
STOCHASTIC LINEAR PROGRAMMING 
Models, Theory, and Computation 

PETER KALL 
University of ZurichlSwitzerland 

JANOS MAYER 
University of ZurichlSwitzerland 



Recent titles in the 
INTERNATIONAL SERIES IN 
OPERATIONS RESEARCH & MANAGEMENT SCIENCE 

Frederick S. Hillier, Series Editor, Stanford University 

Zhul QUANTITATIVE MODELS FOR PERFORMANCE EVALUATION AND BENCHMARKING 
Ehrgott & Gandibleux/MULTIPLE CRITERIA OPTIMIZATION: State of the Art Annotated 

Bibliographical Surveys 
Bienstockl Potential Function Methods for Approx. Solving Linear Programming Problems 
Matsatsinis & Siskosl INTELLIGENTSUPPORTSYSTEMS FOR MARKETING 

DECISIONS 
Alpern & GaV THE THEORY OF SEARCH GAMES AND RENDEZVOUS 
HalVHANDBOOK OF TRANSPORTATION SCIENCE - 2" Ed. 
Glover & Kochenberger/HANDBOOK OF METAHEURISTICS 
Graves & RinguestJ MODELS AND METHODS FOR PROJECT SELECTION: 

Concepts from Management Science, Finance and Information Technology 
Hassin & Havivl TO QUEUE OR NOT TO QUEUE: Equilibrium Behavior in Queueing Systems 
Gershwin et avANALYSIS & MODELING OF MANUFACTURING SYSTEMS 
Marosl COMPUTATIONAL TECHNIQUES OF THE SIMPLEX METHOD 
Harrison, b e  & Nealel THE PRACTICE OF SUPPLY CHAIN MANAGEMENT: Where Theory and 

Application Converge 
Shanthikumar, Y a o  & Zijml STOCHASTIC MODELING AND OPTIMIZATION OF 

MANUFACTURING SYSTEMS AND SUPPLY CHAINS 
Nabrzyski, Schopf & W ~ g l a r z l  GRID RESOURCE MANAGEMENT: State of the Art and Future 

Trends 
Thissen & Herder1 CRITICAL INFRASTRUCTURES: State of the Art in Research and Application 
Carlsson, Fedrizzi, & FullBrl FUZZY LOGIC IN MANAGEMENT 
Soyer, Mazzuchi & Singpurwalld MATHEMATICAL RELIABILITY: An Expository Perspective 
Chakravarty & Eliashbergl MANAGING BUSINESS INTERFACES: Marketing, Engineering, and 

Manufacturing Perspectives 
Talluri & van Ryzinl THE THEORYAND PRACTICE OF REVENUE MANAGEMENT 
Kavadias & LochlPROJECT SELECTION UNDER UNCERTAINTY: Dynamically Allocating 

Resources to Maximize Value 
Brandeau, Sainfort & Pierskallal OPERATIONS RESEARCHAND HEALTH CARE: A Handbookof 

Methods and Applications 
Cooper, Seiford & Zhul HANDBOOK OF DATA ENVELOPMENTANALYSIS: Models and Methods 
Luenbergerl LINEAR AND NONLINEAR PROGRAMMING, 2" Ed. 
Sherbrookel OPTIMAL INVENTORY MODELING OF SYSTEMS: Multi-Echelon Techniques, 

Second Edition 
Chu, Leung, Hui & Cheungl4th PARTY CYBER LOGISTICS FOR AIR CARGO 
S imch i -bv i ,  Wu & S h e d  HANDBOOK OF QUANTITATIVE SUPPLY CHAIN ANALYSIS: 

Modeling in the E-Business Era 
Gass & Assadl AN ANNOTATED TIMELINE OF OPERATIONS RESEARCH: An Informal History 
Greenberg/ TUTORIALS ON EMERGING METHODOLOGIES AND APPLICATIONS IN 

OPERATIONS RESEARCH 
Weberl  UNCERTAINTYIN THE ELECTRIC POWER INDUSTRY: Methods and Models for Decision 

