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Preface

The aim of this book is to show how logics can be cut and paste in order to be
applied to express and model problems in several distinct areas. The universal
applicability of logic in both pure and applied science is a fact that defies philoso-
phers. Contemporary logical research, however, has an undeniable tendency to-
wards pluralism and compartimentation, as shown by the division of philosophical
logic in areas and subfields. On the one hand, we have logics alternative to classic,
such as many-valued logic, intuitionistic logic, paraconsistent logic. On the other
hand, we also have logics complementary to classic, such as modal logics, and, in
particular, temporal logic, epistemic logic, doxastic logic, erotetic logic, deontic
logic, and so on.

Considering that reasoning is through process, this compartimentation, even if
driven by methodological and technical reasons, has been said to be harmful to
logic while a philosophical discipline. From this viewpoint, combinations of logics
goes in the opposite direction of restoring the entirety of logic as wide theory of
rationality, much in the same spirit to what happens in areas as algebraic geometry.
Thus, from a philosophical perspective, logical combinations of tense and modality,
for instance, may offer a better look to issues in the theory of causation and action.
Combining temporal logic with alethic modal logics adds a temporal dimension to
knowledge and belief.

Conceptually, the ideaof lookingto logicasanentirety insteadof isolatedfragments
is not new. Philosophers and logicians from Ramón Lull (1235–1316), in his Ars
Magna, to Gottfried W. Leibniz (1646–1716), with his calculus ratiocinator [179],
have dreamed of building schemes or even machines that can reason by combining
different logics or logic-like mechanisms that could cooperate instead of competing.

The activity of combining logics, as seen nowadays, offers an important tool for
modularity. Rather than building a logic from scratch, it may be better for some
applications to depend upon previous work on specialized topics. The underlying
idea is that logics can be reusable, leading to a perspective gain with the resulting
combined system. However, there are many technical difficulties if one is interested
in the practical activity of combining logics. Symbols may mean different things in
different logics. How is it possible to define the languages in order to compose them
into an organic entity? Also, proofs and derivations can have different meanings
in different logics. How to thread rules and derivation schemes of totally different
nature?

ix
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Combining logics have also a surprising impact on philosophical questioning,
an aspect that this book is not aimed to, but that should not be overlooked. An
illustrative example is the well-known David Hume’s objection from concluding a
normative statement of the form “ought to be” starting from a descriptive state-
ment of the form “what is” (a much discussed question in moral theory). So, for
instance, from statements of fact, such as “emission of carbon dioxide is harmful to
society”, a statement of obligation such as “all nations ought to follow mandatory
emission limitations” could not, according to an interpretation of Hume’s ideas,
be derived.

From the point of view of combining logics, this question is strictly connected
to accepting properties of combining deontic and alethic logics, such as p→ (Op),
where O is the deontic obligation operator and p is an assertion. Such formula
is what we call a “bridge principle”. The term, meaning specifically a statement
that binds factualities to norms, appears already in [3] and subsequently in [262].

In our treatment, by “bridge principles” we mean, in a wide sense, any new
derivations among distinct logic operators (new in the sense of not being instances
of valid derivations in the individual logics being combined).

Another much discussed thesis is the famous “ought-implies-can” thesis at-
tributed to I. Kant, according to which the fact that we ought to do something
implies that it has to be logically possible to do. This would be formalized through
the following bridge principle: (Op) → (�p), where the diamond � denotes the
alethic “possibility” operator. Thus the principle means that if an assertion is
obligatory then it must be possible. Other interpretations suggest that what Kant
believed is that we cannot be obliged to do something if we are not capable of
acting in that way. This would be formalized by the (non necessarily equivalent)
bridge principle (¬�p) → (¬Op).

Not only bridge principles have an underlying conceptual meaning, but they
also may emerge spontaneously, with surprising consequences as we show in many
places of this book. The influence of bridge principles is yet perceived in the way
the collapsing problem (a phenomenon of combining logics by which, for instance,
intuitionistic collapses to classical logic) is solved (see Chapter 8).

This book intends to address the questions presented above in detail, presenting
with the foremost rigor the issues of logical manipulation. The reader will learn
here how to set up the syntactical dimension in detail, and how to define the
semantics and the proof theory for recombinant logics. The impact of combination
of logics in practice can only be assessed by people involved in the application
domains. However, we believe that these techniques can be useful in fields such as
computational linguistics, automated theorem proving, complexity and artificial
intelligence. Other promising applications are in the areas of software specification,
knowledge representation, architectures for intelligent computing and quantum
computing, security protocols and authentication, secure computation and zero-
knowledge proof systems and in the formal ethics of cryptographic protocols.

Combinations of temporal reasoning, reasoning in description logic, reasoning
about space and distance are becoming a relevant toolbox in modeling multi-agent
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systems. The resulting hybrid systems have the main advantage of combining
logics which would be otherwise incompatible. Proof procedures with controlled
complexity, model checking and satisfiability checking procedures can be obtained
for a bigger logic from the respective procedures for the component logics.

But the reader should not think that combinations of logics is a topic re-
stricted to applications outside logic. On the contrary, although we do not deal
with this question in this book, the very idea of combining logics, as we see it,
touches on more abstract domains as applied to the logical theory itself: for in-
stance, as suggested in [233]. The idea of combining logics can be even use-
ful to understand apparently far away topics such as Popper’s structuralist the-
ory of logic, as in [223], where an elementary theory of combining negations
was developed.

In a rigorous way, the problem of combining logics can be seen as follows:
given two logics L1 and L2 we want to combine them and obtain a new logic
L satisfying certain requirements. In general, there are several mechanisms to
combine the original logics. Choosing mechanism �, the new logic is L = L1�L2.
That is, � is an operator on some class of logics including L1 and L2. Different
operators may lead to different resulting logics. Most of the operators provide an
algorithmic construction of logic L by stating its language, semantic structures
and/or deductive systems. Moreover, the construction of L usually is a minimal
(or maximal) construction. The combined logic should extend the components in
a controlled way, so that it does not include undesirable features.

All the mechanisms assume that the component logics are presented in the
same way. In technical terms we say they are homogeneous. For instance, both
of them are presented by Hilbert calculi. However, some assume that component
logics need some preparation before being combined. For instance, assume that
we say that component logics are endowed with an algebraic semantics. In this
case, we have to say how the semantic structures of the component logics induce an
algebraic semantics. In the book we deal with heterogeneous fibring in a moderated
way in Chapter 3 and with heterogeneous fibring of deductive systems in Chapter 4.

