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IUTAM SYMPOSIUM ON HAMILTONIAN
DYNAMICS, VORTEX STRUCTURES
AND TURBULENCE, MOSCOW,
25–30 AUGUST 2006

Professor Keith Moffatt, Vice-President, IUTAM

WELCOME REMARKS

It is my great honour to welcome you on behalf of the Bureau of IUTAM to
this Symposium on Hamiltonian dynamics, vortex structures and turbulence.
The Symposium has been in preparation for two years, and I congratulate
our hosts here at the Steklov Institute of the Russian Academy of Sciences
for having prepared an excellent and wide-ranging programme, and for having
succeeded in attracting such a distinguished gathering to debate problems in
fluid dynamics many of which have a long history, yet still today present many
challenges of a fundamental nature.

The letters IUTAM, as you all know, stand for the International Union
of Theoretical and Applied Mechanics. This Union is one of the International
Scientific Union members of ICSU, the International Council for Science,
which this year celebrates its 75th anniversary. The roots of IUTAM itself
go back to the early Congresses in Mechanics, the first of which was held
in Delft in the Netherlands, in 1924. IUTAM was formally established as an
International Union at the 7th Congress, which was held in London in 1948.
The 13th Congress of Theoretical and Applied Mechanics was held here
in Moscow in 1972, under the Presidency of the great Mushkhelishvili. The
most recent 21st Congress was held in Warsaw in 2004, and the next will be
held in Adelaide, South Australia, in 2008.

In addition to the Congresses, IUTAM also sponsors its Symposia, about
8 per year on average, covering all branches of fluid and solid mechanics,
and rigid body dynamics. The present Symposium follows in a strong tradition
of Symposia dealing with aspects of vortex dynamics and turbulence. I note
just a few of the most relevant that have been held in the last few years, for
all of which published Proceedings are now available:

1999, Sedona, Arizona, USA:
Laminar-Turbulent Transition
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1999, Hayama, Japan:
Geometry and Statistics of Turbulence
2000, Limerick, Ireland:
Mathematical Modelling of Atmosphere and Ocean Dynamics
2000, Marseille, France:
Bluff-Body Wakes and Vortex-induced Vibration
2001, Kingston, Ontario, Canada:
Turbulent Mixing and Combustion
2001, Zakopane, Poland:
Tubes, Sheets and Singularities in Fluid Dynamics
2002, Princeton, NJ, USA:
Reynolds Number Scaling in Turbulent Flow
2004, Manchester, UK:
Non-Uniqueness of Solutions to the Navier–Stokes Equations and
their Connection with Laminar-Turbulent Transition
2004, Kyoto, Japan:
Elementary Vortices and Coherent Structures: Significance in Tur-
bulence Dynamics
2004, Bangalore, India:
Laminar–Turbulent Transition

This remarkable sequence of meetings reflects the great continuing chal-
lenge of the subject of vortex dynamics and turbulence, and its multifarious
applications. For the present Symposium, it is the Hamiltonian aspects that
have been singled out for special study, but I expect that we will not in fact
be too constrained by this boundary condition, and it is evident from the pro-
gramme that non-Hamiltonian aspects will play an equally prominent part
in our discussions.

This is my fifth visit to this great city, although my first since the great
changes wrought by perestroika in 1991. I came first in 1965 for the famous
meeting on Atmospheric Turbulence and Radio Wave Propagation, hosted
by A. M. Obukhov and Akiva Yaglom, and their colleagues of the Institute
of Atmospheric Physics. I remember that we drank some excellent vodka on
that occasion, and I look forward to renewing my acquaintance with that
nourishing liquid. I was delighted to discover recently that the paper that
I presented at that meeting on the interaction of turbulence with strong wind
shear still has some relevance today.

On behalf of IUTAM, I welcome you to this Symposium, and I wish you
all a happy and productive week here in Moscow.



VORTEX DYNAMICS: THE LEGACY
OF HELMHOLTZ AND KELVIN

Keith Moffatt

Trinity College, Cambridge, CB2 1TQ, UK
hkm2@damtp.cam.ac.u

Abstract. The year 2007 will mark the centenary of the death of William Thomson
(Lord Kelvin), one of the great nineteenth-century pioneers of vortex dynamics.
Kelvin was inspired by Hermann von Helmholtz’s [7] famous paper “Ueber Integrale
der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”,
translated by P.G. Tait and published in English [17] under the title “On Integrals
of the Hydrodynamical Equations, which Express Vortex-motion”. Kelvin conceived
his “Vortex theory of Atoms” (1867–1875) on the basis that, since vortex lines
are frozen in the flow of an ideal fluid, their topology should be invariant. We
now know that this invariance is encapsulated in the conservation of helicity in
suitably defined Lagrangian fluid subdomains. Kelvin’s efforts were thwarted by
the realisation that all but the very simplest three-dimensional vortex structures
are dynamically unstable, and his vortex theory of atoms perished in consequence
before the dawn of the twentieth century. The course of scientific history might
have been very different if Kelvin had formulated his theory in terms of magnetic
flux tubes in a perfectly conducting fluid, instead of vortex tubes in an ideal fluid;
for in this case, stable knotted structures, of just the kind that Kelvin envisaged,
do exist, and their spectrum of characteristic frequencies can be readily defined.
This introductory lecture will review some aspects of these seminal contributions of
Helmholtz and Kelvin, in the light of current knowledge.

