TASKS FOR VEGETATION SCIENCE – 43

Mangroves and Halophytes Restoration and Utilisation

edited by

Helmut Lieth, Maxímo García Sucre and Brigitte Herzog

MANGROVES AND HALOPHYTES: RESTORATION AND UTILISATION

Tasks for Vegetation Sciences 43

SERIES EDITOR

H. Lieth, University of Osnabrueck, Germany

The titles published in the series are listed at the end of this volume

Mangroves and Halophytes: Restoration and Utilisation

Edited by

HELMUT LIETH

Institute of Environmental Systems Research University of Osnabrueck D-49069 Osnabrueck Germany

MAXÍMO GARCÍA SUCRE

IVIC (Instituto Venezolano de Investigaciones Scientificas) Aptdo.21827, Caracas 1020-A, Venezuela

and

BRIGITTE HERZOG

OSTRin i.R Justinus-Kerner-Gymnasium 74189 Weinsberg Germany

A C.I.P. catalogue record for this book is available from the Library of Congress

ISBN 978-1-4020-6719-8 (HB) ISBN 978-1-4020-6720-4 (e-book)

Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands

www.springer.com

Printed on acid-free paper

All Rights Reserved

© 2008 Springer Science + Business Media B.V.

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Foreword

Foreword by the Editor of the T:VS Series, Volume 43

Helmut Lieth Prof. em. University of Osnabrueck Prof. h.c. Uzbek Academy of Sciences, IWP Tashkent

During 2005 the editors of this volume started to enlarge the work of the international society of halophytes utilisation (ISHU) from their previous concentration of the Old World to include also the New World. In this region the main interests on halophytes were reported from North America. We had already used a number of species from this region in the field experiments of the ISHU projects around the Mediterranean Sea, but little was known about the performance of these species in South America. Some of our members were interested in using species from this region in other areas of the world, but before doing so they wanted more information about the performance of these species in competition with native plants in the new environments.

From the South American regions one of the editors (Lieth) had long time experiences with salinity problems and had worked with scientists in Venezuela and Colombia. Other members of the ISHU group of scientists had interest in starting projects in the region as well. It was therefore convenient for the entire group to renew the contacts with the scientists from this region, although the working conditions as well as the political environment had drastically changed.

With the help of our old friends and the generous help of the DAAD section for South America, it was

possible to develop in 2005 the cooperation with the ecological section of IVIC in Venezuela. The new political and public awareness situation in Venezuela made it possible for the new director of IVIC, Dr. M. Garcia-Sucre, to establish international cooperation on the coastal ecosystems protection, which was needed because of the heavy impact the oil and gas pipelines had inflicted upon several of the mangrove ecosystems as well of the inland semidry areas.

Several members of the European ISHU and several Venezuelan colleagues contributed to the seminars in IVIC/Caracas and several German Universities in Osnabrueck, Giessen, Bremen and Hanover. This volume compiles the papers presented at these meetings as well as contributions which were triggered by these seminars.

It was advantageous for the work on this volume that OSTRin Brigitte Herzog agreed to cooperate with the other members of the group on the seminars as well as in the publication of the volume. She had previous contact with several persons in Venezuela and with some of the persons contributing to the volume from Germany.

We thank all foundations and private individuals who contributed to the project and made it possible to link their work, mostly done in countries of the Old World, with projects of interest to the New World.

Opening of the Seminars

Expectations from the Workshop with Regard to the Utilisation of Mangroves and Halophytes in Venezuela, in the Coastal Regions as well as for Inland Agriculture on Saline Soils

by M. García Sucre

It is currently believed that the possibility of using the saline soils in agriculture in order to prevent famine in the developing countries remains remote. Even the conservation of mangroves has received little attention in the Caribbean region. If we start to work from now on these problems, we will have scientific and technical solutions for them in 10 years, presumably. How many people will live in the Caribbean countries in the next decade? At the rate of the mean growing population, we will have at least 40% more people to feed. Yet, the production of food is even today an unsolved problem in the majority of these countries. This is the case in Latin America, not to speak of Africa and some regions of Asia. Thus, the task of working in the utilisation for the production of food in soils that are now useless for that purpose seems to us of an overwhelming importance.

Venezuela is not an exception concerning the problem of food production. In this concern, one of the priorities of the Government of Venezuela is to promote what has been called *Seguridad Alimentaria* in our country. Along this line we decided to organise two workshops on 'Rehabilitation of mangroves and sustainable utilisation of halophytes', one in January 2006 at the Instituto Venezolano de Investigaciones Científicas (IVIC) in Venezuela, and the other in May 2006 at the University of Osnabrueck in Germany. Needless to say, the vision, dynamism and enthusiasm of Professor Helmut Lieth contributed greatly to the success of both scientific events.

'Rehabilitation and sustainable use of mangrove and halophytic ecosystems in Venezuela' has been one of the topics of these workshops. The state of the art in the knowledge of halophytic systems in Venezuela, the necessity of their conservation, the reclamation of soil affected by salinity and the possible strategies for their rehabilitation and sustainable use were discussed. Three projects were defined during the round table discussions: two for the coastal regions concerning the rehabilitation and sustainable use of mangrove ecosystems, and a third project for the inland, concerning the use of halophytes for the rehabilitation of soils affected by salinity as a consequence of using inadequate agricultural techniques. These projects were elaborated in collaboration with Professor Lieth, and adapted to the requirements of Misión Ciencia (an initiative of the Government of Venezuela in order to promote the development of science with emphasis on applied problems).

