Library of Congress Control Number: 2008928847

© 2008 Springer Science + Business Media B.V.

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

987654321

springer.com

Foreword

Tree planting has always been considered a noble and respectable activity. In most places around the world, many ceremonious occasions are marked by planting trees to commemorate the event. There is hardly anyone who is famous - from royalty to politicians and movie stars to business tycoons - who has not planted a tree! But, for millennia, ordinary people have been planting trees as part of their routine chores without any external prodding and prompting and, of course, without the accompaniment of the paparazzi and publicity frenzy of the "dignitary tree-planting." Government-sponsored tree planting efforts such as large-scale reforestation and afforestation programs have been the main activity of modern forestry in many parts of the developing world during the past few decades. However, it is not unlikely that the trees planted successfully by ordinary peasant farmers in their (often small) landholdings in the tropics have far outnumbered those planted under such government-sponsored programs. Yet, tree-growing by small holder farmers has received relatively little attention from the scientific and development communities, and is often not even recognized by forestry departments. Any effort in recognizing and encouraging such smallholder tree planting is commendable; for that reason, the publication of this book is very timely and significant.

It is quite appropriate that the book draws from the experience in Asia. Asia is the cradle of agroforestry. The Asian experience of traditional agroforestry systems from shifting cultivation and taungya to homegardens and multistrata systems has paved the way for most of the recent agroforestry innovations and improvements. This book is no exception to this general trend. Presenting a series of case-study papers on tree growing in forest-deprived areas of the Philippines, the book compares the Philippines experience with similar experience in other Asian countries. This comparative analysis then leads to the conclusion that tree growing by smallholder farmers has the potential to play a significant role in sustainable land management. Coming as it does at a time when much of the existing literature about smallholder tree planting is somewhat dated, the new experiences, analyses, and discussions presented in the book are relevant and timely to most other developing countries.

Considering the enormous amount of patient work and persistent efforts needed in bringing out such a multi-authored volume, the editors of the book deserve highest appreciation. I congratulate the editors and all chapter authors on their splendid accomplishment in providing such a valuable contribution to agroforestry literature.

January 2008 Gainesville, Florida, USA P. K. Ramachandran Nair Distinguished Professor, University of Florida (Editor, *Advances in Agroforestry* Book-Series)

Acknowledgements

The book is based partly on an international seminar titled Tree Growing in Agricultural Landscapes: Smallholder Tree Growing for Sustainable Rural Development and Environmental Conservation and Rehabilitation held in Cabagan, the Philippines, in April 2005. The seminar was hosted by Isabela State University Cabagan Campus and co-organized by the Cagayan Valley Programme on Environment and Development (CVPED: a joint undertaking of Leiden University (CML) in the Netherlands and Isabela State University (ISU) in the Philippines) and the World Agroforestry Center Liaison office in the Philippines (ICRAF-Philippines). The seminar took place within the framework of the Junior Expert Program, i.e., an extension of the CVPED within the fields of agroforestry and indigenous people, funded by the Ministry of Foreign Affairs in the Netherlands. This book would not have been possible without the assistance and contribution of the staff of the CVPED and Isabela State University. Thanks go out to all reviewers of the various chapters in this book. We finally would like to express our appreciation to Dr. P.K.R. Nair and Dr. J. Roshetko for their valuable comments on an earlier manuscript and to Nicholas Tubbs for his meticulous work editing this manuscript.

Contents

Fo	preword	v
A	cknowledgements	vii
Co	ontributors	xiii
Cl	hapter Reviewers	xvii
Li	st of Acronyms	xix
Pa	art I Smallholder Tree Growing: Introduction	
1	Smallholder Tree Growing in South and Southeast Asia D.J. Snelder and R.D. Lasco	3
Pa	art II Smallholder Tree Growing for Rural Development: Practices and Adoption	
2	Smallholder Tree Growing in Philippine Back Yards:Homegarden Characteristics in DifferentEnvironmental SettingsD.J. Snelder	37
3	Tree Growing on Farms in Northeast Luzon (The Philippines): Smallholders' Motivations and Other Determinants for Adopting Agroforestry Systems S.H.G. Schuren and D.J. Snelder	75
4	Dudukuhan Tree Farming Systems in West Java:How to Mobilize Self-Strengthening of Community-BasedForest Management?G.E.S. Manurung, J.M. Roshetko, S. Budidarsono, and I. Kurniawan	99

Contents

5	The Adoption of Smallholder Rubber Productionby Shifting Cultivators in Northern Laos:A Village Case StudyVongpaphane Manivong and R.A. Cramb	117
6	Agroforestation of Grasslands in Southeast Asia: WaNuLCAS Model Scenarios for Shade-Based <i>Imperata</i> Control During Tree Establishment M. Van Noordwijk, N. Khasanah, K. Hairiah, D. Suprayogo, D. Macandog, B. Lusiana, and G. Cadisch	139
Part	III Smallholder Tree Growing for the Market: Economics, Policies and Institutes	
7	Over-Regulated and Under-Marketed: Smallholders and the Wood Economy in Isabela, The Philippines	163
8	Can Smallholder Tree Farmers Help Revive the Timber Industry in Deforested Tropical Countries? A Case Study from Southern Philippines	177
9	The Reforestation Value Chain for the Philippines R.D. Lasco	193
10	The Potential of Sustainable Forestry Certification for Smallholder Tree Growing H.A. Udo de Haes, D.J. Snelder, and G.R. de Snoo	207
11	Exploring the Agroforestry Adoption Gap: Financial and Socioeconomics of Litchi-Based Agroforestry by Smallholders in Rajshahi (Bangladesh) S.A. Rahman, W.T. de Groot, and D.J. Snelder	227
12	Growing 'The Wood of the Gods': Agarwood Production in Southeast Asia G.A. Persoon	245
13	Local Vulnerability, Project Risk, and Intractable Debt: The Politics of Smallholder Eucalyptus Promotion in Salavane Province, Southern Laos K. Barney	263