One of the most challenging problems is related to proving transference re-
sults. That is, to investigate sufficient conditions for the preservation of properties,
namely soundness, completeness, decidability, consistency, interpolation, from the
components into the resulting logic.

Combination mechanisms can be extended to a finite number of components
and sometimes even to an infinite number of components.

Among the different combination mechanisms we can refer to fibring which is
one of the objects of this book. Fusion, if not historically the first, is the simplest
method, and the best studied combination mechanism.

Combining logics in the perspective of this book does not mean only synthesizing
or composing logics (which is called splicing), but is also intended to work in the
opposite direction of decomposing logics, called splitting. Herein, we analyze the
possible-translations semantics mechanism.

The idea of writing this book originated during The Workshop on Combination
of Logics: Theory and Applications (CombLog04) [50, 52], held in the Center for
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Logic and Computation, at the Department of Mathematics of IST, Technical
University of Lisbon, Portugal, from July 28-30, 2004. Encouraged by the vigor
of the field and by the interest triggered by this and several other conferences
(such as [234, 112, 162, 9, 138, 10, 11]), we decided to accept the challenge to
produce a book containing some basic ideas, methods and techniques that could
help logicians, computer scientists and philosophers to have access to a general yet
elementary theory of combinations of logics. The book intended to bring together
a sample of results, problems and perspectives involving the idea of cutting and
pasting logics, explaining when possible the role of the underlying constructions
as universal arguments in the categorial sense.

We depart here from a basic universe of logic systems starting with propositional-
based systems endowed with Hilbert calculi and ordered algebraic semantics. This
basic setting is already rich enough to encompass interesting features of fibring
with several applications and to provide the basic techniques for the trade of
combining systems. Later on we extend the notion to the first-order and to the
higher-order domains.

Chapter 1 is an introductory overview to the essential ingredients of composing
and decomposing logics. In Section 1.1, we introduce the concept of consequence
system as the basic abstraction to describe a logic system. In Section 1.2, we
present the basic ideas about composing or splicing logics and decomposing or
splitting logics. We also introduce a technical summary of some combination
mechanisms like fusion, product and fibring by functions of modal logics. We
also refer to Gödel provability logic as an illustration of a splitting mechanism.
In Section 1.3, we provide a very brief introduction to algebraic fibring using
Hilbert calculi. In Section 1.4, we sketch the splitting mechanism called possible-
translations semantics.

Chapter 2 concentrates on fibring of propositional based logics presented as
Hilbert calculi. Moreover, some preservation results are introduced. In Section 2.1,
signatures and their fibring are presented. In Section 2.2, we dedicate our atten-
tion to the fibring of Hilbert calculi. We illustrate the concepts with several exam-
ples including classical logic, modal logics, intuitionistic logic, 3-valued Gödel and
�Lukasiewicz logics. In Section 2.3, we discuss several preservation results. Finally,
Section 2.4 presents some final remarks.

Chapter 3 is dedicated to the fibring of semantics for propositional based log-
ics. Ordered algebras are the basic semantic structures adopted. We also in-
clude the relationship to fusion and fibring by functions. Again some preser-
vation results are given. In Section 3.1, we introduce the semantic structures
and their fibring. We illustrate the concepts with several examples including
classical logic, modal logics, intuitionistic logic, 3-valued Gödel and �Lukasiewicz
logics. In Section 3.2, we present the notions of logic system, soundness and
completeness. In Section 3.3, we discuss the preservation of soundness and com-
pleteness properties. In Section 3.4, we establish the relationship between the
present approach and fibring by functions. In Section 3.5 we present some final
comments.
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Chapter 4 is dedicated to the analysis of fibring of logics that are not presented
in the same way. Two solutions are proposed. The first one is based on fibring of
consequence systems and the second one on abstract proof systems. Some preser-
vation results are established. Section 4.1 concentrates on fibring of consequence
systems using a fixed point operator. Several examples are given for logics pre-
sented either in a proof-theoretic or a model-theoretic way. Section 4.2 focuses
on the notion of abstract proof system and looks at the proof systems induced by
Hilbert, sequent and tableau calculi. Moreover, it includes the notion of fibring of
abstract proof systems. We also discuss some relationships between consequence
systems and proof systems. In Section 4.3 we present some final remarks.

Chapter 5 studies composition of non-truth functional logics via fibring, an im-
portant extension of the theory, considering that many of the interesting logics for
applications are not truth-functional. In Section 5.1, the notion of interpretation
system presentation is introduced. In Section 5.2 the notions of unconstrained
and constrained fibring of interpretation system presentations is defined. In Sec-
tion 5.3 we again use Hilbert calculus as the suitable proof-theoretic notion. In
Section 5.4 some preservation results are established, namely, the preservation of
soundness and completeness. Section 5.5 discusses self-fibring in the context of
non-truth-functional logics. In Section 5.6 we present some final comments.

Chapter 6 concentrates on fibring of first-order based logics. It can be seen as
an extension of the fibring of propositional based logics, choosing particular pow-
erset algebras as semantic structures. The running example is fibring of classical
first-order logic and modal logic. In Section 6.1, first-order based signatures and
the corresponding languages are introduced. Next, in Section 6.2, we present in-
terpretation structures and interpretation systems. First-order Hilbert calculi are
presented in Section 6.3. Section 6.4 introduces first-order logic systems. Then,
in Section 6.5, we define fibring of first-order based logics. The preservation of
completeness and other metatheorems by fibring is discussed in Section 6.6, where
we also briefly sketch a proof of completeness for a particular class of first-order
logic systems. In Section 6.7 we make some final remarks.

Chapter 7 deals with higher-order quantification logics. The semantic structures
are generalizations of the usual topos semantics for higher-order logics. In Sec-
tion 7.1 we introduce the relevant signatures. In Section 7.2 the Hilbert calculus
is presented. In Section 7.3 is dedicated to setting up the semantic notions. Sec-
tion 7.4 introduces the notion of logic system, and we briefly discuss some related
notions such as soundness and completeness. The novelty here is that the usual
notion of soundness must be modified in the present framework. In Section 7.5,
a general completeness theorem is established. In Section 7.6, the notions of con-
strained and unconstrained fibring of logic systems are given, and it is shown that
soundness is preserved by fibring and a completeness preservation result is ob-
tained. In Section 7.7 we briefly discuss the main results described in the chapter.