The projects for the coastal regions are the rehabilitation and creation of mangrove areas for their sustainable use in the sectors of Buche-Playa Los Totumos (Miranda State), Parque Nacional Morrocoy and the Vela de Coro (Falcón State), respectively. These three coastal sectors show evidence of inadequate environmental management. The laboratory of Ecology and Genetics of Populations, the laboratory of Ecology of Soils of the Centre of Ecology of IVIC and the laboratory of Vegetation Ecology of the Central University of Venezuela will work on these projects in collaboration with the University of Osnabrueck. Specialists in the use of halophytes for conservation and management of saline ecosystems of other institutions are expected to contribute to these projects.

Some important benefits could be obtained from the realisation of these projects in the two regions of Venezuela. An increase of the mangrove areas could diminish the coastal erosion (which is important in the mentioned areas), and will improve the quality of air. Also an increase in complexity of the mangroves could favour the growing of species usually associated with these systems. This in turn could increase a sustainable fishery industry, which could favour the incoming population living in the neighbourhoods. From the social point of view these communities will be informed about conserving and producing benefits from mangroves in a sustainable way. Furthermore, these projects have an intrinsic scientific and teaching interest since the mentioned coastal regions can be considered as natural laboratories. Finally, educational tourism could also be an additional source of economical benefit.

The last project is addressed to the inland occidental central region of Venezuela. It concerns the use of

Dr. Maximo Garcia Sucre, director IVIC Aptdo. 21827 Caracas 1020-A Venezuela halophytes for the rehabilitation of soils affected by salinity as a consequence of using inadequate agricultural techniques. Special attention will be given to the Valle de Quibor in Lara State. For the horticulture system in this valley, an excess of mechanisation and of saline water has been used. The farming of onions, tomatoes and melons are particularly extensive in this valley (about 5,000 ha).

This problem will be attacked in six steps:

- 1. Measures of the degree of salinity, quality of soils and water
- 2. Selection of the appropriate halophytes species
- 3. Pilot studies in farms
- 4. Chemical analysis to establish to which degree the halophytes are producing the expected result
- 5. Evaluation of the quality of the recuperated soils
- 6. Palatability proofs and protein efficiency of the halophytes to nourish livestock

I thank the participants of this workshop for giving me the opportunity to learn about the production of food and environmental conservation that can be useful for the Caribbean region.

Table of Contents

Fore	ewordeword by the Editor of the T:VS Series mut Lieth	V
-	ening of the Seminars	vii
Cor	ntributors	xi
List	t of Legends for the Colored Plates	xiii
List	t of Tables	xvii
Col	or Plates	xix
Par	t I General Aspects	
1	Concepts for Different Uses of Halophytes	3
2	Global Water Crisis: The Potential of Cash Crop Halophytes to Reduce the Dilemma	7
3	Present Efforts to Develop Sustainable Saline Production Systems	21
4	Studies on Halophytes and Salinity Problems in Mediterranean Agriculture Belligno A. and Sardo V.	25
Par	rt II Saline Ecosystems in Venezuela	
5	Investigations Proposed in Venezuela for the Development of Systems for the Sustainable Utilisation of Halophytes, in the Context of International Development	33

6	Diagnostics About the State of Mangroves in Venezuela: Case Studies from the National Park Morrocoy and Wildlife Refuge Cuare Maria Beatriz Barreto	51
7	Contribution of Seagrass Ecosystems to the Venezuelan Coastline Vegetation Beatriz E. Vera Vegas	65
Par	t III Experimental Systems	
8	Comparative Biochemical Study of the Rhizosphere of <i>Rhizophora mangle</i> and its Associated Species <i>Cyperus</i> sp. in the Ciénaga de Soledad (Colombia) Jorge E. Paolini and Luz Esther Sánchez-Arias	79
9	Creation of Mangrove "Productive Oases": Community Participation for the Sustainable Utilization of Halophytes Luz Esther Sánchez-Arias and Jon Paul Rodríguez	85
10	Mangrove Restoration in a Tropical Semiarid Environment:A Case Study in Landscape DesignRosario Fraino de Pannier and Federico Pannier	97
11	Mangrove Establishment on Artificial Islands: A Case Study Federico Pannier and Rosario Fraino de Pannier	109
12	The Effect of Temperature on the Accumulation of Salts and Chromium in Seedlingsof Avicennia germinans ("Mangle Salado") and Rhizophora mangle ("Mangle Rojo")Exposed to Tannery WastewatersLuz Esther Sánchez-Arias and Augusto Ruiz Castro	119
13	Salt Tolerance of Chenopodium quinoa Willd., Grains of the Andes: Influenceof Salinity on Biomass Production, Yield, Composition of Reserves in the Seeds,Water and Solute Relations.Hans-Werner Koyro, Sayed Said Eisa, and Helmut Lieth	133
14	Biosaline Biomass for Energy, a Solution for Saline Wastelands	147
Ind	ex	155

Contributors

M.B. Barreto Instituto Zoologia Tropical, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela, e-mail: manglerojo@gmail.com

A. Belligno
Department of Agricultural Engineering, University of Catania, Via Valdisavoia,
5 – 95123 Catania, Italy

B. BöerUNESCO Regional Office in the Arabic State of Gulf, Doha, Qatare-mail: habitat_international@hotmail.com

S.S. Eisa

Ain Shams University, Faculty of Agriculture, Department of Agricultural Botany, P.O. box 58 Hadayek Shobra, Cairo, Egypt, e-mail: said_eisa@hotmail.com

M. García Sucre

Director del IVIC (Instituto Venezolano de Investigaciones Científicas), Caracas, Venezuela, e-mail: mgs@ivic.ve

B. HerzogOSTRin i.R Justinus-Kerner-Gymnasium,74189 Weinsberg, Germany,e-mail: brigitte.m.herzog@web.de

J. Hoek Ocean Desert Enterprises, Amsterdam, The Netherlands, e-mail: jeannette@oceandesert.nl

H-W. Koyro Justus-Liebig-University Giessen, Institute for Plant Ecology, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany, e-mail: hans-werner.koyro@bot2.bio.uni-giessen.de