Contents

Part	t IV	Smallholder Tree Growing for Environmental Services: Practices and Potentials	
14	Imp of E Use C.D	roving Productivity, Profitability and Sustainability Degraded Grasslands Through Tree-Based Land Systems in the Philippines	289
15	Res Tre E.L	toration of Philippine Native Forest by Smallholder e Farmers Tolentino, Jr.	319
16	Hur in C The M.	nan-Altered Tree-Based Habitats and Their Value Conserving Bird and Bat Diversity in Northeast Luzon, Philippines	347
17	From Pay R. L	m Principles to Numbers: Approaches in Implementing ments for Environmental Services (PES) in the Philippines asco, G. Villamor, F. Pulhin, D. Catacutan, and M. Bertomeu	379
18	Valu Car E. S	tes and Services of Nitrogen-Fixing Alder Based damom Agroforestry Systems in the Eastern Himalayas harma, R. Sharma, G. Sharma, S.C. Rai, P. Sharma, and N. Chettri	393
19	Perc for M.	ceptions of Ethnic Minorities on Tree Growing Environmental Services in Thailand	411
Part	t V	Smallholder Tree Growing: Potentials and Challenges	
20	Far For M. ' Suy	mer Tree Planting Barriers to Sustainable est Management Van Noordwijk, J.M. Roshetko, Murniati, M.D. Angeles, anto, C. Fay, and T.P. Tomich	429
21	Fut J.M	re Challenge: A Paradigm Shift in the Forestry Sector Roshetko, D.J. Snelder, R.D. Lasco, and M. Van Noordwijk	453
Inde	ex		487

Contributors

Barney K.

Department of Geography, York University, N430 Ross Building, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3, kbarney@yorku.ca

Bertomeu M.

World Agroforestry Centre (ICRAF-Philippines), Khush Hall, IRRI, College, 4031 Laguna, The Philippines, m_bertomeu1@terra.es

Budidarsono S.

World Agroforestry Centre, ICRAF-SE Asia, P.O. Box 161, Bogor 16001, Indonesia, icraf-indonesia@cgiar.org

Cadisch G.

Institute of Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, 70593 Stuttgart, Germany, cadisch@uni-hohenheim.de

Catacutan D. World Agroforestry Centre (ICRAF-Philippines), Khush Hall, IRRI, College, 4031 Laguna, The Philippines, delia_icraf@yahoo.com

Chettri N. International Centre for Integrated Mountain Development, GPO Box 3226, Khumaltar, Lalitpur, Kathmandu, Nepal, nchettri@icimod.org.np

Cramb R.A. School of Natural and Rural Systems Management, University of Queensland, Brisbane, QLD 4072, Australia, r.cramb@uq.edu.au

De Groot W.T. Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA, Leiden, The Netherlands, degroot@cml.leidenuniv.nl

Angeles M.D.

Environmentally and Socially Sustainable Development Division, World Bank Institute, The World Bank, 1818 H Street, NW, MSN J4-400, Washington, DC 20433, USA, mdelosangeles@worldbank.org De Snoo G R Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA, Leiden. The Netherlands, snoo@cml.leidenuniv.nl Fay C. World Agroforestry Centre, ICRAF-SE Asia, P.O. Box 161, Bogor 16001, Indonesia, c.fay@cgiar.org Francisco H.A. Economy and Environment Program for Southeast Asia, IDRC Regional Office for Southeast and East Asia, 22 Cross Street #02-55, South Bridge Court, Singapore 048421, asro@idrc.org.sg Hairiah K. Brawijaya University, Faculty of Agriculture, Jl. Veteran, Malang 65145, Indonesia, Soilub@malang.wasantara.net.id Hares M. Viikki Tropical Resources Institute, Department of Forest Ecology, P.O. Box 27, 00014 University of Helsinki, Finland, minna.hares@helsinki.fi Khasanah N World Agroforestry Centre, ICRAF-SE Asia, P.O. Box 161, Bogor, Indonesia, icraf-indonesia@cgiar.org Kurniawan I. World Agroforestry Centre, ICRAF-SE Asia, P.O. Box 161, Bogor 16001, Indonesia, icraf-indonesia@cgiar.org Lasco R.D. World Agroforestry Centre (ICRAF-Philippines), Khush Hall, IRRI, College, 4031 Laguna, The Philippines, r.lasco@cgiar.org Lusiana B. World Agroforestry Centre, ICRAF-SE Asia, P.O. Box 161, Bogor, Indonesia, icraf-indonesia@cgiar.org Macandog D. Institute of Biological Science, University of the Philippines Los Baños, College, Laguna, The Philippines, macandog@pacific.net.ph Manivong V. Socio-Economic Research Unit, National Agriculture and Forestry Research Institute, P.O. Box 811, Vientiane, Lao PDR, v.manivong@nafri.org.la Manurung G.E.S. World Agroforestry Centre, ICRAF-SE Asia, P.O. Box 161, Bogor 16001, Indonesia, g.manurung@cgiar.org Masipiqueña A.B. Cagayan Valley Programme on Environment and Development (CVPED), Isabela State University, Cabagan, Garita Heights, 3328 Isabela, The Philippines, cvpedgarita@yahoo.com

Contributors

Masipiqueña M.