Support 
Figueira, Greco & EhrgottJ MULTIPLE CRITERIA DECISIONANALYSIS: State of the Art Surveys 
Reveliotisl REAL-TIME MANAGEMENT OF RESOURCE ALLOCATIONS SYSTEMS: A Discrete 

Event Systems Approach 

* A list of the early publications in the series is at the end of the book * 



STOCHASTIC LINEAR PROGRAMMING 
Models, Theory, and Computation 

PETER KALL 
University of ZurichlSwitzerland 

JANOS MAYER 
University of ZurichlSwitzerland 

Q - Springer 



Peter Kall 
University of Zurich 
Switzerland 

JAnos Mayer 
University of Zurich 
Switzerland 

Library of Congress Cataloging-in-Publication Data 

A C.I.P. Catalogue record for this book is available 
from the Library of Congress. 

ISBN 0-387-23385-7 e-ISBN 0-387-24440-9 Printed on acid-free paper. 

Copyright O 2005 by Kluwer Academic Publishers. 
All rights reserved. This work may not be translated or copied in whole or in 
part without the written permission of the publisher (Springer Science + 
Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except 
for brief excerpts in connection with reviews or scholarly analysis. Use in 
connection with any form of information storage and retrieval, electronic 
adaptation, computer software, or by similar or dissimilar methodology now 
know or hereafter developed is forbidden. 
The use in this publication of trade names, trademarks, service marks and 
similar terms, even if the are not identified as such, is not to be taken as an 
expression of opinion as to whether or not they are subject to proprietary rights. 

Printed in the United States of America. 

9 8 7 6 5 4 3 2 1  SPIN 11050001 



Contents 

Notations 
Preface 

1. BASICS 

1 Introduction 

2 Linear Programming Prerequisites 
2.1 Algebraic concepts and properties 
2.2 Geometric interpretation 
2.3 Duality statements 
2.4 The Simplex Method 
2.5 The Dual Simplex Method 
2.6 Dual Decomposition 
2.7 Nested Decomposition 
2.8 Regularized Decomposition 
2.9 Interior Point Methods 

3 Nonlinear Programming Prerequisites 
3.1 Optimality Conditions 
3.2 Solution methods 

2. SINGLE-STAGE SLP MODELS 

1 Introduction 

2 Models involving probability functions 
2.1 Basic properties 
2.2 Finite discrete distribution 
2.3 Separate probability functions 
2.3.1 Only the right-hand-side is stochastic 
2.3.2 Multivariate normal distribution 



STOCHASTIC LINEAR PROGRAMMING 

Stable distributions 
A distribution-free approach 
The independent case 
Joint constraints: random right-hand-side 
Generalized-concave probability measures 
Generalized-concave distribution functions 
Maximizing joint probability functions 
Joint constraints: random technology matrix 
Summary on the convex programming subclasses 

3 Quantile functions, Value at Risk 
4 Models based on expectation 

4.1 Integrated chance constraints 
4.1.1 Separate integrated probability functions 
4.1.2 Joint integrated probability functions 
4.2 A model involving conditional expectation 
4.3 Conditional Value at Risk 

5 Models built with deviation measures 
5.1 Quadratic deviation 
5.2 Absolute deviation 
5.3 Quadratic semi-deviation 
5.4 Absolute semi-deviation 

6 Modeling risk and opportunity 

7 Risk measures 
7.1 Risk measures in finance 
7.2 Properties of risk measures 
7.3 Portfolio optimization models 

3. MULTI-STAGE SLP MODELS 

1 The general SLP with recourse 

2 The two-stage SLP 
2.1 Complete fixed recourse 
2.2 Simple recourse 
2.3 Some characteristic values for two-stage SLP's 