H. Lieth Institute of Environmental Systems Research, University of Osnabrueck, D-49069 Osnabrueck, Germany, e-mail: helmut.lieth@t-online.de

F. Pannier and R. Fraino de Pannier Department of Biology, University of Merida, Merida, Venezuela, e-mail: fpannier@hotmail.com

J.E. Paolini Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Apdo 21827, Caracas 1020-A, Venezuela, e-mail: jpaolini@ivic.ve J.P. Rodríguez Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Apdo 21827, Caracas 1020-A, Venezuela, e-mail: jonpaul@ivic.ve

A Ruiz Castro Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Apdo 21827, Caracas 1020-A, Venezuela, e-mail: augustoruizcastro@yahoo.com

L.E. Sánchez-Arias

Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Apdo 21827, Caracas 1020-A, Venezuela, e-mail: luchamangle@gmail.com V. Sanz D'Angelo Centro de Ecología Instituto Venezolano de Investigaciones Científicas, Apdo 21827, Caracas 1020-A Venezuela e-mail: vsanz@ivic.ve

V. Sardo

Department of Agricultural Engineering, University of Catania, Via Valdisavoia, 5 – 95123 Catania, e-mail: sardo@mbox.fagr.unict.it

B.E. Vera Vegas

Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Apdo 47114, Caracas, Venezuela, e-mail: beatrizesther.veravegas@gmail.com

List of Legends for the Colored Plates

Page Nr. in the Chapter

Fig. 1.1	Flow chart of work steps for the implementation of saline production systems	4
Fig. 2.1	Already existing halophyte utilisations and utilisation purposes that are under investigation	
Fig. 2.6	Influence of NaCl salinity on the apparent photosynthesis (A), the adaxial transpiration (E),	
e	the water use efficiency (WUE) and the stomatal conductance (rs) of Aster tripolium,	
	Beta vulgaris ssp. maritima, Spartina townsendii and Sesuvium portulacastrum.	
	The ultrastructures (SEM-micrograph) of the leaf surfaces (left side controls,	
	right side seawater salinity treatments) are presented next to the responding table	14
Fig. 3.1	On the picture one can see that the <i>Rhizophora</i> is dying on some branches. This is caused by	
	speed boats coming too close to the stilting roots of these trees at low tide	.22
Fig. 3.2	<i>Thalassia</i> stand covered with fine sand which was taken from the bottom which can be seen	
	on the left. Fast going speed boats with tourists disturb the sand and put it over the <i>Thalassia</i>	.22
Fig. 3.3	Plastic bottles and other remnants from tourist picnics are found at several places on the mangrove	
		.23
Fig. 5.2	Map: global net primary productivity (NPP), calculated from environmental parameters by	
8	Berlekamp et al. taken from http://www.usf.uni-osnabrueck.de/~hlieth	.35
Fig. 5.3	Map: terrestrial actual NPP; annual NPP (g dm/m ² /year) of the Actual Vegetation Cover	
0	of the World's Land Areas, estimated from NOAA AVHRR Satellite Data (1985–87 average).	
	(Taken from Box E (1993) in Seisan Kenkyu, vol 45 No. 9.)	. 36
Fig. 5.4	Map: global terrestrial net primary production (NPP) over 110 million square kilometres	
	for 2002, computed from MODIS (Moderate Resolution Imaging Spectroradiometer) data.	
	(Taken from Running et al. (2004) a continuous satellite-derived measure of global	
	terrestrial primary production.)	. 36
Fig. 5.5	Conocarpus leucocarpus along some UAE highways. (Photo by Lieth H.)	.38
Fig. 5.6	Different mangroves (Laguncularia racemosa, Cocoloba uvivera, Avicennia marina) irrigated	
	with saline groundwater in the sand desert of the UAE near Nashala. Plantation of halophytes	
	(experiment by Lieth A started in 1990) 3 years after the planting. (Photo by Lieth H.)	. 39
Fig. 5.7	New Avicennia marina plantations on Samaliah Island (UAE). (Photo by Lieth H.)	. 39
Fig. 5.8	Greening of parking places with the two species Sesuvium portulacastrum and	
	Conocarpus lanciofolius near Jebel Hafeet/Al Ain (UAE). (Photo by Boer B.)	.40