In Chapter 8, we turn our attention to modulated fibring. This variant was
developed to cope with collapsing problems: in some cases when two logics are
combined one of them collapses with the other. We illustrate the concepts with
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examples including propositional logic, intuitionistic logic, 3-valued Gödel and
�Lukasiewicz logics. In Section 8.1, we introduce the notions of modulated signa-
ture and modulated signature morphisms. In Section 8.2, we describe modulated
interpretation structures, modulated interpretation systems and the correspond-
ing morphisms. Next we present the notion of bridge between modulated inter-
pretation systems. In Section 8.3, we define modulated Hilbert calculus and their
morphisms. In Section 8.4 is dedicated to modulated logic systems and their cor-
responding morphisms. In Section 8.5, we establish soundness and completeness
preservation results. Finally, Section 8.6 presents some final comments.

Chapter 9 introduces the problem of splitting logics, emphasizing the role of
possible-translations semantics and contrasting with the previous chapters that
deal with forms of splicing. In Section 9.1, a category of propositional based
signatures suitable for splitting logics is introduced, as well as the corresponding
category of consequence systems. In Section 9.2 the technique known as possible-
translations characterization is analyzed, and some applications are given. In
Section 9.3 two methods for combining matrix logics, plain fibring and direct union
of matrices, are reviewed. Finally, Section 9.4 presents some final comments.

In Chapter 10 we discuss new tendencies on fibring. In Section 10.1, we mo-
tivate network fibring using modal logic. In Sections 10.2, 10.3, 10.4 and 10.5,
some case-studies are introduced. Section 10.2 discusses integration of informa-
tion flows by describing a system in which reasoning and proofs from different
sources of information can be accommodated. In Section 10.3, we refer to some
generalizations of logic input/output operations. We also discuss how to combine
input/output operations into networks. In Section 10.4, we discuss the fibring
of neural networks. In Section 10.5, we turn our attention to recursive Bayesian
networks. In Section 10.6, the notion of self-fibring of networks is introduced.
Section 10.7 presents some concluding remarks.

Finally, in Chapter 11 we first present a summing-up of the different techniques
for combining logics presented in this book together with their main features.
Then we move to a brief overview of applications where fibring can be directly
used, as well as to emergent fields of application. It also includes an outlook of
new research directions in both the existing combination mechanisms but also to
new forms of combination.

We observe that most chapters of the book deal with combination of logics rather
than with decomposition of logics. This happens because splitting mechanisms are
not so well developed.

We assume that the readers are familiar with basic logic notions of classical
propositional and first-order logics at the level of, for instance, [206] and [90]
and propositional modal logics at the level of, for instance, [153]. Although not
mandatory, a very basic knowledge of categories (see [186]) is useful for better
understanding the minimality of the constructions.

The book is intended to be a research monograph for those that want to know
the state-of-the art in composing and decomposing logics, that want to know about
issues worthwhile to be pursued, as well as potential contemporary applications of
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these techniques. If you are one of these we recommend that you have the patience
to read the whole book. If you want to focus on particular aspects of combination
of logics, we suggest several paths hoping that one of them is of your taste.

• If the reader is only interested in knowing what are the main issues in the
combination of logics, we recommend Chapters 1, 2 and 3 which provide a
basic account on consequence systems and the basic notions of propositional
fibring;

• If you are curious about decomposition and its importance to non-truth
functional logics you should read Chapters 1 and 9 and maybe it is useful
reading Chapter 5;

• The reader interested in a more general form of fibring (capturing more
propositional-based logics) and avoiding the well known collapsing problem
should concentrate on Chapter 8, besides Chapters 1, 2 and 3;

• Someone with research interest in proof systems and how to combine different
proof systems should read Chapters 1, 2 and 4;

• If your interests are in modal logic, we suggest you read Chapters 1, 2, 3, 4
and 6;

• If your interests are in hybrid logic and labeled deduction in general, we
suggest you read Chapters 1, 2, 3, 4 and 10;

• If you are a first-order logician and have curiosity on combination of logics,
we suggest you read Chapters 1, 2, 3 and, more importantly, Chapter 6;

• If you are a higher-order logician and want to grasp what is combination of
logics, we suggest you read Chapters 1, 2, 3 and, of course, Chapter 7;

• If you are an intuitionistic logician and would like to know about combination
of logics, we suggest you read Chapters 1, 2, 3 and Chapter 8;

• If you like to know the potential of combination in contexts that are not
logical in nature you should read Chapter 10.

For a summing-up of the techniques used in the book, as well as some applications
and topics for further research, we recommend Chapter 11.
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Chapter 1

Introductory overview

It is not an easy matter to trace down the origins of the idea of combining reason-
ing (in a schematic or semi-formal manner) and relations upon them (by means
of diagram, rules or other mechanisms). In a sense this has origins in the history
of European philosophy itself: Plato’s dialogue Sophist inquires about the meth-
ods of philosophy, and part of his conclusions involves the limitations of common
language, and the danger of using common language which may lead to fallacious
conclusions. For example, Plato shows that “not being” is a form of “being”, a
confusion that common language cannot help to cope with.

On the other hand, logic is the branch of knowledge where language receives
the highest systematized treatment. Concepts, such as time, belief, knowledge,
inheritance, relevance and dependence, their mutual relations and the methods to
draw conclusions from them can be expressed in the most convenient way. Con-
temporary logic has pushed this tendency to extremes, with not entirely positive
consequences, in the opinion of critiques (see [267]). So, in a sense, if the logical
analysis taken to an extreme has separated concepts and methods, we wonder why
not join them together.

Under the light of today’s logic, this can be achieved with greater accuracy.
This is precisely the object of this book: how to cut and paste logics and how
to use them. But the roots of the idea are much older. The Catalan mystic and
logician Ramón Llull, born in 1235, used logic and mechanical methods based
on symbolic notation and combinatorial diagrams to relate, he thought, all forms
of knowledge. His main work, the Ars Magna, makes him, at the same time,
a precursor of combinatorics and of the art of combining logics. The method
of Llull consisted of a series of concentric circles with attributes such as bonitas
(goodness), magnitudo (greatness), eternitas (eternity), and categories such as
flame, man, animal, which could be combined with, for example where?, why?
and how?. By combining them, one could (at least try) to solve riddles such as
“Where does the flame go when a candle is put out?”.

1
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Llull inaugurated the idea of a “philosophical machine” and had a great influ-
ence on Gottfried Leibniz. According to Couturat in [64], Leibniz was the first
to see explicitly the possibilities of applying Llull’s methods to formal logic in
his Dissertatio de Arte Combinatoria, where exhaustive techniques to combine
premises and conclusions in the language of Aristotelian syllogisms was consid-
ered. Later on, the British economist and logician William Steven Jevons, fa-
mous for the invention of a “logic machine” to draw syllogistic conclusions, used
similar ideas in his “logical alphabet”. From some point on, the attempts to
combine logical devices lead to the hardware side of constructing machines. The
reader is invited to see the excellent book by Martin Gardner [121] for the ac-
count of the “demonstrator” of Charles Stanhope and of the logic machines of
Allan Marquand.