Keywords: Knotted vortex tubes, vortex filaments, magnetohydrodynamics,
magnetic flux tubes

1. The fluid dynamical origins of knot theory
and topology

The origins of vortex dynamics lie in the seminal work of Hermann
von Helmholtz [7], who (i) introduced the concepts of vortex line and vortex
filament (the fluid bounded by the vortex lines passing through the points
of an “infinitely small closed curve”), (ii) derived the vorticity equation for
an ideal incompressible fluid, and (iii) demonstrated that vortex lines are

1

A.V. Borisov et al. (eds.), IUTAM Symposium on Hamiltonian Dynamics,
Vortex Structures, Turbulence, 1–10.
c© 2008 Springer.
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transported with the fluid with intensification proportional to the stretching
of its constituent line-elements. This work provided the basis for the bold,
though ultimately erroneous, “vortex atom” conjecture of William Thomson
(Lord Kelvin) [21, 22], Professor of Natural Philosophy at the University of
Glasgow, who sought to explain the structure and spectra of atoms of all the
known elements in terms of knotted and linked vortex filaments in a hypo-
thetical background ideal fluid “ether” permeating the universe. It was this
conjecture that led Peter Guthrie Tait, Kelvin’s opposite number at the nearby
University of Edinburgh, to develop techniques for the classification of knots
of low crossing number (the minimum number of double points in any plane
projection of a knot) [18–20] and thus to sow the seeds for the development
of topology as a recognisable branch of modern mathematics. These develop-
ments of the period 1858–1885 have been discussed in depth by Epple [6], who
conveys well the excitement and drama of this remarkable phase of Victorian
science.

2. Tait’s role in attracting Kelvin’s interest

Helmholtz’s work became more widely known when it was republished in
English translation by Tait [17], who indicates in a concluding paragraph
that his version “does not pretend to be an exact translation” but, follow-
ing revisions that had been made by Helmholtz, “may be accepted as rep-
resenting the spirit of the original”. Tait had made this translation as soon
as he received the German version in 1858, and, stimulated by Helmholtz’s
concluding remarks concerning the behaviour of vortex rings of small cross
section, developed a technique for the experimental demonstration of vortex
ring propagation, and of the “leap-frogging” of vortex rings propagating in
succession along a common axis of symmetry. Although Kelvin had known of
Helmholtz’s work in 1858, it was only when Tait, in his Edinburgh labora-
tory in 1867, showed him his vortex ring demonstration that he was in turn
stimulated to undertake his own extensive studies in vortex dynamics.

The second paragraph of Helmholtz’s paper (in Tait’s translation) deserves
comment. He writes:

Yet Euler [Histoire de l’Académie des Sciences de Berlin 1755, p. 292] has
distinctly pointed out that there are cases of fluid motion in which no velocity-
potential exists, — for instance, the rotation of a fluid about an axis when
every element has the same angular velocity. Among the forces which can pro-
duce such motions may be named magnetic attractions upon a fluid conducting
electric currents, and particularly friction, whether among the elements of the
fluid or against fixed bodies. The effect of fluid friction has not hitherto been
mathematically defined; yet it is very great, and, except in the case of in-
definitely small oscillations, produces most marked differences between theory
and fact. The difficulty of defining this effect, and of finding expressions for
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its measurement, mainly consisted in the fact that no idea had been formed
of the species of motion which friction produces in fluids. Hence it appeared
to me to be of importance to investigate the species of motion for which there
is no velocity-potential.

The mention of what amounts to the rotationality of the Lorentz force
(magnetic attractions upon a fluid conducting electric currents) here shows
remarkable foresight, as does recognition of the crucial role of internal friction
(i.e. viscosity). It is evident however that Helmholtz was unaware of the epic
work of Stokes [15,16] in which the effects of viscosity in a fluid continuum had
been analysed in considerable detail. Tait adds a footnote to his translation
in which he gently draws attention to this omission:

A portion of the contents of the paper had been anticipated by Professor
Stokes in various excellent papers in the Cambridge Philosophical Transac-
tions; but the discovery of the nature and motions of vortex-filaments is en-
tirely novel, and of great consequence.