Fig. 5.9	Greenification with <i>Sesuvium portulacastrum</i> and other halophytes on a walk way to	10
E:~ 510	Jebel Hafeet. (Photo by Boer B.)	
Fig. 5.10	<i>Limonium axillare</i> on the beaches of Qatar (Photo by Boer B.)	
	New Avicennia groves along ditches in Qatar. (Photo by Boer B.)	+1
Fig. 5.12	Halophyte nursery for landscaping greenification close to the Atlantic near Dakhla	10
Fig 5 12	(South Morocco). (Photo by Lieth H.)	
	Hotel greenification with several <i>Atriplex</i> species on the Atlantic beach (Agadir).	+2
Fig. 5.14	(Photo by Lieth H.)	12
Fig. 5.15	<i>Cistanche fistulosa</i> (parasite) growing on <i>Atriplex</i> bushes (Agadir). (Photo by Lieth H.)	
	<i>Tamarix</i> sp. and other halophytes growing on an inland Sabkha (Tunisia).	+3
Fig. 5.10	(Photo by Mochtchenko M.)	11
Fig. 5.17	Dune fixation with <i>Mesembrianthemum</i> at the coast in Tunisia, demonstrated by	++
Fig. 5.17	Professor Ch. Abdelly. (Photo by Koyro H-W.)	11
	riolessoi Cii. Abdeliy. (riolo by Koylo 11-w.)	+4
	The photos of the greenification with mangroves at the tourist centre near Pedrogonzales/Ist Margarita were all taken in 2006 by Sanz D'Angelo V. These photos show the present state of the mangroves planted originally by the team headed by Fraino de Pannier R and Pannier F (1988), (see Chapter 11 on page 109)	he
Fig. 5.18	General view of the new lagoon with some of the new buildings	45
Fig. 5.19	Mangroves along the hotel bordering the Golf Course	
Fig. 5.20	Walkway between the mangroves	
Fig. 5.21	Walkway from the hotel to the Golf Course between the mangroves	
Fig. 5.22	Lagoon to the hotel complex	
Fig. 5.23	The connection between the lagoon and the open sea	47
Fig. 5.24a	Rhizophora grove in the centre of the lagoon	48
Fig. 5.24b	Close up of the <i>Rhizophora</i> island in the centre of the lagoon	48
Fig. 6.4	Cover of living mangroves either dominated by R. mangle or A. germinans, deteriorated,	
	and dead mangroves around the gulf of Cuare in (a) year 1972, and (b) year 1998	56
Fig. 6.8	The background shows the mangrove belt, the forest of dead Avicennia germinans in front,	
	the transition zone at the middle and the external fringe with taller trees, chiefly	
	Rhizophora mangle and Laguncularia racemosa, bordering the Caño Pancho tidal creek,	
	Wildlife Refuge of Cuare. Area selected for the samplings of structural parameters	
	and interstitial salinities	58
Fig. 6.9	Dead mangrove A. germinans at the site of Caño Boca del Zorro, Wildlife Refuge	
	of Cuare	58
Fig. 6.10	Regeneration of A. germinans and R. mangle at the site of Caño Animas, Wildlife	
	Refuge of Cuare. Background dead stems of A. germinans.	59
Fig. 6.11	Mixed mangrove forest of Rhizophora mangle and Laguncularia racemosa at Wildlife	
	Refuge of Cuare	59
Fig. 6.12	Aerial view of mangroves in the sector of Caño de León. The town of Tucácas	
	shows in the background. The inundated zone between the live mangroves	
	corresponds to dead mangroves, presently is a swamp during the rainy season	
	and a saltpan during the dry months	
Fig. 6.13	Dwarf Rhizophora mangle trees in basin forest at National Park of Morrocoy	
Fig. 7.2a	Collecting samples	
Fig. 7.2b	Thalassia and ulvales deposited on shoreline by wave action	67
Fig. 7.3	Dead Thalassia leaves spoil on Adicora beach/Falcón State in the western part of the	
	Venezuelan coast	58
Fig. 7.4	Condrilactes gigantea a typical sea-anemone in Thalassia beds from Mochima Bay in the	
	eastern part of Venezuela.	68

Fig. 7.5	Natica egg on Thalassia	68
Fig. 7.6	A cluster of mollusk eggs on the leaf of <i>Thalassia</i>	69
	Oreaster reticulatus and Holothuria mexicana in Thalassia beds from Mochima Bay	
0	The sponge Irsinia strobilina in a Thalassia bed from Mochima Bay	
	Activation of embryos and hydroponic cultivation, left row above: <i>Rhizophora</i> fruits	
U	collected for further treatment, below. <i>Rh.</i> fruits are cleaned, middle row above and middle:	
	preparation of "embryos" for putting them into channels with water, below: bags filled with	
	embryos standing in water for starting to grow, right row from top to bottom: convenient	
	sized stakes are split on one end to fasten the small embryos; the stakes are put into the	
	ground in order to keep the young plants at the water surface	90
Fig. 9.6	View of the degraded area targeted by this study	
-	Channels are created to improve flow in the degraded area	
	A-C Climate diagrams relevant for the working zone	
	Aerial view, showing the area of the ancient lagoons which was used to delimit the	
8	contours of the area to be dredged	101
Fig. 10.2 B	Map of Isla Margarita showing the geographical position of the new mangroves southeast	
8	of the Golf Course and the Hotel Hesperia near the township of Pedro Gonzalez,	
	(source: Parks Watch 2003)	101
Fig. 10.5	View of the open greenhouse with the tanks used for acclimatization of the mangrove plants	
	View of a tank sector containing the potted plants	
	Transporting the plants to the planting sites	
-	Planting inside a micropond	
-	View of microponds after planting	
	The picture shows the dense stands on both sides of the lagoon behind the hotel	
8	(photo 2006)	106
Fig. 10.11	The figure shows the dense stands of a mangrove mixed <i>Rhizophora</i> , <i>Laguncularia</i>	
8	and <i>Conocarpus</i> between the walkway and the lagoon (photo 2006)	106
Fig. 11.2	Infrared photography of one of the islands showing the position of the various	
8	vegetation types	111
Fig. 12.1	Small plastic growth chambers in 2,600 m elevation. Villapinzón near the tannery: V 1	
0	(nursery 2) partially covered with plastics against rain and UV, V 2 (nursery 1) totally	
	covered	121
Fig. 12.2	View of the plastic growth chamber at Villapinzón	122
	Interior of the warmer chamber filled to about 50 cm height with tannery wastewater into	
0	which the young mangroves were placed	122
Fig. 12.4	Young plants of A. germinans (in front) and Rh. mangle (behind) in the warmer growth	
0	chamber during the experiment	123
Fig. 12.5	Young plants of <i>Rh. mangle</i> (front section) and <i>A. germinans</i> (behind) in the warmer	
	growth chamber during the experiment	124
Fig. 12.6	Climate diagram Bogota/Eldorado/Colombia	124
	Climate diagram Chinchina/Colombia	
Fig. 14.1	Don Antonio from the Ejido Luis Encinas Johnson walks through the new pilot	
-	plantation of woody halophytes irrigated with saline groundwater	149
Fig. 14.2	View of a piece of wasteland in the Colorado River delta region proposed for the	
-	enlarged scale of the 30 ha pilot plantation described in this paper (to a business type	
	pilot forest for industrial usage of 5000–10000 ha in size)	150
Fig. 14.3	Before planting becomes the area a drainage system and will be irrigated with saline	
-	groundwater	150
Fig. 14.4	Preparing the field for high-density planting, growing <i>Tamarix aphylla</i> , cutting in ditches	
	for effective irrigation with saline groundwater	151