If, in the question above, the terms are appropriately changed to knowledge,
belief, time, tense, and the question by “Where does the learning go when knowl-
edge is separated from time” we can foresee how combining logics would impact
philosophical logic, knowledge representation, artificial intelligence, cognitive sci-
ences and so many other areas of interest to philosophers, linguists and computer
scientists.

The use of formal logic for representing conceptual reasoning favored the emer-
gence of the so-called “non-classical” logics in the first quarter of the XX century, as
opposed to “classical” logic, usually understood as two-valued propositional logic
and predicate logic with equality. The label “non-classical” is far from appropri-
ate, since, for example, the logical properties of necessity, possibility, impossibility,
contingency and related concepts were extensively treated by Aristotle (see [135])
and other ancient authors. This tradition, including nowadays the logical proper-
ties of permission, prohibition, belief, knowledge, tense, and many other evolved
to what is called modal logic. Besides modal, there are today dozens of such “non-
classical” logics such as many-valued logics, paraconsistent logics, intuitionistic
logics, dependence logics and relevant logics.

If logic is objective, how can there be so many logics? This intriguing question
is posed in [88], and the proposed answer, in the same book, is that what one
pays attention to, in reasoning, is what determines which logic is appropriate. So
logic, as a discipline, is subject-matter dependent. Classical logic is appropriate to
reasoning with purely mathematical concepts, such as points, lines, sets, numbers,
groups, equations and topological spaces, where no direct influence of time, inten-
tion, intensity, purpose, cause or effect is taken into account. On the other hand,
the so-called non-classical logics, emerge when specialized domains are taken into
consideration, and one pays attention to specific constituents.

Thus, many-valued logics may be pertinent when one needs to pay attention
to degrees of truth. Paraconsistent logics may be appropriate when one needs
to reason under contradictions but avoiding trivial theories. Dependence logics
may be suited if one prefers to see propositions as possessing referential content.
Relevant or relevance logics may be apropos if one is interested in how assumptions
are related to conclusions in derivations. Modal logics may be the right choice if one
is engaged on reasoning with necessity, possibility, knowledge, belief, permission,



1.1. CONSEQUENCE SYSTEMS 3

prohibition and obligation. Intuitionistic logic may be the case if one is occupied
with some aspects of constructiveness in argumentation. And so on and so forth.

Now it seems immediately obvious that reality is many-faced. A concrete ques-
tion may involve several aspects that one wishes to pay attention to, and a com-
bination of pre-existing logics to reason with such a question would be the best
decision. Instead of building a new logic from scratch, it may be wiser to de-
part from the assumption that logics can be reusable and assembled in new and
convenient manners.

However, one must face the need to integrate distinct languages and inference
engines. Different families of symbols have to be merged, and sometimes the same
symbol in different logics has a different meaning. Moreover, derivations can have
a completely different nature in different logics.

This chapter provides an overview, aiming to anticipate, in a very simplified
form, some aspects that will be pursued in full detail in the next chapters. As an
appetizer served before the function, it will show the issues in lesser content.

The contents of this chapter are as follows. In Section 1.1, we present conse-
quence systems as an abstract way to present logics via a consequence operator.
We also introduce the concept of morphism to relate consequence systems. In
Section 1.2, we present the basic ideas about composing or splicing logics and
decomposing or splitting logics. We also introduce a technical summary of the
most relevant mechanisms for splicing and splitting, namely fusion, product and
fibring by functions of modal logics and Gödel provability logic. In Section 1.3,
we provide an introduction to algebraic fibring from a deductive perspective. We
also motivate that our aim is to define composing and decomposing mechanisms
as minimal or maximal constructions. The issues of this section are discussed in
detail in most of the chapters of this book. In Section 1.4, we give an introduc-
tion to the splitting mechanism called possible-translations semantics. A deeper
account of this technique is explored in Chapter 9.

1.1 Consequence systems

A fundamental question, previous to any attempt to combining logics, is how to
define the logics which are to be combined. There are many authors that tried
to answer this question. The interested reader can take a look at [103]. Herein,
a logic is a consequence system following the formulation given by Alfred Tarski
(see [258]). The quest for the abstract definition of logic, as a consequence operator,
seems to go back to Bernard Bolzano (see [266] and also [231] in [118]).

A consequence system is usually a pair composed by a set, the language or
the set of formulas, and a map indicating for each subset of formulas the respec-
tive consequences. Some requirements are imposed on the map depending on the
objectives and the properties of the logic at hand. Consequence systems can be
defined in a proof-theoretic way or in a model-theoretic way.

We start with some notation. Let S be a set. We denote by ℘S the set of all
subsets of S and by ℘finS the set of all finite subsets of S.
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Definition 1.1.1 A consequence system is a pair

〈L,C 〉

where L is a set and C : ℘L→ ℘L is a map satisfying:

• Γ ⊆ C(Γ) extensiveness

• if Γ1 ⊆ Γ2 then C(Γ1) ⊆ C(Γ2) monotonicity

• C(C(Γ)) ⊆ C(Γ) idempotence

∇

The set L is the language, that is, the set of formulas. The map C : ℘L → ℘L
is a closure operator [198] called consequence operator. For each Γ ⊆ L, C(Γ) is
the set of consequences of the set of hypotheses or assumptions Γ. Extensiveness
means that an hypothesis in a set is a consequence of this set. Monotonicity states
that a formula that is a consequence of a set of hypotheses is also a consequence
of any bigger set of hypotheses. Idempotence means that we can use lemmas to
obtain consequences of a set of formulas.

An alternative characterization of the consequence operator can be given.

Proposition 1.1.2 A map C : ℘L→ ℘L is a consequence operator if and only if
it satisfies the following properties:

• Γ ⊆ C(Γ) extensiveness

• (C(Γ1) ∪ C(Γ2)) ⊆ C(Γ1 ∪ Γ2) preservation of unions

• If Γ2 ⊆ C(Γ1) and Γ3 ⊆ C(Γ2) then Γ3 ⊆ C(Γ1) transitivity.