3. The analogy between vorticity and current as source
fields

I was myself a student at the University of Edinburgh from 1953 to 1957 in the
(then) Tait Institute for Mathematical Physics, and I recall seeing demonstra-
tions with the “vortex ring generator” (sometimes known as a “Kelvin box”
though perhaps more appropriately described as a “Tait box”) in connex-
ion with the third-year course on theoretical hydrodynamics given by Robin
Schlapp that I attended exactly 50 years ago. The traditional style of presen-
tation of this material, with Lamb’s Hydrodynamics as the one and only rec-
ommended treatise, had been well maintained and cultivated since the time
of Kelvin and Tait. We were taught a parallel course on Electromagnetism
by Nicholas Kemmer (successor in 1953 to Max Born in the Edinburgh Chair
of Natural Philosophy), in which context the name of James Clerk Maxwell,
born and schooled in Edinburgh, and later first Cavendish Professor of Ex-
perimental Physics at the University of Cambridge (1871–1879), was equally
venerated. The fact that the relationship between vortex filaments in fluid
mechanics and the velocity field to which they gave rise (via the Biot–Savart
Law) is the same as that between currents in conducting wires (i.e. “current
filaments”) and the magnetic field to which they give rise had been noted by
Helmholtz and was equally familiar to Kelvin, who was in regular correspon-
dence with Maxwell on this and related topics. We now know, as I shall dis-
cuss below, that such interdisciplinary analogies admit powerful exploitation
in a manner that was not recognised until the development of magnetohy-
drodynamics nearly a century later. I propose to argue that, had Kelvin con-
ceived of the ether as a perfectly conducting fluid medium supporting a tangle
of magnetic flux tubes rather than as an ideal (inviscid) medium supporting
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a tangle of vortex filaments, then his theory would have been much more ro-
bust, and the development of natural philosophy (i.e. physics) in the early
twentieth century might have followed a very different course.

4. The (imperfect) analogy between vorticity
and magnetic field

The curious thing is that the basic principles underlying magnetohydrody-
namics (MHD) were already known by the mid-nineteenth century, well before
Maxwell introduced the “displacement current” that was needed to guarantee
charge conservation; this is neglected in MHD, current j being assumed instan-
taneously related to magnetic field B by Ampère’s Law: j = curlB (in “Alfvén
units” for which B has the dimensions of a velocity). When combined with
Faraday’s Law of Induction, and Ohm’s Law in a medium of resistivity η mov-
ing with velocity v, this yields the well-known “induction equation” for the
evolution of magnetic field:

∂B
∂t

= curl(v ×B) + η∇2B. (1)

This bears an obvious superficial similarity to the vorticity equation

∂ω

∂t
= curl(u× ω) + ν∇2ω (2)

in a non-conducting medium of kinematic viscosity ν, superficial because
whereas ω is related to u in (2) by ω = curlu, B bears no such relation
to the transporting velocity field v in (1). This imperfection in the analogy
between B and ω does not however vitiate an important conclusion: just
as (2) implies that the ω-lines (i.e. vortex lines) are transported with the fluid
when ν = 0, so (1) implies that the B-lines (i.e. Faraday’s magnetic lines
of force) are so transported when η = 0. Thus, conservation of topology
of the B-field in a perfectly conducting fluid could have provided an equally
good starting point for Kelvin (rather than conservation of topology of the
ω-field in an inviscid fluid) in formulating a theory of the structure and spec-
tra of atoms, and indeed a more plausible one since, as was recognised early
in the twentieth century, atoms do involve microscopic current circuits (con-
ventionally pictured as electrons orbiting in their various shells around a nu-
cleus) and their associated magnetic fields.

5. The long-delayed development
of magnetohydrodynamics

Thus all the principles were available in the 1860s for such a complementary
approach, but Kelvin’s preoccupation was with vortices, while on the electro-
magnetic front, Maxwell’s preoccupation was with providing a unified theory
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of electricity and magnetism. MHD was a subject waiting to be discovered,
but it was not until the work of Alfven [1] that the subject was in the event de-
veloped to the point at which the crucial “frozen-in” property of the magnetic
field in a perfectly conducting fluid was finally recognised. Soon after this, the
analogy between vorticity and magnetic field referred to above was recognised
and exploited by Batchelor [4] in a first investigation of the effect of turbu-
lence on a random magnetic field. The explosive development of MHD in the
1950s and 1960s was greatly stimulated by technological problems associated
with controlled thermonuclear fusion, as well as with an expanding recogni-
tion of its vital role in understanding fundamental processes in astrophysics
and geophysics.

6. Helicity: the bridge between fluid mechanics
and topology

Kelvin’s vision of the role of knotted or linked vortex tubes in a hypothetical
ether was largely qualitative in character. He correctly perceived that knots
and linkages would be conserved by virtue of the frozen-in property of vortex
lines, but he had no quantitative measure of such knottedness or linkage.
The simplest such quantitative measure for any localised vorticity distribution
is in fact provided by its helicity, the integrated scalar product of the vorticity
field ω and the velocity u to which it gives rise:

H =
∫

u · ωdV. (3)

This quantity is an invariant of the Euler equations, either for an incom-
pressible fluid or for a compressible fluid under the barotropic condition that
pressure p is a function of density ρ alone: p = p(ρ) [8,13]. For the prototype
linkage of two vortex tubes of circulation κ1 and κ2 (each having no internal
twist), centred on unknotted but possibly linked closed curves C1 and C2,
the helicity may be easily evaluated in the form

H = ±2nκ1κ2, (4)

where the plus or minus sign is chosen according as whether the linkage
is right- or left-handed, and n is an integer, actually the Gauss linking number
of C1 and C2. It is here that the link between topology and fluid dynamics
is at its most transparent.