3 The multi-stage SLP 
3.1 MSLP with finite discrete distributions 
3.2 MSLP with non-discrete distributions 

4. ALGORITHMS 
1 Introduction 



vii 

2 Single-stage models with separate probability functions 
2.1 A guide to available software 

3 Single-stage models with joint probability functions 
3.1 Numerical considerations 
3.2 Cutting plane methods 
3.3 Other algorithms 
3.4 Bounds for the probability distribution function 
3.5 Computing probability distribution functions 
3.5.1 A Monte-Carlo approach with antithetic variates 
3.5.2 A Monte-Carlo approach based on probability bounds 
3.6 Finite discrete distributions 
3.7 A guide to available software 
3.7.1 SLP problems with logconcave distribution functions 
3.7.2 Evaluating probability distribution functions 
3.7.3 SLP problems with finite discrete distributions 

4 Single-stage models based on expectation 
4.1 Solving equivalent LP's 
4.2 Dual decomposition revisited 
4.3 Models with separate integrated probability functions 
4.4 Models involving CVaR-optimization 
4.5 Models with joint integrated probability functions 
4.6 A guide to available software 
4.6.1 Models with separate integrated probability functions 
4.6.2 Models with joint integrated probability functions 
4.6.3 Models involving CVaR 

5 Single-stage models involving VaR 

6 Single-stage models with deviation measures 
6.1 A guide to available software 

7 Two-stage recourse models 
7.1 Decomposition methods 
7.2 Successive discrete approximation methods 
7.2.1 Computing the Jensen lower bound 
7.2.2 Computing the E-M upper bound for an interval 
7.2.3 Computing the bounds for a partition 
7.2.4 The successive discrete approximation method 
7.2.5 Implementation 
7.2.6 Simple recourse 
7.2.7 Other successive discrete approximation algorithms 



viii STOCHASTIC LINEAR PROGRAMMING

7.3
7.3.1
7.3.2
7.3.3
7.4
7.5

Stochastic algorithms
Sample average approximation (SAA)
Stochastic decomposition
Other stochastic algorithms
Simple recourse models
A guide to available software

8 Multistage recourse models
8.1
8.2
8.2.1
8.2.2
8.3

Finite discrete distribution
Scenario generation
Bundle-based sampling
A moment-matching heuristic
A guide to available software

9 Modeling systems for SLP
9.1
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6

References
Index

Modeling systems for SLP
SLP-IOR
General issues
Analyze tools and workbench facilities
Transformations
Scenario generation
The solver interface
System requirements and availability

342
342
348
352
353
353

356
356
358
360
361
367

368
368
369
370
371
372
372
373
374

375

395



Notations 

One-stage models: Joint chance constraints 

arrays (usually given real matrices) 

arrays (usually given real vectors) 

arrays (usually real or integer variable vectors) 

probability space 

set of natural numbers 

IRT endowed with the Borel a-algebra BT 

random vector, i.e. Borel measurable mapping 
inducing the probability measure IPt on BT 
according to IPt(M) = P(t-l[M]) VM E BT 

random array and random vector, respectively, 
defined as: 

h(t) = h + h j t j  ; h, h j  E IRm2 fix 
j=1 

expectation 

expectations IE+[T(J)] = ~ ( f )  and 
lE+ [h(t)] = h(f), respectively 

realization of random t 
realizations ~ ( 8 ,  h ( 6 ,  respectively 

One-stage models: Separate chance constraints 

: i-th row of T(.) 

: i-th component of h(-) 

Two-stage recourse models 

: random array and random vector, respectively, 
defined as: 
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T 

W(.):lRr+lRm2xn2 : W ( J ) = W + ~ W ~ & ; W ,  w ~ E I R ~ ~ ~ ~ ~  
j=1 

r 

q(.) : lRr + lRn2 : q(~)=q+C$~j ;q7qi~~n2  
j=1 

- 
w, : expectations IE+ [W ( J ) ]  = W (c) and 

JEc [4(5)] = q(C), respectively 

Multi-stage recourse models 

J : f l + l R R  : random vector J = ( J  2 ,  . . . , J T) with 
T 

J t : n + I R r t ,  t = 2 , . . . , T a n d x r t =  R 
t=2 

Ct : f l  + lRRt : the state of the process at stage t, defined as 
random vector St = ( J  2 ,  - . . , J t ) ,  t 1 2, or else 

t 

St = (ql,. . . , with Rt = C r,, with the 
~ = 2  

corresponding marginal distribution of J 

n=2 U=R,-~+I 
where At,, At,, E lRmtXnr and R1 = 0, 
w i t h l < ~ < t a n d 2 S t < T  