College of Forestry and Environmental Management (CFEM), Isabela State University, Cabagan, Garita Heights, 3328 Isabela, The Philippines, mdmasipiquena@yahoo.com

Murniati

Forest and Nature Conservation Research and Development Center (FNCRDC), Jl Gunung Batu, Bogor, Indonesia, murniati@forda.org

Persoon G.A.

Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA, Leiden, The Netherlands, persoon@cml.leidenuniv.nl

Predo C.D.

National Abaca Research Center, Leyte State University, Baybay, Leyte, The Philippines, cdpredo@yahoo.com, cpredo@gmail.com

Pulhin F.

Forest Development Centre (FDC), University of the Philippines Los Baños, Laguna 4031, The Philippines E-mail

Rahman S.A.

University of Rajshahi, Department of Anthropology, Rajshahi 6205, Bangladesh, sumonsociology@yahoo.com

Rai S.C.

Department of Geography, Delhi School of Economic, University of Delhi, Delhi-110007, India, raisc1958@rediffmail.com

Roshetko J.M.

Winrock International, 2101 River Front Drive, Little Rock, Arkansas 72202, USA and World Agroforestry Centre (ICRAF) Southeast Asia Research Programme, Jl. CIFOR, Situ Gede, Sindang Barang, Bogor 16001, Indonesia, j. roshetko@cgiar.org

Ruark G.A. National Agroforestry Center, USDA, USA, gruark@fs.fed.us

Schuren S.H.G.

Interchurch Organisation for Development Co-operation (ICCO), P.O. Box 8190, 3503 RD Utrecht, The Netherlands, susan.schuren@icco.nl

Sharma E.

International Centre for Integrated Mountain Development, GPO Box 3226, Khumaltar, Lalitpur, Kathmandu, Nepal, esharma@icimod.org

Sharma G.

Environment & Sustainable Development Programme, United Nations University, Jingumae 5-chome, Shibuya-ku, Tokyo, Japan, sharma@hq.unu.edu

Sharma P. Wet Chemistry and Microbiology Division, Test America Inc., Seattle, USA, esharma@icimod.org

Sharma R. International Centre for Integrated Mountain Development, GPO Box 3226, Khumaltar, Lalitpur, Kathmandu, Nepal, rsharma@icimod.org

Snelder D.J. ¹Department of Environment and Development, Institute of Environmental

Sciences, Leiden University, P.O. Box 9518, 2300 RA, Leiden, The Netherlands, snelder@cml.leidenuniv.nl

Suprayogo D. Faculty of Agriculture, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia, Soilub@malang.wasantara.net.id

Suyanto

World Agroforestry Centre, ICRAF-SE Asia, P.O. Box 161, Bogor 16001, Indonesia, suyanto@cgiar.org

Tukan J.C.

World Agroforestry Centre (ICRAF), Situ Gede, Sindang Barang, Bogor 16001, Indonesia, icraf-indonesia@cgiar.org

Tolentino E.L. Jr.

Silviculture & Resources Rehabilitation Division, Institute of Renewable Natural Resources, College of Forestry & Natural Resources, University of the Philippines Los Baños, College, Laguna, The Philippines, eltolentinojr@yahoo.com

Tomich T.P.

Davis Agricultural Sustainability Institute, University of California, One Shields Avenue, Davis, CA 95616-8523, USA, tptomich@ucdavis.edu

Udo de Haes H.

Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA, Leiden, The Netherlands, udodehaes@cml.leidenuniv.nl

Villamor G. World Agroforestry Centre (ICRAF-Philippines), Khush Hall, IRRI, College, 4031 Laguna, The Philippines, g.villamor@cgiar.org

Van Noordwijk, M. World Agroforestry Centre, ICRAF-SE Asia, P.O. Box 161, Bogor, Indonesia, m. vannoordwijk@cgiar.org

Van Weerd M. Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA, Leiden, The Netherlands, vanweerd@cml.leidenuniv.nl

Chapter Reviewers

Calderon M. College of Forestry and Natural Resources, University of the Philippines, Los Banos College, Laguna, The Philippines De Groot, W.T. Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands Ingle N.R. Department of Natural Resources, Cornell University, Ithaca, USA Kumar B.M. Kerala Agricultural University, Kerala, India Lasco R.D. World Agroforestry Centre (ICRAF-Philippines), Laguna, The Philippines Nair, P.K.R. University of Florida, Gainesville, USA Pollisco M. Ecosystems Research and Development Bureau, Los Banos, Laguna, The Philippines Prabhu, R. International Livestock Research Institute, Nairobi, Kenya Purnomo H. Center for International Forestry Research, Bogor, Indonesia Revilla. AJR College of Forestry and Natural Resources (retired), University of the Philipines, Los Banos College, Laguna, The Philippines Roshetko J.M. World Agroforestry Centre, ICRAF-SE Asia, Bogor, Indonesia Ros-Tonen M.A.F. University of Amsterdam, Amsterdam, The Netherlands