7. Knotted vortex tubes

For a single vortex tube T of circulation κ whose axis C is in the form of a knot
of type K, the situation is more subtle. The helicity in this case is given by
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H = κ2(Wr + Tw), (5)

where Wr and Tw are respectively the writhe of C and twist of T [12].
The writhe is given by a double integral round C analogous to the Gauss
integral, and admits interpretation as the sum of the (signed) crossings of the
knot averaged over all projections. The twist can be decomposed in the form

Tw =
1
2π

(∫
τ(s)ds+N

)
, (6)

where τ(s) is the torsion of C as a function of arc-length s, and N represents
the intrinsic twist of vortex lines around the axis C as they traverse the circuit
round the tube (an integer if these vortex lines are closed curves). If the vortex
tube is deformed through any configuration that instantaneously contains
an inflexion point, then N jumps by an integer at this instant, but the jump
is compensated by an equal and opposite jump in the total torsion, so that Tw
varies in a continuous manner [12]. As shown by Calugareanu [5] in a purely
geometric context, and as generalised to higher dimension by White [23],
the sum [5] is indeed constant under arbitrary deformation of the tube.

8. Magnetic helicity and the lower bound on magnetic
energy

In consequence of the analogy (albeit imperfect) between vorticity and mag-
netic field, there is an analogous topological invariant of a magnetic field B
in a perfectly conducting fluid, namely the magnetic helicity

HM =
∫

A ·B dV (7)

where A is a vector potential for B: A = curlB and note that the inte-
gral (7) is gauge-invariant provided the normal component of B vanishes
on the boundary of the fluid domain). This invariant was discovered by
Woltjer [24], but its topological interpretation was not recognised until some
years later [8]. This invariant provides an important lower bound on the mag-
netic energy

M =
∫

B2/2 dV, (8)

namely [3]
M � q|HM |, (9)

where q is a constant (with the dimensions of (length)−1), which depends
only on the domain topology, geometry and scale. There is no corresponding
lower bound for the kinetic energy associated with a vorticity field in an ideal
fluid, and it is here that there is great advantage in switching attention to the
magnetic problem.
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9. Magnetic relaxation

Let us then conceive of a perfectly conducting incompressible fluid contained
in a fixed domain ∆ with surface S, containing a magnetic field B0(x) of non-
zero magnetic helicity, the fluid being at rest at time t = 0. In general, the
associated Lorentz force j × B is rotational, and the fluid will move under
the action of this force; as it moves, it transports the magnetic field, whose
topology is conserved. If we suppose that the fluid has nonzero viscosity, then,
for so long as the fluid is in motion, energy (magnetic M plus kinetic K)
is dissipated through the agency of viscosity, and is therefore monotonic de-
creasing; it is however constrained by the inequality (9), which implies that
ultimately M +K tends to a constant, and so the rate of dissipation of en-
ergy tends to zero. It is at least reasonable then to conjecture that the velocity
field must tend to zero identically in ∆, and that we must arrive at an equilib-
rium state that is stable within the framework of perfect conductivity because
magnetic energy is then minimal under frozen-field perturbations; this mag-
netostatic equilibrium is described by the force balance

j×B = ∇p, (10)

where p is the fluid pressure. The asymptotic field B results from deformation
of B0(x) by a velocity field v(x, t) which dissipates a finite amount of energy
over the whole time interval 0 < t < ∞ in this sense, it may be said to be
“topologically accessible” from B0. This process has been described in detail
by Moffatt [9]. One important feature is that, in general, tangential disconti-
nuities of B (i.e. current sheets) may develop during the relaxation process.
The prototype configuration for which this happens is that consisting of two
unknotted, untwisted, linked magnetic flux tubes which, under relaxation,
contract in length and expand in cross section (volume being conserved) until
they make contact on an open surface which is then necessarily such a surface
of tangential discontinuity. Actually, in this situation, one tube then spreads
round the other, the ultimate magnetostatic equilibrium being axisymmetric
and the current sheet (asymptotically) a torus.

10. Relaxation of knotted flux tubes

A flux tube of volume V , carrying magnetic flux Φ (the analogue of κ)
and knotted in the form of a knot of type K, has magnetic helicity the ana-
logue of (5), i.e.

HM = hΦ2, (11)

where h =Wr+Tw is the conserved writhe-plus-twist of the tube. This tube
will relax under the procedure outlined above to a minimum energy state of
magnetostatic equilibrium, in which the minimum energyMmin is determined
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by the three characteristic properties of the initial field that are conserved dur-
ing relaxation, namely Φ, V , and h; on dimensional grounds, this relationship
must take the form

Mmin = mK(h)Φ2V −1/3, (12)

where mK(h) is a dimensionless function of the dimensionless helicity para-
meter h, whose form is determined solely by the knot type K [11]. Moreover,
this state, being stable, will be characterised by a spectrum of real frequencies
ωn, which, again on dimensional grounds, are given by

ωn = ΩKn(h)ΦV −1, (13)

where the ΩKn(h) (n = 1, 2, 3, . . .) are again dimensionless functions of h,
determined solely by the knot type K. I suspect that it was just such rela-
tions as (12) and (13) that Kelvin was seeking in relation to knotted vortex
tubes. He was unsuccessful because there is no known relaxation procedure in
three dimensions analogous to that described above that conserves vorticity
topology and minimises kinetic energy.