Proof. Let C be a consequence operator. We start by proving preservation by
unions. We have that Γ1 ⊆ Γ1 ∪ Γ2 and Γ2 ⊆ Γ1 ∪ Γ2. Then C(Γ1) ⊆ C(Γ1 ∪ Γ2)
and C(Γ2) ⊆ C(Γ1 ∪ Γ2) by monotonicity and so C(Γ1) ∪ C(Γ2) ⊆ C(Γ1 ∪ Γ2).
Now we prove transitivity. Assume that Γ2 ⊆ C(Γ1) and Γ3 ⊆ C(Γ2). Then,
C(Γ2) ⊆ C(C(Γ1)) by monotonicity. Hence, Γ3 ⊆ C(C(Γ1)) and so Γ3 ⊆ C(Γ1) by
idempotence.

Assume now that C satisfies extensiveness, preservation of unions and tran-
sitivity. We start by proving monotonicity. Assume that Γ1 ⊆ Γ2. Then,
Γ1 ∪ Γ2 = Γ2. Hence, C(Γ1 ∪ Γ2) = C(Γ2). Therefore, by preservation of unions,
C(Γ1) ∪ C(Γ2) ⊆ C(Γ2) and so C(Γ1) ⊆ C(Γ2). Finally, we prove idempotence.
Since C(Γ) ⊆ C(Γ) and C(C(Γ)) ⊆ C(C(Γ)) then C(C(Γ)) ⊆ C(Γ) by transitivity.

�

This presentation of the consequence operator, namely transitivity, is closer to
the initial notion given by Bolzano (see [266]).
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It is worthwhile to observe that we do not have in general that C(∅) = ∅ and that
C(Γ1 ∪ Γ2) ⊆ C(Γ1) ∪ C(Γ2). Hence, the consequence operator is not in general a
Kuratowski operator (see [160]). For more details about the relationship between
logic and closure spaces see [198]. See also [280].

A consequence system is said to be compact or finitary if

C(Γ) =
⋃

Φ∈℘finΓ

C(Φ).

Compact consequence systems are also known as algebraic systems (as in [77]).

Example 1.1.3 An example of a consequence system is 〈LP,C〉 where LP is the
set of propositional formulas over the set P and C(Γ) is the set of all formulas that
are derived from Γ using a Hilbert calculus for classical propositional logic.

Another example of a consequence system is 〈L′
P
,C′〉 where L′

P
is the set of

modal propositional formulas over the set P and C′(Γ) is the set of all formulas
that are derived from Γ using a Hilbert calculus for modal propositional logic. ∇

Another characterization of consequence operators can be given. But first we
prove the following auxiliary result.

Lemma 1.1.4 Let 〈L,C 〉 be a consequence system. Then

C(Γ) = C(C(Γ))

for every Γ ⊆ L.

Proof. Use the idempotence for one side and extensiveness and monotonicity
conditions for the other. �

We note that this property is in fact idempotence in the usual algebraic sense.

Proposition 1.1.5 The map C : ℘L→ ℘L is a consequence operator if and only
if the following condition holds: (a) Φ ⊆ C(Γ) if and only if (b) C(Φ) ⊆ C(Γ), for
every Γ,Φ ⊆ L.

Proof. Assume that C : ℘L → ℘L is a consequence operator. Assume also that
Φ ⊆ C(Γ). By monotonicity C(Φ) ⊆ C(C(Γ)) and so C(Φ) ⊆ C(Γ) follows by
idempotence. Suppose that C(Φ) ⊆ C(Γ), then using extensiveness Φ ⊆ C(Φ), we
get Φ ⊆ C(Γ).

Conversely, assume that the condition holds. We prove that C is a consequence
operator. Extensiveness: from C(Γ) ⊆ C(Γ) we get Γ ⊆ C(Γ) using the fact
that (b) implies (a). Monotonicity: using extensiveness Γ1 ⊆ Γ2 ⊆ C(Γ2) and so
C(Γ1) ⊆ C(Γ2) using the fact that (a) implies (b). Idempotence: from C(Γ) ⊆ C(Γ)
we get C(C(Γ)) ⊆ C(Γ), using the fact that (a) implies (b). �
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We observe that consequence systems do not cover every possible logic that one
can think. Namely, the concept leaves outside logics where sets of formulas are
not considered like for instance in linear logic [125]. It seems that for covering this
kind of logics one needs a more general notion.

Consequence systems can be related. We introduce a weakness relation between
consequence systems.

Definition 1.1.6 The consequence system 〈L,C 〉 is weaker than consequence sys-
tem 〈L′,C′ 〉, written

〈L,C〉 ≤ 〈L′,C′〉
if L ⊆ L′ and C(Γ) ⊆ C′(Γ) for every subset Γ of L. ∇

We also say that a consequence system 〈L,C 〉 is partially weaker than conse-
quence system 〈L′,C′ 〉, written

〈L,C〉 ≤p 〈L′,C′〉

if L ⊆ L′ and C(∅) ⊆ C′(∅). When C is a syntactic operator, this means that
all theorems of C are also theorems of C′ and when C is a semantic operator, this
means that all valid formulas of C are also valid formulas of C′. Of course, if C ≤ C′

then C ≤p C′ but not the other way around.

Example 1.1.7 Recall the consequence systems 〈LP,C〉 and 〈L′
P
,C′〉 presented in

Example 1.1.3. We have that 〈LP,C〉 ≤ 〈L′
P
,C′〉. ∇

We can also relate consequence systems that have completely different languages
using morphisms.

Definition 1.1.8 A consequence system morphism h : 〈L,C 〉 → 〈L′,C′ 〉 is a map
h : L→ L′ such that

h(C(Γ)) ⊆ C′(h(Γ))

for every Γ ⊆ L. ∇

That is, the image of every consequence of a set of formulas is a consequence of
the image of the set. We observe that the converse is not always true, namely when
h : L→ L′ is not injective. Consequence systems and their morphisms constitute
a category Csy.

Note that when 〈L,C〉 ≤ 〈L′,C′〉 then there is a consequence system morphism
from 〈L,C〉 to 〈L′,C′〉 where the map from L to L′ is just an inclusion.

An alternative characterization is as follows. We start by introducing some
notation. Given a map h : L → L′, we denote by h−1(Γ′) the set of formulas
{γ ∈ L : h(γ) ∈ Γ′} for each Γ′ ⊆ L′.
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Proposition 1.1.9 Let 〈L,C 〉 and 〈L′,C′ 〉 be consequence systems. A map
between formulas h : L → L′ is a consequence system morphism h : 〈L,C 〉 →
〈L′,C′ 〉 if and only if

C(h−1(Γ′)) ⊆ h−1(C′(Γ′))

for every Γ′ ⊆ L′.