Fig. 14.5	<i>Tamarix aphylla</i> plantation in a three ha plot 5 months after plantation and irrigated with	
_	saline groundwater	
Fig. 14.6	High-density plantation of Tamarix aphylla about one year after the planting	
Fig. 14.7	In a few years grows <i>Tamarix aphylla</i> into trees with several stems, which can be used to	
	cut new propagyles to replace the harvested trees from the proposed 5,000 ha trial	
	plantation to study the use of the poles for industrial purposes	152

List of Tables

Table 1.1	Utilisation of halophytes already existing and possibilities under investigation.	
	(According to Lieth and Mochtchenko 2002)	4
Table 4.1	Summary of results obtained irrigating with variously diluted seawater	26
Table 4.2		
	by water salinity – same letters in rows indicate no significant differences at 5%	
	probability (Tukey HSD test)	28
Table 4.3	Ash content of Vetifer grass vs. salinity	29
Table 5.1	Sequenced organisms. (Taken from von Homeyer A 2003)	34
Table 6.1	Annual variations of rainfall and length of the dry season in the National Park of Morrocoy	
	and Wildlife Refuge of Cuare	53
Table 7.1	Common faunal groups on the beds of <i>Thalassia testudinum</i> in the northwestern	
	regions of Venezuela	70
Table 8.1	Physicochemical parameters, enzyme activities and microbial biomass carbon for	
	the analysed soils	82
Table 9.1	Concentration of salts and metals and total plant development, 6 years	
	after planting (ICP 2000)	87
Table 9.2	Properties of water at different locations within the experimental area (ICP 2000)	88
Table 9.3	Water quality of the natural water source ("natural"), inside the artificial	
	wetland ("collector"), and after it leaves the facility ("exit") in terms of total	
	suspended solids and biological oxygen demand (mg/l). p_1 and p_2 are	
	one-tailed t-tests probabilities, comparing the mean for natural vs. exit	
	and collector vs. exit, respectively	90
Table 9.4	Relative size and abundance of fish species captured in the wetland	90
Table 10.1	Plant species listed on the surface of the sedimented lagoon system	
	before its dredging. Total area surveyed: 14.500 m ²	
Table 10.2	Final distribution of the plants	107
Table 11.1	Comparison of soil characters in three sampling sites (A, B, C) indicated in transect 2	
	(see Fig. 11.4)	
Table 12.1	e	121
Table 12.2	Summary of monthly environmental temperatures (median, minimum and coldest)	
	and average monthly nursery temperatures during the period of monitoring	125

Table 12.3	Number of leaves developed over time by Rhizophora mangle growing	
	in tannery water in warm and cold environments	.127
Table 12.4	Number of leaves developed over time by Avicennia germinans growing	
	in tannery water in warm and cold environment	.127
Table 12.5a	Water analysis from the Villapinzón Tannery	.127
Table 12.5b	Mineral content of wastewater from the Toldado oil field development	.127
Table 13.1	Fresh weight (fw), water content, dry matter (dm) and ashweight (aw) of	
	quinoa seeds grown at 0, 100, 200, 300, 400 and 500 mol m ⁻³ NaCl salinity	
	(0%, 20%, 40%, 60%, 80% and 100% seawater salinity respectively)	.138
Table 13.2	Nitrogen (N), carbon (C), sulphur (S), protein and carbohydrate content of	
	quinoa seeds grown at 0, 100, 200, 300, 400 and 500 mol m ⁻³ NaCl salinity	
	(0%, 20%, 40%, 60%, 80% and 100% seawater salinity respectively)	.138

Color Plates

Several attendees used during the seminars some colored photos and figures. In the text of the 14 chapters we could use black and white copies only. Dr. Garcia Sucre allowed us therefore to add a selection of this special colored plate section. In this section we included pictures for which we assumed that the color improves significantly their value.

These figures belong to different papers. We kept for each figure the same figure Nr. and figure legend for both locations, in the chapters as well in the colored plates. In the figure Nr. refer the front digits before the decimal point to the chapter and the digits after the decimal point to the figure Nr. in the chapter. These figures appear in the colored plate section with Roman page Nr. and in the text of the chapters with Arabic page Nr. as shown in the table of contents and in the list of figures.