11. The analogous Euler flows

There is nevertheless a second analogy (and this time it is perfect!) which
is an extension of the analogy already recognised by Helmholtz and Kelvin,
and touched on in §3 above. This is the analogy between B and u (and con-
sequently between j = curlB, and ω = curlu). The analogue of (10) is then

u× ω = ∇H, (14)

where H = p0 − p, for some constant p0. Equation (14) may be immediately
recognised as the steady form of the Euler equation with H the total head.
Thus, to each magnetostatic equilibrium satisfying (10), there corresponds
a steady Euler flow, obtained by simply replacing B by u, j by ω, and p by
p0−H. Note here that, through this analogy, a magnetic flux tube corresponds
not to a vortex tube in the Euler flow, but to a streamtube! So a knotted flux
tube corresponds to a knotted streamtube, a somewhat curious concept within
the context of the Euler equations. However, although the analogy is perfect
as far as the steady state is concerned, it does not extend to the stability
of the steady state: stability of the minimum energy knotted flux configu-
rations does not imply stability of the analogous Euler flows. The reason
is that under perturbation of the magnetostatic equilibrium, the B-field must
be frozen in the fluid, whereas under perturbation of the Euler flow satis-
fying the time-dependent Euler equation, it is not the “analogous” u-field,
but rather the ω-field, that is frozen in the fluid. This subtle distinction com-
pletely changes the stability criterion for steady states [10]. One should in fact
expect all the analogous Euler flows to be in general unstable if only because
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they will generally contain vortex sheets (the analogue of the current sheets
referred to above) and these will be generically subject to Kelvin–Helmholtz
instability. It has in fact been shown by Rouchon [14] that steady Euler flows
that are nontrivially three-dimensional fail to satisfy Arnold’s [2] sufficient
condition for stability: the constant-energy trajectories on the “isovortical”
folium through a fixed point in the space of divergence-free velocity fields of
finite energy are in general hyperbolic in character, so that the perturbed flow
is not constrained by conservation of energy to remain near the fixed point.
This does not imply instability, but it makes it very likely!

12. Conclusions

Kelvin was frustrated in his vortex ambitions on two accounts: first in fail-
ing to find steady non-axisymmetric solutions of the Euler equations having
knotted vortex lines; and second in being unable to demonstrate the stability
of even the simplest vortex ring configurations. His investigations of the 1870s
and 1880s laid the basis for many subsequent investigations of problems of
vortex structure and stability that remain very much alive today; but his ini-
tial concept of the “vortex atom” failed to gain ground because of these two
fundamental barriers to progress. If instead one adopts the complementary
scenario of magnetic flux tubes in a perfectly conducting fluid, then the nat-
ural technique of magnetic relaxation, as described above, leads in principle
to stable equilibria of magnetic flux tubes knotted in an arbitrary manner.
The actual realisation of the relaxation process, and the determination of
the frequency spectra of these stable equilibria, present computational chal-
lenges that should be within the power of current super-computers. I hope
that someone may soon be able to rise to these challenges, and thus revive
the vision and spirit of the great nineteenth-century pioneers of the subject
of this Symposium.
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Abstract. Several problems related to the dynamics of vortex patterns as observed
in wake flows are addressed. These include: The universal Strouhal–Reynolds num-
ber relation. The Hamiltonian dynamics of point vortices in a periodic strip, both the
classical two-vortices-in-a-strip problem, which gives the structure and self-induced
velocity of the traditional vortex street, and the three-vortices-in-a-strip problem,
which is argued to be relevant to the wake behind an oscillating body. The bifurca-
tion diagram for wake structure found experimentally by Williamson and Roshko is
addressed theoretically.

Keywords: Vortex streets, wakes; Strouhal–Reynolds number relation

1. Introduction

Vortex street wakes are ubiquitous. We can create them in the laboratory and
we observe them in Nature. We see them in planetary atmospheres. Thus,
in recent years spectacular vortex street wakes at very high Reynolds number
have been observed “behind” certain islands in satellite images (cf. Fig. 1).
We realize their profound effect from instances such as the collapse of the
Tacoma Narrows Bridge on 7 November 1940.

While the phenomenon of vortex streets had been observed qualita-
tively for many years, it was not until the seminal work of T. von Kármán
in 1911–1912 [13–15] that the first theory of these structures was produced. So
important was this contribution of von Kármán that the Hungarian postage
stamp commemorating him (issued in 1992) shows his portrait on a back-
ground of the streamline pattern (in the co-translating frame) of the particular
staggered vortex street that he identified as being not linearly unstable (see
Fig. 2). I shall return to von Kármán’s contributions in Section 4. Let me first
mention another very important result that has emerged, mostly from experi-
ment, namely the well-known relation between the Strouhal number for vortex
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Fig. 1. NASA satellite image of 26 April 2002 showing a well-developed vortex
street behind Madeira island.

Fig. 2. Hungarian postage stamp memorializing von Kármán. In the background
the streamline pattern for a staggered point vortex street.

shedding into the wake and the Reynolds number of the wake-generating flow
(see Fig. 3). Let us first ask: How might one think about such a relation
theoretically?
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Fig. 3. The empirical Strouhal–Reynolds number relation for flow behind a cylinder.
Different symbols have been used for different vortex shedding regimes abbreviated
L3, TrW1, etc. The overall division into three regimes, I, II and III, is described in
the text.