Proof. Assume that h is a consequence system morphism. Let ϕ ∈ C(h−1(Γ′)).
Then h(ϕ) ∈ h(C(h−1(Γ′))) and since h is a morphism h(ϕ) ∈ C′(h(h−1(Γ′))). On
the other hand, h(h−1(Γ′)) ⊆ Γ′ hence, by monotonicity, C′(h(h−1(Γ′))) ⊆ C′(Γ′).
Therefore, h(ϕ) ∈ C′(Γ′) and so ϕ ∈ h−1(C′(Γ′)).
Assume now that C(h−1(Γ′)) ⊆ h−1(C′(Γ′)) for every Γ′. Let ϕ ∈ C(Γ). Then
ϕ ∈ C(h−1(h(Γ))). By the hypothesis, C(h−1(h(Γ))) ⊆ h−1(C′(h(Γ))), hence
ϕ ∈ h−1(C′(h(Γ))) (since Γ ⊆ h−1(h(Γ)) and so C(Γ) ⊆ C(h−1(h(Γ))) by mono-
tonicity), then h(ϕ) ∈ h(h−1(C′(h(Γ)))) and so h(ϕ) ∈ C′(h(Γ)). �

This characterization is of course related to the notion of continuous map in
topological spaces (see [160]).

It is worthwhile to say what is the union of consequence systems. We will see
below that most combination mechanisms (including for instance fibring) do not
correspond to the union of consequence systems.

Definition 1.1.10 Let {Ci}i∈I , where Ci = 〈Li,Ci〉, be a family of consequence
systems. Their union is the following consequence system:

C = 〈
⋃

i∈I
Li,C〉

where C(
⋃
i∈I Γi) is

⋃
i∈I Ci(Γi). ∇

Instead of presenting consequence via an operator we can look at consequence
as a binary relation between the set of all sets of formulas and the set of formulas.
Given a binary relation S ⊆ A×B, we may write aSb whenever 〈a, b〉 ∈ S.

Then, a consequence relation over L is a set

R ⊆ ℘L× L
satisfying the following postulates: (i) if ϕ ∈ Γ then ΓRϕ; (ii) if ΨRϕ e ΓRψ for
every ψ ∈ Ψ then ΓRϕ; (iii) if Γ1Rϕ and Γ1 ⊆ Γ2 then Γ2Rϕ. A consequence
operator C : ℘L → ℘L induces a consequence relation RC such that, for every
Γ ⊆ L and every ϕ ∈ L,

ΓRCϕ if and only if ϕ ∈ C(Γ).

A consequence relation R induces a consequence operator CR such that, for every
Γ ⊆ L,

CR(Γ) = {ϕ ∈ L : ΓRϕ}.
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It is worth noting that the map C → RC is the inverse of the map R → CR,
and vice-versa. Thus, a consequence system can be defined indistinctly as a pair
〈L,C 〉 such that C is a consequence operator over L, or as a pair 〈L,R 〉 such that
R is a consequence relation over L. Note that 〈L,R 〉 is weaker than 〈L′,R′ 〉 if and
only if L ⊆ L′ and R ⊆ R′.

Sometimes we may write ΓR instead of CR(Γ).
For the purpose of most combination mechanisms, the consequence systems are

such that their language is always generated from a family of connectives. Hence,
we do not include L in the definition of a consequence system, but instead we use
a signature C defining the family of connectives in each case. As an illustration
we define propositional based signatures and the induced languages.

Definition 1.1.11 A propositional based signature is any family of sets

C = {Ck}k∈N

such that Ci ∩ Cj = ∅ if i �= j. ∇

The elements of the set Ck are called k-ary connectives or connectives of arity
k. In particular, the elements of C0 are called constants.

We will consider unions of propositional signatures. Given propositional signa-
tures C′ and C′′, their union is the signature

C′ ∪ C′′

where (C′∪C′′)k = C′
k∪C′′

k for each k ∈ N. We use C′\C′′ to denote the signature
such that (C′ \ C′′)k = C′

k \ C′′
k for each k ∈ N.

Given two signatures C e C′, we say that C is contained in C′, denoted by

C ≤ C′

if Ck ⊆ C′
k, for every k ∈ N. In some situations, we would like to include a set P

of propositional constants. Then we would say that P ⊆ C0.
We assume that Ξ is a set of schema variables. Schema variables play an im-

portant role when combining logics, in particular for deduction, as we explain in
Chapter 2.

Definition 1.1.12 Let C = {Ck}k∈N be a signature. The propositional based
language generated by C is the set L(C) defined as the least set L(C) that satisfies
the following properties:

• Ξ ⊆ L(C);

• (c(ϕ1, . . . , ϕk)) ∈ L(C) whenever k ∈ N, c ∈ Ck and ϕ1, . . . , ϕk ∈ L(C). ∇



1.1. CONSEQUENCE SYSTEMS 9

The elements of L(C) are called formulas over C. In particular, C0 ⊆ L(C).
Typical deductive systems such as Hilbert, tableau, sequent and natural deduc-

tion calculi induce consequence systems. We can look at each kind of deductive
system as a presentation of a consequence system. Observe that it is quite common
to work with these presentations instead of working with the consequence systems
themselves. That is the case of most chapters in this book.

We illustrate how a Hilbert calculus induce a consequence system. We need to
define Hilbert calculus, substitution and derivation.

Definition 1.1.13 A Hilbert calculus is a pair

H = 〈C,R〉

such that:

• C is a signature;

• R is a set inference rules, that is, a set of pairs 〈Δ, ψ〉 where Δ ⊆ L(C) is a
finite set and ψ ∈ L(C). ∇

When Δ = ∅ we say that the inference rule is an axiom. Otherwise it is said
to be a rule. Sometimes when introducing axioms we may, for simplicity, indicate
only the formula. We now define the notion of derivation in a Hilbert calculus.
Before we have to introduce the notion of substitution.

The objective of a substitution is to replace schema variables by formulas. A
substitution is a map

σ : Ξ → L(C).

Substitutions can be extended to formulas in a natural way. We denote by σ(ϕ)
the formula that results from substituting each schema variable ξ in ϕ by σ(ξ).
Moreover, substitutions can be extended to sets of formulas. We denote by σ(Γ)
the set of formulas {σ(γ) : γ ∈ Γ}.

Definition 1.1.14 A derivation in H from a set Γ ⊆ L(C) is a sequence

ϕ1 . . . ϕn

such that for i = 1, . . . , n each ϕi is either an element of Γ or there is a substitution
σ and an inference rule 〈Δ, ψ〉 in H such that σ(ψ) is ϕi and σ(δ) is ϕj for some
j < i, for every δ ∈ Δ.