Multi-stage recourse models: Discrete distribution 

J : n + l R R  : random vector with discrete distribution 

{(p, qs); s = 1, , S) ,  @. 
A A 

scenarios J = (Jl, - . , J;) = (e., . . . , T i )  
A 

with IPE(J = J S )  = qs, s E S := (1, - .  . , S )  
A A 

Ct : f2 + lRRt : discrete set {C,S = (e, . . . , @); s E S )  of 



states defining kt 2 1 different equivalence 
classes U,V S, with s i ,  sj E U,V H ci = 
and an associated set of different states at 
stage t which may be defined by 
St := {p I p minimal in one of the U,V) 
as (2 I p E St) with the distribution 

n 
s - ̂P PI(G =v) = T t p  = I e -c t  I 

s E S  
(see Fig. 1 with e.g. Sz = {1,6,11)) 

Figure 1. Scenario tree: Assigning states to nodes. 
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Multi-staee recourse models: The scenario tree 

tree with nodes N c IN, where n = 1 is the 
T 

(unique) root and I NI = I St I + 1 
t=2 

the stage to which n E N belongs; 
there is a bijection 

T 

@I.}, ~ ( 9 )  : w- {lH + U { ( t , ~ t ) }  
t=2 

such that n tt (tn, p(n)), n 2 2; 
hence we assign with any node n 2 2 

p = c(n) with {zP!"), p(n) E St,} uniquely 
determined by n E N (state in node n) 

set of nodes in stage t,  1 5 t 5 T 

the parent node of node n E N, n 2 2 
(immediate predecessor) 

set of nodes in the path from n E N to the root, 
ordered by stages, including n (history of n) 

S(n) = {s E S I 2 = p}, i.e. the index set 
of those scenarios, for which the scenario path 
contains n E N. S(n)  and the related set of 
scenarios are called the scenario bundle of 
the corresponding node n 

set of children (immediate successors) of n 

future of node n along scenario s E S(n), 
including n (and hence Gs(n) = 0 if s 6 B(n)) 
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Preface 

The beginning of stochastic programming, and in particular stochastic linear 
programming (SLP), dates back to the 50's and early 60's of the last century. 
Pioneers w h e a t  that time-contributed to the field, either by identifying SLP 
problems in particular applications, or by formulating various model types and 
solution approaches for dealing adequately with linear programs containing 
random variables in their right-hand-side, their technology matrix, andlor their 
objective's gradient, have been among others (in alphabetical order): 

E.M.L. Beale [lo], proposing a quadratic programming approach to solve spe- 
cial simple recourse stochastic programs; 
A. Charnes and W.W. Cooper [38], introducing a particular stochastic program 
with chance constraints; 
G.B. Dantzig [43], formulating the general problem of linear programming with 
uncertain data and 
G.B. Dantzig and A. Madansky [47], discussing at an early stage the possibility 
to solve particular two-stage stochastic linear programs; 
G. Tintner [287], considering stochastic linear programming as an appropriate 
approach to model particular agricultural applications; and 
C. van de Panne and W. Popp [293], considering a cattle feed problem modeled 
with probabilistic constraints. 

In addition we should mention just a few results and methods achieved before 
1963, which were not developed in connection with stochastic programming, 
but nevertheless turned out to play an essential role in various areas of our field. 
One instance is the Brunn-Minkowski inequality based on the investigations 
of H. Brunn [32] in 1887 and H. Minkowski [206] in 1897, which comes 
up in connection with convexity statements for probabilistic constraints, as 
mentioned e.g. in Prkkopa [234]. Furthermore, this applies in particular to 
the discussion about bounds on distribution functions, based on inequalities 
published by G. Boole in 1854 and by C.E. Bonferroni in 1937 (for the references 
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see Prkkopa [234]), and on the other hand, about bounds on the expectation of a 
convex function of a random variable, leading to a lower bound by the inequality 
of J.L. Jensen [128], and to the Edmundson-Madansky upper bound due to 
H.P. Edmundson [7 11 and A. Madansky [ 1831. 