Sodhi N.S. National University of Singapore, Republic of Singapore

Snelder D.J. Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands

Tamis W. Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands

Udo de Haes, H. Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands

Yuliani, L. Center for International Forestry Research (CIFOR), Bogor, Indonesia

Wiersum K.F. Wageningen University, Wageningen, The Netherlands

xviii

List of Acronyms

ADB	Asian Development Bank				
AECI	Spanish Agency for International Cooperation				
ANB	Annualized Net Benefits				
ANR	Assisted Natural Regeneration				
ASB	Alternative to Slash and Burn, programme of the consulta				
	tive group for international research in agriculture				
ATFS	The American Tree Farm System				
ATSAL	Agroforestry Tree Seed Association of Lantapan				
BCA	Benefit-Cost Analysis				
BCR	Benefit-Cost Ratio				
BITO	Bakun Indigenous Tribes Organization				
BMW	Black Magic Wood				
BRASS	Bioeconomic Rubber Agroforestry Support System				
CARES	Center for Agricultural Research and Ecological Studies				
CARE Thailand	Collaborative Natural Resource Management, Thailand				
CBD	Convention on Biological Diversity				
CBFM	Community-based Forest Management				
CBFMA	Community Based Forest Management Agreement				
CBFMP	Community-Based Forest Management Program				
CDM	Clean Development Mechanism of the Kyoto Protocol				
CENRO	Community Environment and Natural Resources Office				
	of the DENR				
CEPT Agreement	ASEAN Common Effective Preferential Tariff Agreement				
CHED Program	Program of the Commission on Higher Education				
CI	Conservation International				
CIFOR	Centre for International Forestry Research				
CITES	Convention on International Trade in Endangered				
	Species of Wild Fauna and Flora				
CLT	Certificate of Land Transfer				
CML	The Institute of Environmental Sciences-Leiden University				
COE	Center of Excellence of Isabela State University-				
	College of Forestry and Environmental Management				
	under the CHED Program				
COP	Conference of the Parties				

CPPAP	The Conservation of Priority Protected Areas Project					
CSA	The Canadian Standard Association					
CSC	Certificate of Stewardship Contract					
CVPED	Cagayan Valley Programme on Environment and Deve-					
	lopment					
DA	The Department of Agriculture					
DAR	Department of Agrarian Reform					
DBH	The Diameter at Breast Height					
DBP	Development Bank Philippines					
DCF	Discounted Cash Flow					
DENR	The Department of Environment and Natural Resources,					
	the Philippines					
DENR-ERDB	Department of Environment and Natural Resources-					
	Ecosystems Research and Development Bureau					
DENR-PAWB	Department of Environment and Natural Resources-					
	Protected Area and Wildlife Bureau					
DGIS	The Directorate-General for International Cooperation					
	of the Dutch Ministry of Foreign Affairs in the Netherlands					
EAR	Energy Accumulation Ratio					
ЕСЕ	Energy Conversion Efficiency					
EEPSEA	Economy and Environment Program for Southeast Asia					
EFE	Energy Fixation Efficiency					
EMS	Environmental Management Systems					
ERDB	Ecosystems Research and Development Bureau					
ERPA	Emission Reduction Purchase Agreement					
ES	Environmental Services					
ESCAP	Economic and Social Commission for Asia and the Pacific					
EU	European Union					
EUREP-GAP	Euro-Retailer Produce working group for Good					
	Agricultural Practices (www.eurep.org)					
FAO	Food and Agriculture Organization					
FGD	Focal Group Discussions					
FMB	Forest Management Bureau, the Philippines					
FORRU	Forest Restoration Research Unit, Thailand					
FPDP	The Lao Forest Plantation Development Project					
FSC	Forest Stewardship Council					
FSC-SLIMF	Forest Stewardship Council-Small and Low Intensity					
	Managed Forests					
FT	Fruit Trees					
GDP	Gross Domestic Product					
GHGs	Greenhouse Gases					
GMPCI	Gabriela MultiPurpose Cooperative Inc					
GNI	Gross National Income					
GOLD	Governance and Local Democracy Project, the Philippines					
GSAP Gross Service Area Product						

HCFV	High Conservation Value Forest					
ICEM	International Centre for Environment Management, Brisbane					
ICMM	The International Council for Mining and Metals					
ICRAF	World Agroforestry Center					
IDR	Indonesian Rupiah					
ILO	International Labor Organization					
Indonesian LEI system	Lembaga Ekolabel Indonesia certification system					
IPCC	Intergovernmental Panel on Climate Change					
IRR	Internal Rate of Return					
ISO	International Organization for Standardization					
ISU	Isabela State University					
ITPP	Industrial Tree Plantation Project					
ITS	Indigenous tree species					
ΙΤΤΟ	International Tropical Timber Organization					
IUCN	The World Conservation Union					
JBIC	Japan Bank for International Cooperation					
JOFCA	Japan Overseas Forestry Consultants Association					
KEF	Kalahan Educational Foundation Inc.					
KOFFCO system	Komatsu-FORDA Fog Cooling system					
LA	Land Allocation					
Lao-IRRI	National Rice Research Program, Lao PDR					
Lao PDR	Lao People's Democratic Republic					
LFPI	Landcare Foundation of the Philippines Inc.					
LG	Land Grant					
LGU	Local Government Unit					
LLDA	Laguna Lake Development Authority					
LPA	Lao Plantation Authority					
LUP	Land Use Planning					
MAF	Ministry of Agriculture and Forestry, Lao PDR					
MAFAMCO	The Mt. Apo Farmers Cooperative					
MAI	Mean Annual Increment					
MANRIS	Manupali River Irrigation System					
MBRLC	Mindanao Baptist Rural Life Center					
MDF	Medium-Density Fibreboard					
MDG	Millennium Development Goals					
MMSD	The Minerals, Mining and Sustainable Development					
	project					
MPTS	Multi-Purpose Tree Species					
MSC	Marine Stewardship Council					
MTCC	The Malaysian Timber Certification Council					
NAFES	National Agriculture and Forestry Extension Service					
NAFRI	The National Agriculture and Forestry Research Institute,					
	Lao PDR					
NALCO	Nasipit Lumber Company					
NAS	National Academy of Sciences					