We also say that ϕn is derived from Γ and use the following notation

Γ H ϕn.

∇
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A Hilbert calculus H induces a consequence system

C(H) = 〈C,H〉
where, for each Γ ⊆ L(C), Γ�H is the set {ϕ ∈ L(C) : Γ H ϕ}. Observe that this
consequence system is compact. It is also structural in the following sense.

A consequence system is said to be structural if, for every substitution σ we
have that:

σ(C(Γ)) ⊆ C(σ(Γ)).

That is, if a consequence system C is structural, then σ is a consequence system
endomorphism (from C to C).

Consequence systems that are compact and structural are called standard in the
terminology of [280]. The notions of compact, structural and standard consequence
systems can be expressed in terms of consequence relations in the obvious way.

Similarly, semantic entailments are also consequence operators. For instance,
propositional entailment associated with valuations and modal entailment associ-
ated to Kripke structures are examples of consequence operators. Semantic struc-
tures can also be seen as presentations of the semantic entailment.

Consequence operators are relevant in all chapters of the book. In Chapter 2,
we introduce a Hilbert consequence operator generated by a Hilbert calculus. In
Chapter 3, we introduce a semantic consequence operator. We also introduce the
notion of soundness, as saying that the set of Hilbert consequences is included in
the set of semantic consequences, and the notion of completeness, as stating that
the set of semantic consequences is included in the set of Hilbert consequences.
In Chapter 5, consequence systems are used in another way. When considering
logics presented in a different way, say one with a Hilbert calculus and the other
via a sequent calculus, we can define their fibring by fibring the induced conse-
quence systems. We will also define other relations between consequence systems
in Chapter 9.

1.2 Splicing and splitting

To start with, it is convenient to keep in mind that, in order to combine logics,
we intend to depart from simple logics to obtain a more complex one. Following
the terminology of [47], this process, by which a bunch of logics is synthesized
forming a new logic, is called splicing logics. A prototypical case of splicing is
the method of fibring, introduced in [104] (see also [108]). On the other hand,
we may think about an analytic procedure that permits us to decompose a given
logic into simpler components. This kind of process was called splitting in [47]. A
prototypical case of splitting occurs when one succeeds in describing a given logic
in terms of simpler components by means of translating the original logic into
a collection of simpler, auxiliary logics, using what is called possible-translations
semantics. This mechanism is introduced in [45] and further developed in [196]
and [46].
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We may thus consider two complementary approaches in the field of combining
logic systems:

• Splicing, combining or composing logics: a bottom–up, synthetic approach
presented in Figure 1.1. There are several methods to combine logics. Each
method can be seen as an operation on some class of logics. In the figure,
we start with logics L1 and L2 in some class of logics, and using the binary
operation � we obtain a new logic L = L1 � L2.

L

L1

i1

��������������� L2

i2

���������������

Figure 1.1: L is synthesized from L1 and L2

The arrows i1 and i2 indicate that the component logics should be related
with their combination. In general, these arrows induce consequence system
morphisms from the component logics to their combination, meaning that
derivation and entailment are preserved.

• Splitting, decombining or decomposing logics: a top–down, analytic ap-
proach presented in Figure 1.2. In this case we start with logic L and try
to find an operation � and components L1 and L2 such that L = L1 � L2.
The arrows f1 and f2 indicate that the given logic should be related with the
components. In general, these arrows induce consequence system morphisms
from the given logic to the components.

L
f1

�����
���

���
���

�
f2

����
���

���
���

��

L1 L2

Figure 1.2: L is analyzed into L1 and L2

Splicing can be applied to more than two logics. It is worthwhile noting that
splitting can involve an infinite number of components as we discuss below.

The known splicing mechanisms, as we will see throughout the book, have an
important property. Once we choose a mechanism and the components L1 and L2,
the resulting logic L is, in most cases, immediately defined. On the other hand,
the known splitting mechanisms are different in this respect. Once we choose
a mechanism and a logic L, one can have several possibilities of choosing the
components.
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The splicing and the splitting mechanisms can be combined as we explain in
Chapter 11 where we briefly discuss some applications. There we will discuss how
one can use both of them if there is need to do so.

Among the most challenging problems in combination of logics we can refer to
preservation of properties. For example, it is interesting to investigate if a logic
resulting from a combination has a certain property, assuming that the original
logics have that property. In many cases, one has to impose sufficient conditions for
the preservation. The most relevant preservation results are related to soundness
and completeness, interpolation and decidability.

Several combination mechanisms have been investigated, namely fusion of modal
logics, product of modal logics, fibring by functions of modal logics, algebraic
fibring, temporalization and parameterization, synchronization, institutions and
parchments. They are targeted to different classes of logics and assume different
degrees of abstraction. They all have in common that, in the end, we are dealing
with consequence systems either with a syntactic or with a semantic nature. That
is, in all the cases there are consequence operators that are extensive, monotonic
and idempotent.

In this section, we only briefly describe three combination mechanisms: fusion,
product and fibring by functions of modal logics. They will be used as examples in
other chapters. For a complete description of fusion and product we refer to [113]
and for a in depth treatment of fibring by functions see [108]. Algebraic fibring
will be discussed in many guises throughout the book. The other combination
mechanisms were triggered by applications in software specification and will be
discussed in Chapter 11.

1.2.1 Fusion of modal logics

Fusion of normal modal logics (see [259]) is a binary operation on the class of
normal modal logics endowed with Kripke semantics (introduced by Samuel Kripke
in [174]) and Hilbert calculi, that we now explain with some detail. Recall that a
Kripke structure is a triple

〈W,R, V 〉
where W is a non-empty set (the set of worlds), R ⊆W 2 is a binary relation (the
accessibility relation) and V : P → ℘W is a map (the valuation).

Consider two normal modal logics L′ and L′′ with the following characteristics:

• both have the same set P of zero-ary connectives (propositional constants),
a unary connective ¬ and a binary connective ⇒;

• a unary connective �′ and �′′ for the logics L′ and L′′, respectively;

• M ′ and M ′′ are classes of Kripke structures for L′ and L′′, respectively;

• the Hilbert calculi H ′ and H ′′ include, besides the propositional part, the
following axioms and rules:
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– 〈∅, ((�′(ξ1 ⇒ ξ2))⇒ ((�′ξ1)⇒ (�′ξ2)))〉 K axiom for L′;

– 〈∅, ((�′′(ξ1 ⇒ ξ2))⇒ ((�′′ξ1)⇒ (�′′ξ2)))〉 K axiom for L′′;

– 〈{ξ}, (�′ξ)〉 necessitation rule for L′;

– 〈{ξ}, (�′′ξ)〉 necessitation rule for L′′.