2. The Strouhal–Reynolds number relation

Empirically one finds that the Strouhal number, which is the non-dimensional
shedding frequency, depends on the Reynolds number of the wake-producing
flow as

St = 0.2175− 5.1064
Re

, (1)

for the “laminar” regime (regime I in Fig. 3; up to Re ≈ 200), and by

St = 0.212− 2.7
Re
, (2)

for large values of Re, say 400 and higher. The latter fit includes the fa-
mous limiting value (0.212) of the Strouhal number at high Reynolds num-
ber. Of course in this second regime (regime II in Fig. 3) the flow does not
just respond with one frequency but the Strouhal number corresponds to the
frequency with most of the energy.

There is a “transition” regime (regime III in Fig. 3) where the curve seems
to break. This regime is related to three-dimensional vortex motion in the
wake. I shall not have anything to say about this regime in this paper.

We have approached this problem in the following way: First, we recall
that the Navier–Stokes equations only give us that St is a function of Re,
i.e., that there must exist some functional relation St = f(Re) where f is
(somehow) to be determined from the equations of motion and the shape of
the body. Second, we assume — based on an analogy to the phenomenology
of phase transitions or general ideas from bifurcation theory — that close to
the bifurcation the Strouhal number depends as a power law on the deviation
of 1/Re from its “critical” value at the bifurcation, i.e., we should expect for
Re ≈ Recrit that
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St = A
(

1
Recrit

− 1
Re

)α

, (3)

where Recrit is the bifurcation Reynolds number (which is non-universal), A is
a non-universal coefficient, but α is a universal exponent. Experiment further
suggests that α = 1 which points to a mean-field theory of the phenomenon.

So, what equation should one try to apply a “mean-field analysis” to?
We [24] thought the two-dimensional vorticity equation,

∂ζ

∂t
+ V · ∇ζ = ν∇2ζ, (4)

was a natural candidate. In the paper just cited we estimate the terms in this
equation as follows:

∂ζ

∂t
≈ f∆ζ, V · ∇ζ ≈ U ∆ζ

d
, ν∇2ζ ≈ ν∆ζ

d2
. (5)

Here f is the shedding frequency, which sets a natural time scale for the
flow, U is the free stream velocity and d the diameter of the cylinder.
The quantity ∆ζ gives the scale of vorticity fluctuations in the emerging wake.
There are points of large vorticity, primarily in the vortices that are forming
to make up the vortex street, and there are points of smaller vorticity in sheets
and other “background” flow structures that will ultimately be swept up into
the vortices.

In our paper [24] we argue, based on careful examination of the vortex wake
formation process in a numerical simulation [26], that the viscous term acts
exclusively to spread out and impede vortex formation, i.e., in the vorticity
balance in the near wake this term should be viewed as a sink when writing
the vorticity balance. We also argue that part of the advective term on the
right hand side acts to assemble the vortices (the rest simply advects the
vorticity downstream). This is a source term for vortex generation and should
enter the vorticity balance with a positive sign. Based on this kind of order
of magnitude estimates and physical reasoning to determine the signs of the
various contributions, we recast the vorticity equation in the following form
(in terms of orders of magnitude with signs):

f∆ζ = kaU
∆ζ

d
− kdν

∆ζ

d2
, (6)

where ka and kd are two dimensionless parameters that require a more com-
prehensive analysis to determine. It is easily seen that this relation, after
cancellation of ∆ζ from all terms and multiplication by d/U , is precisely of
the form of the empirical Strouhal–Reynolds number relation.

There are a number of questions one can ask of this simple “derivation”,
e.g., whether it is satisfactory that ∆ζ cancels out of all the terms1. In parti-
cular, the crude estimate for the advective term may seem dubious. We will not
1 I am indebted to T. Bohr for raising this point.
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enter into a discussion of these issues here (for more detail see the paper cited)
but simply state the suggestion that the correct and fully rigorous approach
to this problem requires finding a similarity solution of the vorticity equation
that, somehow, applies to vortex shedding. We leave this as a challenge to the
reader!

3. Hamiltonian dynamics of point vortex dynamics

The point vortex model originated with Helmholtz’s seminal 1858 paper on
vortex dynamics [17]. The most elegant statement arises if one concatenates
the x- and y-coordinates of the vortices into complex positions zα = xα +iyα,
α = 1, 2, ..., N . Then the equations of motion take the form

ż∗α =
1

2πi

N∑
β=1

′ Γβ

zα − zβ
. (7)

Here the Γβ are the circulations of the vortices, invariant in time by
Helmholtz’s theory — even better, maybe, by Kelvin’s circulation theorem —
the asterisk on the left-hand side denotes complex conjugation, the dot dif-
ferentiation with respect to time, and the prime on the summation symbol
reminds us to skip the singular term β = α.

Helmholtz gave the solution of the two-vortex problem, where he showed
that two vortices would have orbits on concentric circles, which in the special
case of a vortex pair degenerate to translation along parallel lines.