NCF	Net Carbon Flow					
NGO	Non Governmental Organization					
NIPAS	The National Integrated Protected Areas System					
NIPF	Non-Industrial Private Forests					
NORDECO	Nordic Agency for Development and Ecology					
NPV	Net Present Value					
NSC	National Statistic Centre Committee for Planning and					
	Investment, Lao PDR					
NSMNP	The Northern Sierra Madre Natural Park					
NSO	National Statistics Office, the Philippines					
NTFP	Non-Timber Forest Product					
NVS	Vatural Vegetative Strips					
OM	Organic Matter					
PAFO	Provincial Agriculture and Forestry Office, Lao PDR					
PAGASA	Philippine Atmospheric, Geophysical and Astronomical					
	Services Administration					
PAWB	Protected Area and Wildlife Bureau					
PCARRD	Philippine Council for Agriculture, Forestry, and Natural					
	Resources Research and Development					
PCR	Project Completion Report					
PCU	Project Coordination Unit					
PEFC	The Programme for Endorsement of Forest Certification					
PES	Payments for Environmental Services					
PhP	The Philippine Peso					
PICOP	Paper Industries Corporation of the Philippines					
PLAN (International)	Child focused non-governmental international development					
	agency (www.plan-international.org)					
PO	People's Organization					
PPTA	Preparatory Project Technical Assistance					
PTFI	The Provident Tree Farm Inc.					
ReV Chain	Reforestation Value Chain					
RFD	The Royal Forest Department Thailand					
RMAs	Rapid Market Appraisals					
RMI	The Indonesia Institute for Forest and Environment					
RUP	Resource Use Permit					
RUPES	Rewarding Upland People for Environmental Services					
SAFUDS SAMAKA D	Smallholder Agrotorestry on Degraded Soils					
SAMAKA Program	Samahan ng Masaganang Kakanin (a united effort to					
COLLE	produce ample food for the family)					
SCUAF	Soil Changes Under Agrotorestry					
SF L SEM	Small Forest Enterprises					
ST IME	Sustainable Forest Management					
SLIVIF SDA a	Sman and Low Intensity Managed Forests					
SFAS SDI TD	Seeu Production Areas					
SELLE	Special Private Land Timber Permit					

SSS	Small-Scale Sawmills				
TAO	Tambon Administration Organization				
TLA	Timber License Agreement				
TRP	The Rainforest Project				
TSI	Timber Stand Improvement				
ТТ	Timber trees				
UMN	University of Minnesota in the United States				
UNDP	United Nations Development Programme				
UNDP SGP PTF	The UNDP Small Grants Programme for Operations to				
	Promote Tropical Forest				
UNECE	United Nations Economic Commission for Europe				
UNFCCC	United Nations Framework Convention on Climate Change				
UPLB	The University of the Philippines Los Baños				
WaNuLCAS model	Water, Nutrient and Light Capture in Agroforestry Systems				
WB	World Bank				
WCSP	Wildlife Conservation Society of the Philippines				
WOTRO	The Netherlands Foundation for the Advancement of				
	Tropical Research				
WWF	World Wildlife Fund for Nature				

Part I Smallholder Tree Growing: Introduction

Chapter 1 Smallholder Tree Growing in South and Southeast Asia

D.J. Snelder^{1*} and R.D. Lasco²

Abstract This chapter sketches the context of this book. It addresses the questions why we focus on smallholder tree growing and why we discuss the Philippines as main case study country. Relevant background information related to the aforementioned questions is given, including a historical sketch on smallholder forest management and the development of concepts on smallholder tree growing in South and Southeast Asia, a review of farmers' motivations and other controlling factors affecting tree growing activities, and a discussion on the need for sustainable land use and, related to this, recognition of farmers' potential to produce wood and provide other forest benefits and ecological services. The chapter ends with an overview of the different sections under which the various chapters in this book have been arranged.

Keywords small-scale reforestation, tree plantation, tree management, forestry concepts

1.1 Introduction

The protection, planting, exploitation and management of forest and tree resources are activities that have a long history in most Asian cultures. Tree growing is part of traditional land use in both tropical dry and wet zones. In recent years, the role of smallholder communities in the management and protection of remaining forests is regaining importance in government policies and programs in Asia and elsewhere.

¹Department of Environment and Development, Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands

²World Agroforestry Centre (ICRAF-Philippines), Khush Hall, IRRI, College, 4031 Laguna, The Philippines

^{*}Corresponding author: snelder@cml.leidenuniv.nl

This tendency is associated with the moral argument that conservation goals should contribute to, and not conflict with, basic human needs and, for that reason, local communities should be more involved in designing and implementing forest conservation policies. The use of such argument is, however, not new but has been emphasized in development issues for the last three decades, especially in the 1980s – by some even called the decade of participation (Chambers 1983; Ingham 1993), when the concept of sustainable development made a great shift towards 'people centered' development, community involvement, cooperative management, power sharing, decentralization and devolution, and empowerment. The role of smallholder communities is likewise increasingly recognized in the reforestation of agricultural lands in the form of growing trees on farms and also near settlements and built-up areas, i.e., the so-called "trees outside forests". The latter are a crucial resource in terms of meeting future needs, both public and private, for timber, woodfuel, other forest products and a variety of environmental services, particularly in developing countries (FAO 1985, 2006a). There is evidence of spontaneous forest product diversification through implementation of tree systems on farms by smallholders who lack easy access to nearby forest resources (e.g., in Cebu, Philippines; FAO 1993; in western Kenya, Scherr 1995). The trees relieve the pressure on remaining forest resources and restore and safe-guard ecological and socio-economic sustainability in agricultural landscapes. Moreover, smallholder tree growing is perceived as a potential strategy for poverty alleviation in various, often agroforestry and community forestry, programs world-wide (e.g., Cacho et al. 2003; ICRAF 2003; Sales et al. 2005; FAO 2005, 2006a). The extent to which tree growing can alleviate poverty and increase food security is however not well documented or clear to policy makers (FAO 2006a).