The fusion of L′ and L′′ is a normal bimodal logic L with two boxes that behave
independently, except when otherwise imposed. That is, L is characterized as
follows:

• a set P of zero-ary connectives (propositional constants), a unary connective
¬, a binary connective ⇒ and two unary connectives �′ and �′′;

• M is the class of all Kripke structures of the form 〈W,R′, R′′, V 〉 where
〈W,R′, V 〉 and 〈W,R′′, V 〉 are Kripke structures of L′ and L′′, respectively;

• the Hilbert calculus H includes all the rules of the Hilbert calculi of the
original logics and hence the following ones:

– 〈∅, ((�′(ξ1 ⇒ ξ2))⇒ ((�′ξ1)⇒ (�′ξ2)))〉 K axiom for L′;

– 〈∅, ((�′′(ξ1 ⇒ ξ2))⇒ ((�′′ξ1)⇒ (�′′ξ2)))〉 K axiom for L′′;

– 〈{ξ}, (�′ξ)〉 necessitation rule for L′;

– 〈{ξ}, (�′′ξ)〉 necessitation rule for L′′.

Each model of the fusion corresponds to a model 〈W,R′, V ′〉 in L′ and to a
model 〈W,R′′, V ′′〉 in L′′. That is, in the fusion we do not include models where
the set W (of worlds) is different. In technical words, each model of the fusion
should have as a reduct a model of L′ and a model of L′′.

We briefly describe how a formula in the fusion is evaluated. Given the model
〈W,R′, R′′, V 〉 in the fusion and w ∈ W we have that the formula (�′(�′′p)) is
satisfied by 〈W,R′, R′′, V 〉 at w, denoted by

〈W,R′, R′′, V 〉, w � (�′(�′′p))

if there is z ∈W such that:

• 〈W,R′, R′′, V 〉, z � (�′′p) and wR′z;

• Nz ⊆ V (p) where Nz = {u ∈ W : zR′′u}.
We refer to Figure 1.3 for details, where ϕ′

p is (�′(�′′p)) and ϕ′′
p is (�′′p).

Observe that the formula

(�′′((�′(ξ1 ⇒ ξ2))⇒ ((�′ξ1)⇒ (�′ξ2))))

is a theorem of the fusion. That is, we can derive this formulas from the K axiom
for L′ and the necessitation rule for L′′.

We synthesize the properties of fusion in the following way:
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<W,R',R'',V>

Nz
R' R''w z

pϕ′p ϕ′′p

Figure 1.3: Evaluating the formula (�′(�′′p)) in a fusion structure

• homogeneous combination mechanism at the deductive level: both original
logics are presented by Hilbert calculi;

• homogeneous combination mechanism at the semantic level: both original
logics are presented by Kripke structures;

• algorithmic combination of logics at the deductive level: given the Hilbert
calculi for the original logics, we know how to define the Hilbert calculus for
the fusion;

• algorithmic combination of logics at the semantic level: given the classes of
Kripke structures for the original logics, we know how to define the class of
Kripke structures for the fusion.

The algorithmic nature of fusion also means that no interaction is stated between
�′ and �′′. We will see in Chapter 2 and in Chapter 3 that fusion is a canonical
construction in the sense that it is minimal in some class of logics.

It is easy to conclude that the definition of L′ above induces a consequence
system

C(H ′) = 〈L(C′),H′〉
where C′ is the signature of L′ and (Γ′)�H′ is the set of formulas that can be
derived from Γ′, using the Hilbert calculus for L′. In a similar way, we can define
C′′(H ′′) = 〈L(C′′),H′′ 〉 and C(H) = 〈L(C′ ∪ C′′),H〉. Then we have:

C(H ′) ≤ C(H) and C(H ′′) ≤ C(H).

The semantic characterizations of L′, L′′ and L also induce consequence systems.
Again, the consequence systems for L′ and L′′ are weaker than the one for L.

At first sight, this may seem a very simple combination mechanism. However, it
is interesting enough for seeing that preservation of properties is not an easy issue.
An example of a preservation problem can be presented in the following way.
Assume that L′ and L′′ are weakly complete logics with respect to the class of
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frames (that is, every valid formula is a theorem). Is the logic L resulting from the
fusion also weakly complete with respect to the class of fusion frames? In fusion,
there are preservation results for weak completeness, uniform Craig interpolation
(for theoremhood) and decidability (see [281, 169]).

Fusion of non-normal modal logics was also investigated in [92], namely dis-
cussing preservation of weak completeness via a technique that extends the one
used in the normal case.

It is worthwhile noting that there is no notion of fusion of a normal modal logic
with a non-normal modal logic. Such a combination can, however, be defined in
the context of algebraic fibring.

It is also worthwhile mentioning that the interested reader should also consult
[99] where the notion of fusion was anticipated through some examples of combin-
ing alethic and deontic logics with philosophical interest.

1.2.2 Product of modal logics

We now concentrate on another mechanism of combination: the product of logics.
The product of modal logics is a binary operation that is very useful when one
wants, for example, to represent time-space information. Products were introduced
in [235, 236]. We consider the same setting as we did for fusion of modal logics.
The signature and the semantic counterparts of the product of L′ and L′′ is as
follows:

• a set P of zero-ary connectives (propositional constants), a unary connective
¬, a binary connective ⇒ and two unary connectives �′ and �′′;

• M is the class of product structures of the form

〈W ′ ×W ′′, R
′
, R

′′
, V ′ × V ′′〉

where 〈W,R′, V ′〉 and 〈W,R′′, V ′′〉 are Kripke structures of L′ and L′′, re-
spectively and where R

′
, R

′′ ⊆ (W ′ ×W ′′)2 are defined as follows:

– 〈w′
1, w

′′〉R′〈w′
2 , w

′′〉 if w′
1R

′w′
2;

– 〈w′, w′′
1 〉R

′′〈w′, w′′
2 〉 if w′′

1R
′′w′′

2 ;

– (V ′ × V ′′)(p) = V ′(p)× V ′′(p).

The striking aspect about products is that some modal formulas are valid in every
product frame. Namely the following will show that some interaction exists be-
tween �′ and �′′ and �′ and �′′ (recall that �′ϕ is an abbreviation of (¬(�′(¬ϕ)))
and similarly with respect to �′′):

• ((�′(�′′p))⇒ (�′′(�′p))) commutativity 1;

• ((�′′(�′p))⇒ (�′(�′′p))) commutativity 2;