A major formal development of the theory was provided by Kirchhoff [18],
who in his lectures on theoretical physics, published in several editions starting
in 1876, showed that the point vortex equations could be recast in Hamilton’s
canonical form:

Γαẋα =
∂H

∂yα
, Γαẏα = − ∂H

∂xα
, (8)

where the Hamiltonian, H, is

H = − 1
4π

N∑
α,β=1

′ΓαΓβ log |zα − zβ |. (9)

Again we exclude the singular terms α = β and remind ourselves to do so by
placing a prime on the summation. A complete correspondence with Hamil-
ton’s form of the equations of motion is obtained by choosing the generalized
coordinates to be qα = xα and the generalized momenta to be pα = Γαyα.
This also shows that for vortices phase space is configuration space, a feature
that has profound consequences for both the statistical physics of point vor-
tices and for the phenomenon of chaotic advection [2]. Many of these aspects
were covered by other speakers at the symposium.
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The Hamiltonian nature of the point vortex equations immediately leads
to important insights about the availability of integrals of the motion and, in
turn, about integrability of the N -vortex problem. Thus, the invariance of H
to translation and rotation of coordinates, and its independence of time, leads
to the integrals X, Y and I given by

X + iY =
N∑

α=1

Γαzα, I =
N∑

α=1

Γα|zα|2, (10)

and, of course, H itself. The quantities X and Y are the two components of
the linear impulse. The quantity I is the angular impulse.

Pursuing the formalism of classical dynamics a bit further, we introduce
the Poisson bracket

[f, g] =
N∑

α=1

1
Γα

(
∂f

∂xα

∂g

∂yα
− ∂f

∂yα

∂g

∂xα

)
. (11)

The fundamental brackets may be written

[zα, zβ ] = 0, [zα, z∗β ] = − 2i
Γα
δαβ . (12)

We now obtain the key results

[X,Y ] =
N∑

α=1

Γα, [X.I] = 2Y, [Y, I] = −2X, (13)

from which the very important result

[X2 + Y 2, I] = 2X[X, I] + 2Y [Y, I] = 0 (14)

follows. These results show (a) that no new integrals arise by taking Poisson
bracket of the known integrals, and (b) that the problem always has three
independent integrals in involution, namely X2 + Y 2, I and H.

Poincaré realized as much in his lectures of 1891–1892 [23] and concluded
(from what we today call Liouville’s theorem) that the three-vortex problem
on the unbounded plane is always integrable. Apparently this was not of suf-
ficient interest to him and he never returned to the problem. The general
formalism given above was pursued by the Italian E. Laura in a number of
papers early in the 20th century [20] but then lay dormant for decades.

Actually some 15 years before Poincaré’s work the three-vortex problem
had been completely solved by a young Swiss mathematician W. Gröbli whose
1877 thesis [12] was for some reason overlooked2 for about a century. Even

2 This happened in spite of references to it in Kirchhoff’s lectures (2nd ed.) [18]
and in Lamb’s well-known text [19].
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the revival of Gröbli’s work in an important paper [31] by J. L. Synge for the
inaugural issue of the Canadian Journal of Mathematics in 1949, an issue that
contained a seminal paper in general relativity by Einstein and Infeld, failed
to introduce the solution of this three-body problem into the mainstream of
fluid mechanics. For a review of this history see [5].

It turns out that there is a bit of a “hole” in the treatments of Gröbli and
the later work by Synge, Novikov and the author [1, 22, 31] concerning the
special case Γ1 +Γ2 +Γ3 = 0. While being covered in principle by the general
analysis, it admits of a much more complete discussion. This was provided by
Rott [28] and the author [3]. In essence what our treatment of the problem
shows is that the relative separation of two of the vortices, say vortices 1 and 2,
i.e., Z = z1−z2, evolves as if it were the position of a fictitious passive particle
in the field of three fixed vortices. The strengths and locations of the three fixed
vortices are given by the strengths of the original three vortices and the linear
impulse of the original three-vortex system. Thus, if the original three vortices
have strengths Γ1, Γ2, Γ3, the three fixed vortices in the advection problem
have strengths Γ−1

1 , Γ−1
2 , Γ−1

3 . (All that matters is really the proportion of
the vortex strengths — the absolute value can be absorbed in a rescaling of
space and time.)

This reduction of the problem — from three points corresponding to the
three original vortices, to one point corresponding to an advected particle —
is somewhat akin to what happens in the Kepler problem of celestial me-
chanics, where the motion of two interacting mass points is decomposed into
a trivial center-of-mass motion and a relative motion. It leads to the following
scenario: There is the physical plane where the motion of the three vortices
takes place, i.e., the vortex positions z1, z2, z3 “live” in this plane. There is
a phase plane where the advection of the fictitious particle takes place, i.e.,
Z evolves in this plane.

For three vortices on the infinite plane the advection problem in the phase
plane is relatively simple. There are four distinct regimes of motion. Three
of these arise in the obvious way through two of the vortices being closer
to one another than to the third vortex, and hence moving as if in a “bound
state”. The fourth regime corresponds to truly “collective states” where all
three vortices interact continuously.