Yet, research on smallholder tree growing falls behind when compared to research into large-scale forestry and agricultural (tree) crop plantations. Not enough is known about the dynamics of trees on farmlands and their corresponding contribution to the production of wood and other products and services (FAO 2006a). In order to understand current and potential contributions of tree growing to rural development and forest services, extensive research and good statistical data are required. The latter are, however, absent from most official statistics (FAO 2006b). Likewise, data on the actual amount of land occupied by smallholder tree growing systems are still lacking partly because of the multitude of systems that do exist. Generally, no distinction is made for this category of land use by statistics agencies or in case there are distinctions, they are not uniformly perceived (Jensen 1995). Smallholder tree growing systems may be included in several of the categories usually applied in land use statistics such as: forest land, wood land, degraded land, agricultural lands, urban areas (homegardens) and "other land use" (e.g. road side plantings). In addition, the statistics should generally be treated with some caution although processes of data gathering and analysis have been improved since the use of satellite imagery.

In this introductory chapter, we will first give a historical perspective on tree growing, community participation and associated policies in Asia and elsewhere in the world, then sketch the context in which smallholder tree growing receives an ever-increasing role in reforestation efforts, which in turn leads us to giving additional explanations for our focus on smallholder tree growing. We will then discuss smallholders' motivations and controlling factors for growing trees on their farms and land elsewhere. We proceed with a review of the rise and development of various concepts related to smallholder tree growing for those Asian countries that will be discussed in the separate chapters of this book. The chapter will be closed off with an overview of the remaining chapters in this book.

1.2 A Historical Sketch

Records on the oldest practices of tree growing mostly refer to the growing of trees near dwellings in order to provide products for subsistence and home consumption, i.e., the so-called homegardens. Soemarwoto (1987) suggests, based on Brownrigg's literature review of 1985, the earliest evidence of homegarden cultivation in the Near Eastern region dates back to 3000 B.C. and possibly 7000 B.C. Yet, in a recent publication Wiersum (2006) relates the origin of homegardening to 13,000 to 9,000 B.C., a period during which fishing communities were living in moist tropical regions.

Early evidences of use and management of forest resources in China also date back to a distant past. For example, oracle-bone inscriptions with graphs of agricultural words from the Shāng dynasty (ca. 1600–ca. 1046 B.C.) suggest trees in Shāng agriculture played a role comparable to that of trees in agroforestry systems today (Menzies 1996). Early scripts written during the Zhāu dynasty (1122–256 B.C.) refer to systems of forest manipulation and tree cultivation directed at the maintenance of forest productivity through, amongst others, carefully scheduled timber harvesting activities (Menzies 1996). At this time, and also later during the Han dynasty (206 B.C.–A.D. 220; Needham 1986), forest-related activities were predominantly controlled by the nobles, i.e., the farmland-owning classes. Much later in the early 20th century, when the first western scientists started to work in the severely degraded forest areas of northern China, Lowdermilk (1926 in Menzies 1996) discovered indigenous systems of silviculture in protected temple forests, in forests owned collectively by villages and temple associations and in densely populated suburban areas.

In the western world it was only in the Middle Ages that forestry practices were formally developed under the rule of the nobility, i.e., the highest social class, and implemented by farmers and laborers of lower social classes in the, at the time, prevailing feudal system (Shepherd et al. 1998). The more systematic forestry practices for timber purposes are believed to have begun in the 16th century in the German states (James 1996). In the eastern world, plantation forestry started in Japan during the Tokugawa period in the 17th century as a response to the increasing demand for wood and the deterioration of forest resources. It was initially mainly aimed at water conservation and erosion control, for example in the northern part of the main island Honshu (Totman 1985), and in the 18th century increasingly directed at timber production, practiced on both land of feudal lords and

common lands managed by farmers (Iwamoto 2002). In Europe, the increasing importance of timber in the 18th century led to the founding of forest science as a specialist discipline in Germany from where it spread to other European countries and their colonies in the 19th century (Shepherd et al. 1998; see also Appendix).

With the technological development in the 20th century, large-scale logging enterprises and monoculture, even-aged forest plantations emerged in rural areas worldwide (Shepherd et al. 1998). Moreover, after the disintegration of most colonial empires around the first half of the 20th century, the Food and Agriculture Organization (FAO) helped forestry departments of former colonies to transform earlier weakly centrally-controlled forests into important timber-producing areas and so-called "political forests", i.e., forests put under state forestry services and affected by both ecological and political processes (Van der Geest and Peluso 2006). Small-scale tree growing activities were still performed by rural communities but received relatively little attention from governments and (inter)national organizations throughout the 19th and most of the 20th centuries. During the second half of the 20th century, forestry laws and binding regulations in support of sustainable land use were being developed and enacted in response to growing environmental awareness. The latter was instigated by the rapid decrease in natural forest cover and associated biodiversity resulting from the excessive rise in timber exploitation rates. Moreover, there was much concern about the ever-increasing gap between demands for fuelwood and availability of supplies in developing countries where local resource-poor farmers used more and more crop residues and animal manure as a source of fuel rather than a source of mulch and fertilizer, affecting soil productivity (Arnold and Dewees 1997; Photo 1.1).