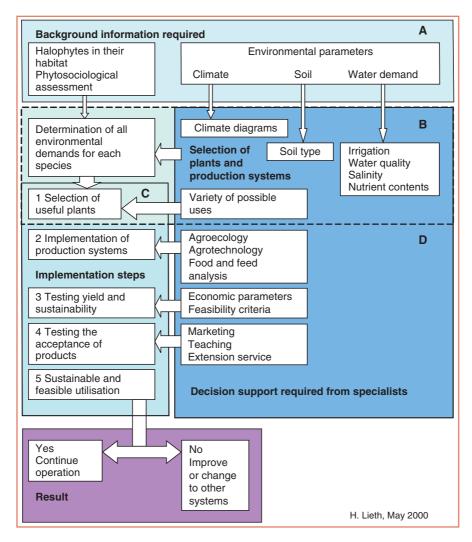


Fig. 1.1 Flow chart of work steps for the implementation of saline production systems (See p. 4)

	Table 1: Utilisations investigated.	of halophyt	existing and utilisatior	n purposes that are
	1 Food	2 Feed	3 Wood	4 Chemicals
	Starch	Starch	Fire	Industrial chemicals
	Protein	Protein	Building	Pharmaceuticals
	Fat	Minerals	Crates	Plastics
	Vitamines			
	5 Landscaping	6 Ornamental	7 CO ₂ -sequestration	8 Tertiary treatment
	Roadside		Greenification	Water
	Housing areas	Gardening	Aforestation	Soil
No.	Dune fixations		1	A COL
	9 Industrial raw material	10 Unconventiona irrigation water	al 11 Environmental protection	12 Wildlife support
	Fiber		Coastlines	Species diversity
	Biomass		Turf	
	Biofuel	\mathbf{x}		

Fig. 2.1 Already existing halophyte utilisations and utilisation purposes that are under investigation (See p. 9)