4. Point vortex modeling of wakes

It turns out that the solution method for three vortices on the infinite plane
can be extended to the problem of three vortices in a domain with periodic
boundary conditions as was first shown by Aref and Stremler [6, 30]. In the
case of vortices in a periodic strip, which is the case that is most immediately
applicable to vortex wakes, one has to stipulate that Γ1 +Γ2 +Γ3 = 0 just as
on the infinite plane. (In the case of vortices in a periodic parallelogram the
periodicity of the flow assures that the sum of the “base” vortices in the basic
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parallelogram is zero.) The equations of motion for vortices in a periodic strip
of width L are

ż∗α =
1

2Li

N∑
β=1

′Γβ cot
[π
L

(zα − zβ)
]
. (15)

These equations appear first to have been written down in 1928 by Friedmann
and Poloubarinova [11]. See also [27].

With the wisdom of hindsight one may say that von Kármán’s theory of the
structure of the vortex street follows from (15) with N = 2 and Γ1 = −Γ2 = Γ
and, thanks to later work by Domm [10], his theory of the stability of vortex
streets follows almost entirely, although not quite, from (15) with N = 4
and Γ1 = Γ2 = −Γ3 = −Γ4 = Γ . (Probably the most accessible account
of von Kármán’s theory for the modern reader is the exposition in [19].)

In brief, von Kármán’s theory of the vortex street shows, first, that the only
two-vortex-per-strip configurations to propagate downstream are the symmet-
ric and the staggered configuration. From the two-vortex version of (15) one
easily deduces that a ±Γ pair in a periodic strip propagates with velocity

U − iV =
Γ

2Li
cot

[π
L

(z+ − z−)
]
. (16)

For the velocity to be real, i.e., in order to have V = 0 in (16), the cotangent
must be pure imaginary. This implies �(z+ − z−) = 0 or �(z+ − z−) = L/2.
The first possibility corresponds to symmetric vortex streets, the second to
staggered vortex streets.

Von Kármán next considered the stability of these two types of configura-
tions. He did, in essence, two stability calculations, in both cases working with
infinite rows of vortices. In the first he simply perturbed one vortex keeping
all the others fixed. This calculation showed that the symmetric configura-
tion was always linearly unstable and the staggered configuration was linearly
unstable unless the ratio of b = �(z+ − z−) and the intervortex distance in
each row, h, has a certain value. (To avoid confusion we use a new symbol, h,
for the distance between vortices in either row because for, say, four-vortices-
in-a-strip the period of the strip, L, is related to the intervortex distance by
L = 2h, whereas L = h for the two-vortices-per-strip case.) In fact, in his
first attempt von Kármán produced the erroneous result sinh(πb/h) =

√
2.

(The reason for this “error” is that when perturbing just one vortex one is
adding linear momentum and kinetic energy to the system being perturbed.
The appropriate criterion arises from perturbations that do not add linear
momentum or energy.) The correct result, which von Kármán quickly pro-
duced as well, and which is today known as his famous stability criterion for
vortex streets is

sinh
πb

h
= 1. (17)

The main thrust of our work on more complicated vortex wakes — we have
used the term “exotic” — is to apply the solution for three-vortices-in-a-strip
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Fig. 4. “Exotic” vortex street wake behind an oscillating cylinder (courtesy of
C.H.K. Williamson).

that we have found to model these in the same spirit that von Kármán modeled
steady vortex streets by the two-vortices-in-a-strip solutions. An example of
an “exotic” wake with three vortices shed per cycle is show in Fig. 4. It is
a tenet of vortex wake dynamics, apparently true but difficult to prove, that
the total circulation of all vortices shed during one cycle is zero. This applies
also to such cases as a cylinder oscillating normally to an oncoming uniform
flow.

A recent paper by Ponta, Stremler and the author [4] gives a rather thor-
ough exposition of our ideas so we shall be content with a brief summary
here.

In the extension of the solution for three vortices with sum of circulations
equal to zero to periodic boundary conditions [6, 30] one finds, once again,
that the problem can be “reduced” to an advection problem for the relative
position of two of the vortices, say again Z = z1− z2. This time, however, the
advecting system of vortices consists of three rows of advecting vortices, not
just three vortices. The vortices in each of the three rows are identical, and
their circulations are, respectively, Γ−1

1 , Γ−1
2 , Γ−1

3 (modulo rescaling of the
time). Indeed, the position of the “base vortex” in each row is given exactly as
in the unbounded plane case in terms of the linear impulse of the system and
the circulations. It turns out that if the ratio of the circulations is rational
(and because the sum is zero, if the ratio of two circulations is rational, the
ratio of any two circulations is rational), the three rows of advecting vortices
fit into a periodic strip with a width that is a multiple of the period L of
the strip in the physical plane. If the ratios are irrational, the three rows of
advecting vortices have no common period and we are faced with advection
by an infinite system of stationary vortices.

Again an advection problem in the phase plane arises but this time with
a more complicated structure of the various regimes of motion than in the
unbounded plane case. There are, in general, many more regimes for Z to
wander through and thus many more regimes for the vortex motion itself.
(To find z1, z2 and z3 from Z requires an additional quadrature.) This pro-
vides the first qualitative conclusion: Vortex wakes with three (and, thus,