Photo 1.1 Smallholders collecting fuelwood in the uplands in Isabela Province, the Philippines (©DJ Snelder)

The integration of trees into farming systems in the form of agroforestry has been promoted since the late 1970s as a strategy for sustainable land use particularly in support of the rural poor (King 1987, Young 1997, FAO 2005) and, at its earlier stage, as a means to narrow the so-called fuelwood gap (FAO 1997). With the introduction of rural integrated development programs in the 1980s, smallholder tree growing regained recognition because of its potential role in mobilizing rural resources for the generation of a wide range of tree products, for both subsistence and commercial purposes, including timber, wood fuel, fruit, leafy vegetable, fodder, resin, oil, and medicine. In this context smallholder tree growing is also considered in recent times as a policy option addressing the Millennium Development Goals (MDGs; see http://www.un.org/millenniumgoals/). Smallholder tree growing is further linked to environmental services and the agenda on global change. Under the nomenclature agroforestry, it has been identified as one of the thematic areas by the Conference of the Parties (COP) to the Convention on Biological Diversity (CBD) in 1996. The CBD refers to agroforestry as a form of adaptive management, being "a method of sustainable agriculture that employ management practices and technologies that promote positive and mitigate negative impacts of agriculture on biodiversity" (Decision V/5 2.3). Likewise, there is a clear link to agrobiodiversity being described as having "all components of biological diversity of relevance to food and agriculture and all components that constitute the agro-ecosystem, i.e., the variety and variability of animals, plants and micro-organism, at the genetic, species and ecosystem levels, which are necessary to sustain key functions of the agro-ecosystem, its structure and processes" (Decision COP III/11 in 1996). More recently, the role of tree farming including agroforestry in mitigating climate change primarily through carbon sequestration has also been highlighted (IPCC, 2000, 2007).

1.3 From Deforestation to Reforestation: An Urgent Need for Sustainable Land Use

The state of forest resources in countries world-wide has reached a critical point; never before have forest ecosystems been so greatly and rapidly affected by human activities as during last decades. Large stretches of the world's forests, that have served in the subsistence and development of humankind, have been converted to other uses particularly agriculture or are severely degraded. The global net change in forest area approximated –8.9 million hectares per year in the period 1990–2000 (FAO 2001, with corrected data in FAO 2006b; Table 1.1). Deforestation still continues at a high rate today.

Most forest losses occur in tropical countries, particularly Africa, South America and Asia. The highest rate of forest reduction in South and Southeast Asia has been recorded for Indonesia with a loss of 1.9 million hectares (or 1.7 percent reduction) per year for the period 1990–2000 followed by Myanmar and the Philippines with losses of, respectively, 0.5 million hectares (-1.3 percent) and 0.3 million hectares

Country/		Forest area 2005				Forest area change 1990–2005			
area	Land area	Natural forest	Forest planta-	Total forest		Total forest		Forest plantations	
			tion			1990– 2000	2000– 2005	1990– 2000	2000– 2005
	000 ha	000 ha	000 ha	000 ha	% of land area	000 ha/ year	000 ha/ year	000 ha/ year	000 ha/ year
Bangladesh	13,017	592	279	871	6.7	n.s.	-2	3.7	0.6
Bhutan	4,700	3,193	2	3,195	68.0	11	11	0	0.2
Brunei	527	278	-	278	52.8	-2	-2	_	_
Cambodia	17,652	10,388	59	10,447	59.2	-140	-219	0.5	-2.6
East Timor	1,479	755	43	798	53.7	-11	-11	1.4	0
India	297,319	64,475	3,226	67,701	22.8	362	29	85.1	84.2
Indonesia	181,157	85,096	3,399	88,495	48.8	-1,872	-1,871	79.3	79.4
Lao PDR	23,080	15,918	224	16,142	69.9	-78	-78	9.5	25.0
Malaysia	32,855	19,317	1,573	20,890	63.6	-78	-140	-29.7	-17.2
Maldives	30	1	-	1	3.0	0	0	_	-
Myanmar	65,755	31,373	849	32,222	49.0	-466	-466	30.2	30.6
Nepal	14,300	3,583	53	3,636	25.4	-92	-53	0.3	0.2
Pakistan	77,088	1,584	318	1,902	2.5	-41	-43	6.2	4.4
Philippines	29,817	6,542	620	7,162	24.0	-262	-157	-92.8	-46.4
Singapore	61	2	0	2	3.4	0	0	0	0
Sri Lanka	6,463	1,738	195	1,933	29.9	-27	-30	-2.1	-5.1
Thailand	51,089	11,421	3,099	14 520	28.4	-115	-59	43.7	4.4
Viet Nam	32,550	10,236	2,695	12,931	39.7	236	241	108.3	129.0
S & SE Asia	848,952	266,492	16,634	283,127	33.4	-2,578	-2,851	239.9	286.7
Total World	13,063,900	3,801,848	150,177	3,952,025	30.3	-8,868	-7,317	-	2,800

Table 1.1 Forest resources distribution and changes for the period 1990–2005 in South andSoutheast Asia (FAO 2006a)

(-2.8 percent) per year (Table 1.1). For the period 2000–2005, the rate of forest loss remained unchanged for Indonesia and Myanmar but decreased to -0.2 million hectares (-2.1 percent) per year for the Philippines.