Possibilities for halophyte utilisation

Aster tripolium	A	E	WUE	rs	otre Alle Martin	10 Pot - 1944/8	STOLD CLASS A CONTRACT
	(µmd*m ² s ⁻¹)	(mmol*m ⁻² s ⁻¹)	(A/E)	(m2*s*mol-1)		Part of the	subditer i i i i i i i
control	24,30	3.81	6,58	3,21		The Walter	
	+3,14	+0,37	+1,25	+0.29		and they de	
125NaCI	17,20	3,89	4,38	5,29		100	
	+3,69	+0,58	+0,35	+0,55			Carl A. Law
375NaCl	7,88	2,10	3,76	42,33		The state	the start of the second
	+2,22	+0,63	+0,50	+2,55			
500NaCI	4,26	1,22	3,49	156,74	and the second second	Surger State	The Marine Contract
	+0,66	+0,47	+1,68	+13,64		and the second	THE COMPANY AND AND A
Beta vulgaris	A	E	WUE	rs	at Ster		Samolar
sp. maritima	(umd*m ⁻² s ⁻¹)	(mmol*m ⁻² s ⁻¹)	(A/E)	(m2*s*mol-1)		× 2 .	A CONTRACTOR
control	2,79	1.82	1,53	6,44	V. C. A.	18.9	
Control	+0,22	+1,30	+0.69	+2,90	2 2 2 2 2 2 3	Con the	200 200 - 200
125NaCl	3,13	1,87	1,68	4,53	19 3 2 P	12 march	
12011001	+0,20	+0,64	+0,56	+1,24			N-1-SLK Ficks 6
375NaCl	2,90	1,17	2,47	9.67	Print of the	\sim	
5751401	+0,10	+0,11	+0,17	+1,23		5-10	LA LAND
500NaCl	1,58	0.44	3,62	31,45	52-154-51 9	-12	
						And a second sec	
Soonaon			+2.44	+16.73	and the second second	2007	5-5-5-61
10000115001	+1,01	+0,27	+2,44	+16,73		22	17-11-57 Q
Spartina	+1,01 A	+0,27 E	WUE	rs	o i0 ::		
Spartina Iownsendii	+1,01 A (µmol*m ² s ¹)	+0,27 E (mmol*m ² s ⁻¹)	WUE (A/E)	rs (m ² *s*mol ⁻¹)	•		
Spartina	+1,01 A (µmol*m ² s ¹) 6,25	+0,27 E (mmol*m ² s ⁻¹) 3,30	WUE (A/E) 1,90	rs (m ² *s*mol ¹) 0,82	• •		
Spartina townsendii	+1,01 A (µmol*m ² s ⁻¹) 6,25 ±1,04 8,17	+0,27 E (mmol*m ² s ⁻¹) 3,30 ±0,20 3,17	WUE (A/E)	rs (m ² *s*mol ⁻¹)	•		
Spartina lowns endii control 125NaCl	+1,01 A (µmol*m ² s ⁻¹) 6,25 ±1,04 8,17 ±1,01	+0,27 E (mmol*m ² s ⁻¹) 3,30 ±0,20 3,17 ±0,34	WUE (A/E) 1,90 ±0,45 2,57 ±2,34	rs (m ² *s*mol ⁻¹) 0,82 ±0,20 1,46 ±0,59	•		
Spartina townsendii control	+1,01 A (µmol*m ² s ¹) 6,25 ±1,04 8,17 ±1,01 7,48	+0,27 E (mmol*m ² s ⁻¹) 3,30 ±0,20 3,17 ±0,34 2,68	WUE (A/E) 1,90 ±0,45 2,57 ±2,34 2,79	rs (m ^{2*} s*mol ⁻¹) 0,82 ±0,20 1,46 ±0,59 1,72			
Spartina towns endii control 125NaCl 250NaCl	+1,01 A (µmol*m ² s ⁻¹) 6,25 ±1,04 8,17 ±1,01 7,48 ±2,52	+0,27 E (mmol*m ² s ⁻¹) 3,30 ±0,20 3,17 ±0,34 2,68 ±0,21	WUE (A/E) 1,90 ±0,45 2,57 ±2,34 2,79 ±1,22	rs (m²*s*mol³) 0,82 ±0.20 1,46 ±0.59 1,72	•		
Spartina towns endii control 125N aCl 250N aCl 375N aCl	+1,01 A (µmol*m ² s ⁻¹) 6,25 ±1,04 A 8,17 ±1,01 7,48 ±2,52 7,25 ±2,26	+0,27 E (mmol*m*s*1) 3,30 *0.20 3,17 *0.34 2,68 *0.21 2,29 *0.20	WUE (A/E) 1,90 ±0,45 2,57 ±2,34 2,79 ±1,22 3,17 ±1,31	rs (m²*s*mol²) 0.82 ±020 1.46 ±0.59 1.72 ±0.32 2.49 ±0.74	•		
Spartina towns endii control 125NaCl 250NaCl	+1,01 A (µmol*m*s*) 6,25 ±1,04 8,17 ±1,01 7,48 ±2,52 7,25 ±2,26 7,52	+0,27 E (mmol*m*s*) 3,30 *0.20 3,17 *0.34 2,68 *0.21 2,29 *0.20 1,25	WUE (A/E) 1,90 ±0,45 2,57 ±2,34 2,79 ±1,22 3,17 ±1,31 6,01	rs (m ² *s*mol ⁻¹) 0.82 ±0.20 1.46 ±0.59 1.72 ±0.32 2.49 ±0.74			
Spartina towns endii control 125N aCl 250N aCl 375N aCl	+1,01 A (µmol*m ² s ⁻¹) 6,25 ±1,04 A 8,17 ±1,01 7,48 ±2,52 7,25 ±2,26	+0,27 E (mmol*m*s*1) 3,30 *0.20 3,17 *0.34 2,68 *0.21 2,29 *0.20	WUE (A/E) 1,90 ±0,45 2,57 ±2,34 2,79 ±1,22 3,17 ±1,31	rs (m²*s*mol²) 0.82 ±020 1.46 ±0.59 1.72 ±0.32 2.49 ±0.74			
Spartina towns endii control 125N aCl 250N aCl 375N aCl 500N aCl	+1,01 A (µmol*m*s*) 6,25 ±1,04 8,17 ±1,01 7,48 ±2,52 7,25 ±2,26 7,52	+0,27 E (mm0/m ² s ⁻¹) 3,30 *0,20 3,17 *0,20 2,68 *0,21 2,29 *0,20 1,25 *0,26 E	WUE (A/E) 1,90 ±0,45 2,57 ±2,34 2,79 ±1,22 3,17 ±1,31 6,01	rs (m ² *s*mol ⁻¹) 0.82 ±0.20 1.46 ±0.59 1.72 ±0.32 2.49 ±0.74			
Spartina towns endii control 125NaCl 250NaCl 375NaCl 500NaCl Sesuvium	+1,01 A (jmol*m ² s ⁻¹) 6,25 ±1,04 8,17 ±1,01 7,48 ±2,52 7,25 ±2,26 7,52 ±1,54	+0,27 E (mm0Fm ² s ⁻¹) 3,30 *0,20 3,17 *0,34 2,68 *0,21 2,29 *0,20 1,25 *0,26	WUE (A/E) 1,90 ±0,45 2,57 ±2,34 2,79 ±1,22 3,17 ±1,21 6,01 ±1,92	rS (m ² rs*mol ⁻¹) 0.82 ±0.20 1.46 ±0.59 1.72 ±0.32 2.49 ±0.74 5.06 ±1.99			500/YuQI
Spartina towns endii control 125NaCl 250NaCl 375NaCl 500NaCl Sesuvium	+1,01 A (µmol*m ² s ⁻¹) 6,25 *1,04 8,17 *1,01 *2,52 *2,26 7,25 *2,26 7,52 *1,54 A	+0,27 E (mm0/m ² s ⁻¹) 3,30 *0,20 3,17 *0,20 2,68 *0,21 2,29 *0,20 1,25 *0,26 E	WUE (A/E) 1,90 2,57 42,34 2,79 41,22 3,17 41,31 6,01 41,92 WUE	rs (m ² *s*mol ⁻¹) 0.82 ±0.20 1.46 ±0.59 ±0.72 ±0.32 ±0.74 ±0.74 ±0.74 5.06 ±1.99 rs			500)Ya Qi