Efforts to counteract these losses have been directed at the establishment of large-scale forest plantations. Plantation forests have in fact increased throughout the world, at an estimated rate of 2.8 million hectares per year during the period 2000–2005, and tempered – together with natural forest expansion – the annual rate of net forest loss from 8.9 to 7.3 million hectares (Table 1.1). Yet, forest plantations have not been equally successful in the region. For example, Asia (with a net forest loss in the 1990s), experienced a net gain in forest area over the period 2000–2005, but this was mainly as a result of large-scale afforestation reported by China (FAO 2006b). Moreover, forest plantations still comprise only a small percentage, i.e., 3.8 percent (or about 150 million hectares), of the total forest area world wide (FAO 2006b). It is unclear how much of this percentage is accomplished by smallholder

tree growers, if at all included in the country records on which this figure is based.

Remaining forest resources are unevenly distributed over different continents and countries world wide. In South and Southeast Asia, large-sized countries like Indonesia and India with, respectively, 88 and 68 million hectares of forest account for over half of the total forest area in the region (2005 records; Table 1.1). Yet, when looking at the distribution of percentage land surface covered by forest, Indonesia is grouped among countries with intermediate coverage (48.8 percent) whereas India has to be categorized under countries with relatively low coverage (22.8 percent). Lao Peoples' Democratic Republic and Malaysia have well over 50 percent of their land area under forest. Pakistan and Bangladesh hold only small patches of forests covering respectively 2.5 and 6.7 percent of the country's total land area. Vietnam, Thailand, Nepal, and the Philippines take an intermediate to low position with, respectively, 39.7, 28.4, 25.4 and 24.0 percent of forest coverage.

In addition to declining forest areas, suitable areas for the production of food for present and future generations are dwindling as well. Mainly marginal lands remain, the fertile lands traditionally being utilized for various forms of crop cultivation. Consequently, agricultural intensification is currently being practiced in many parts of the world in order to increase crop production and provide food security. However, agricultural intensification has not automatically led to sustainable forms of land use; on the contrary, it has been accompanied by serious forms of land degradation, particularly in the developing world where roughly one quarter of all farmland has been degraded (Garrity 2004). Farmland is affected by soil nutrient depletion and soil physical degradation due to repeated cultivation and harvesting practices without periodic application of fertilizers or manure. The much needed farm inputs, or fallowing time, for restoring the soil are lacking whereas the knowledge on alternative, cost-effective methods of sustainable land use is limited.

The urgency to stop, or at least control, the destruction of remaining forests and the degradation of agricultural land and look into a wide spectrum of solution-oriented measures of sustainable land use has nowadays been recognized as crucial to our survival. This recognition has triggered projects and programs on forest conservation, reforestation, and agroforestry worldwide aimed at the integration of trees in denuded and predominantly agricultural landscapes and funded by institutions like the World Bank, the Asian Development Bank, the European Commission (EU), and FAO.

1.4 Why Focus on Smallholders?

Since the 1980s, there have been clear signs of a paradigm shift in the forestry sector throughout Asia and elsewhere in the world: whereas large-scale timber-oriented industrial estates and reforestation projects dominated past forestry approaches, there is a trend towards small-scale and multiple use systems of tree growing and community forestry (see also Harrison et al. 2002). Environmental concerns and various processes of rural development have facilitated this shift in the forestry sector as will be outlined below.

Firstly, the rate of success among large-scale reforestation projects has been less than expected as discussed earlier. In addition, environmental degradation and social problems associated with large-scale reforestation projects have raised much debate (Sawyer 1993; Carrere and Lohman 1996; Cannell 1999). For example, native longhouse communities in Sarawak resisted the establishment of a 200,000 ha Acacia mangium plantation in a former concession area partly claimed by about 20,000 mainly Iban people under Native Customary Rights (Barney 2004). The plantation, to be managed in intensive seven-year rotations, was initiated in 1996 as a joint venture between the Sarawak state government and the Singapore-based Asia Pulp and Paper. Key to the social conflict was the displacement of longhouses and the unconditional resettlement packages, raising also protest among various Sarawakian non-governmental organizations (NGOs). However, an exclusive emphasis on resistance to forest plantations, as practiced by some NGO networks, may undermine the fact that there is also widespread smallholder participation in plantation production; a tendency that is likely to increase in the future (Barney 2004). In addition, in-depth analysis of some of the previously adverse environmental assessments of tree plantations with species such as Eucalyptus proved to be unfounded (e.g., Saver et al. 2004).

In addition to forestry plantations, smallholders have increasingly been involved in on-farm tree growing through the establishment of agroforestry systems. However from the start of its promotion in the 1970s, smallholder tree growing has received considerably less attention from the (less) developed and scientific worlds, when compared to large-scale tree planting and reforestation. More recently, with the expansion of small-scale cultivation in many regions of the world, the awareness is mounting that lands controlled by smallholders are of increasing importance in both sustainable food production and safeguarding environmental services, such as biodiversity conservation, watershed protection and carbon sequestration. They more and more determine the environmental, economical and ecological value of the landscape. Whether smallholder tree growing does indeed make a difference, and if so, to what extent it contributes to sustainable development and environmental protection and conservation, needs further investigation.

Another reason for increasing interest in smallholder tree growing is related to the expansion of areas under forest protection. The latter has lead to a ban on logging and restrictive use of natural forest products in countries like Indonesia, Thailand and the Philippines. Smallholders are therefore in search of alternative sources of tree products and ways of integrating trees into their farming systems through on-farm tree growing and forestry plantations. Moreover, it is expected that, with mounting population and land shortage, the number of farmers with smallholdings will remain high or may even increase in the near future.

Yet, the implementation of tree-based farming systems still faces controversy and need further exploration, given for example their contested role in providing profits to farmers under present conditions of increasingly competitive world markets. Whereas a small number of tree crops (e.g., coffee, cacao, tea) played a critical role in setting off economic growth during past three decades in Southeast Asia, at