Spartina towns endii control 125N aCl 250N aCl 375N aCl 500N aCl Sesuvium portulacastrum	+1,01 A (µm01*m ² s ¹) 6,25 ±1,04 8,17 ±1,01 7,48 7,25 ±2,28 7,52 ±1,54 A (µm01*m ² s ¹)	+0,27 E (mm0 ¹⁴ m ² s ⁻¹) 3,30 *0,20 3,17 *0,34 2,68 *0,21 2,29 *0,20 1,25 *0,20 E (mm0 ¹ m ² s ⁻¹)	WUE (A/E) 1.90 ±0.45 2.57 ±1.22 3.17 ±1.21 6.01 ±1.92 WUE (A/E)	rs (m ² *s*mol ¹⁺) 0.82 ±0.20 1.46 ±0.59 ±0.72 ±0.72 ±0.74 5.06 ±1.99 rs (m ² *s*mol ¹)			500.Ya CI
Spartina towns endii control 125N aCl 250N aCl 375N aCl 500N aCl Sesuvium control	+1,01 A (μmol*m ² s ⁻¹) 6,25 *1,04 8,17 *1,01 7,48 *2,52 7,25 *2,52 *1,54 A (μmol*m ² s ⁻¹) 5,47 +1,06	+0,27 E (mm0 ⁺ m ² s ⁻¹) 3,30 *0,20 3,17 ±0,34 2,68 *0,21 2,29 ±0,20 1,25 ±0,20 1,25 ±0,26 E (mm0 ⁺ m ² s ⁻¹) 1,46 +0,20	WUE (A/E) 1.90 40.45 2.57 2.79 41.22 3.17 41.31 41.31 6.01 41.92 WUE (A/E) 3.76 +0.22	rs (m ² *s*mol ⁻¹) 0.82 ±0.20 1.46 ±0.59 ±0.74 ±0.74 ±0.74 ±0.74 (m ² *s*mol ⁻¹) rs (m ² *s*mol ⁻¹) 28.45 +4.88			500)M1 61
Spartina towns endii control 125N aCl 250N aCl 375N aCl 500N aCl Sesuvium portulacastrum	+1,01 A (µmol*m ² s ⁻¹) 6,25 ±1,04 8,17 41,01 7,48 ±2,52 7,25 ±2,52 7,25 ±1,54 A (µmol*m ² s ⁻¹) 5,47	+0,27 E (mm0l*m*s*) 3,30 *0.20 3,17 *0.34 2,68 *0.21 2,29 *0.20 1,25 *0.26 E (mm0l*m*s*) 1,46	WUE (A/E) 1.90 40,45 2.57 2.34 2.79 4.122 3.17 4.131 4.131 4.192 WUE (A/E) 3.76	rs (m ²⁺ s*mol ⁻¹) 0.82 ±0.20 1.46 ±0.59 ±0.72 ±0.72 ±0.74 ±0.74 ±0.74 ±0.74 (m ² *s*mol ⁻¹) 28,45			5001141 (1
Spartina towns endii control 125NaCl 250NaCl 375NaCl 500NaCl Sesuvium sortulacastrum control 125NaCl	+1,01 A (µm04*m ² s ⁻¹) 6,25 ±1.04 8,17 ±1,01 7,48 ±2,52 7,25 ±2,28 7,52 ±1,54 A (µm04*m ² s ⁻¹) 5,47 +1,06 6,53 +0,25	+0,27 E (mm0 ¹⁺ m ² s ⁻¹) 3,30 *0.20 3,17 *0,34 2,68 *0,21 2,29 *0.20 1,25 *0,20 1,25 *0,20 1,25 *0,20 1,25 *0,20 1,25 *0,20 1,25 *0,20 1,25 *0,20 1,25 *0,20	WUE (A/E) 1,90 ±0.45 2,57 ±2,34 ±1.22 ±1.22 ±1.22 ±1.23 ±1.31 6,01 ±1.92 WUE (A/E) 3,76 ±0,22 4,34	rs (m ² *s*mol ¹⁺) 0.82 ±0.20 1.46 ±0.59 ±0.32 ±0.32 ±0.32 ±0.32 ±0.74 5.06 ±1.99 rs (m ² *s*mol ¹) 28.45 ±4,88 26,40 ±4,28			500YM QL
Spartina towns endii control 125N aCl 250N aCl 375N aCl 500N aCl Sesuvium control	+1,01 A (µm01*m ² s ⁻¹) 6,25 ±1,04 8,17 41,01 7,48 ±2,25 7,25 ±2,25 7,25 ±1,54 A (µm01 ^{m2} s ⁻¹) 5,47 +1,06 6,53 +0,25 6,95	+0,27 E (mm0l*m*s*) 3,30 *0.20 3,17 *0.34 2,68 *0.21 2,29 *0.20 1,25 *0.28 E (mm0l*m²s*) 1,46 +0,20 1,67 +0,34 1,42	WUE (A/E) 1.90 40,45 2.57 2.57 4.22 3.17 41.22 3.17 41.31 6.01 41.92 WUE (A/E) 3.76 +0.22 3.90 +0.34 4.87	rs (m ² *s*mol ¹) 0.82 ±0.20 ±1.46 ±0.72 ±0.32 ±0.72 ±0.74 ±0.74 ±0.74 ±0.74 ±0.74 ±1.99 rs (m ² *s*mol ¹) 28.45 ±4.88 26.40 ±4.28 24.36			500.YaQI
Spartina towns endii control 125NaCl 250NaCl 375NaCl 500NaCl Sesuvium sortulacastrum control 125NaCl	+1,01 A (µm04*m ² s ⁻¹) 6,25 ±1.04 8,17 ±1,01 7,48 ±2,52 7,25 ±2,28 7,52 ±1,54 A (µm04*m ² s ⁻¹) 5,47 +1,06 6,53 +0,25	+0,27 E (mm0 ¹⁺ m ² s ⁻¹) 3,30 *0.20 3,17 *0,34 2,68 *0,21 2,29 *0.20 1,25 *0.20 1,25 *0,20 1,25 *0,20 1,25 *0,20 1,25 *0,20 1,25 *0,20 1,25 *0,20 1,25 *0,20	WUE (A/E) 1,90 ±0.45 2,57 ±2,34 ±1.22 ±1.22 ±1.22 ±1.23 ±1.31 6,01 ±1.92 WUE (A/E) 3,76 ±0,22 4,34	rs (m ² *s*mol ¹⁺) 0.82 ±0.20 1.46 ±0.59 ±0.32 ±0.32 ±0.32 ±0.32 ±0.74 5.06 ±1.99 rs (m ² *s*mol ¹) 28.45 ±4,88 26,40 ±4,28			5001101

Fig. 2.6 Influence of NaCl salinity on the apparent photosynthesis (A), the adaxial transpiration (E), the water use efficiency (WUE) and the stomatal conductance (rs) of *Aster tripolium, Beta vulgaris* ssp. *maritima, Spartina townsendii* and *Sesuvium portulacastrum*. The ultrastructures (SEM-micrograph) of the leaf surfaces (left side controls, right side seawater salinity treatments) are presented next to the responding table (See p. 14)

Fig. 3.1 On the picture one can see that the *Rhizophora* is dying on some branches. This is caused by speed boats coming too close to the stilling roots of these trees at low tide (See p. 22)

Fig. 3.2 *Thalassia* stand covered with fine sand which was taken from the bottom which can be seen on the left. Fast going speed boats with tourists disturb the sand and put it over the *Thalassia* (See p. 22)