Among the concepts of solution approaches, developed until 1963 for linear 
or nonlinear programming problems, the following ones, in part after appropri- 
ate modifications, still serve as basic tools for dealing with SLP problems: 

Besides Dantzig's simplex method and the Dantzig-Wolfe decomposition, de- 
scribed in detail in G.B. Dantzig [44], the dual decomposition proposed by 
J.F. Benders [12], cutting plane methods as introduced by J.E. Kelley [159], 
and feasible direction methods proposed and discussed in detail by G. Zou- 
tendijk [311], may be recognized even within today's solution methods for 
various SLP problems. Of course, these methods and in particular their im- 
plementations have been revised and improved meanwhile, and in addition we 
know of many new solution approaches, some of which will be dealt with in 
this book. 

The aim of this volume is to draw a bow from solution methods of (de- 
terministic) mathematical programming, being of use in SLP as well, through 
theoretical properties of various SLP problems which suggest in many cases the 
design of particular solution approaches, to solvers, understood as implemented 
algorithms for the solution of the corresponding SLP problems. 

Obviously we are far from giving a complete picture on the present knowl- 
edge and computational possibilities in SLP. First we had to omit the area 
of stochastic integer programming (SILP), since following the above concept 
would have implied to give first a survey on those integer programming meth- 
ods used in SILP; this would go beyond the limits of this volume. However 
the reader may get a first flavour of SILP by having a look for instance into 
the articles of W.K. Klein Haneveld, L. Stougie, and M.H. van der Vlerk [168], 
W. Romisch and R. Schultz [256], M.H. van der Vlerk [299], and the recent 
survey of S. Sen [268]. 

And, as the second restriction, in presenting detailed descriptions we have 
essentially confined ourselves to those computational methods for solving SLP 
problems belonging to one of the following categories: 
Either information on the numerical efficiency of a corresponding solver is 
reported in the literature based on reasonable test sets (not just three examples 
or less!) and the solver is publicly available; 
or else, corresponding solvers have been attached to our model management 
system SLP-IOR, either implemented by ourselves or else provided by their 
authors, such that we were able to gain computational experience on the methods 
presented, based on running the corresponding solvers on randomly generated 
test batteries of SLP's with various characteristics like problem size, matrix 
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entries density, probability distribution, range and sign of problem data, and 
some others. 

Finally, we owe thanks to many colleagues for either providing us with 
their solvers to link them to SLP-IOR, or for their support in implementing 
their methods by ourselves. Further, we gratefully acknowledge the critical 
comments of Simon Siegrist at our Institute. Obviously, the remaining errors 
are the sole responsibility of the authors. Last but not least we are indebted 
to the publisher for an excellent cooperation. This applies in particular to the 
publisher's representative, Gary Folven, to whom we are also greatly obliged 
for his patience. 

Ziirich, September 2004 Peter Kall and J h o s  Mayer 



Chapter 1 

BASICS 

1. Introduction 
Linear programs have been studied in many aspects during the last 50 years. 

They have shown to be appropriate models for a wide variety of practical prob- 
lems and, at the same time, they became numerically tractable even for very 
large scale instances. As standard formulations of linear programs (LP) we find 
problems like 

min cTx 
subject to Ax cc b } (1.1) 

l < x  < u, 

with the matrix A E IRmXn, the objective's gradient c E IRn, the right- 
hand-side b E IRm, and the lower and upper bounds 1 E IRn and u E lRn, 
respectively. If some xi is unbounded below andor above, this corresponds to 
li = -w andor ui = w. A, b, C, I, u are assumed to be known fixed data in 
the above model. The relation 'cc' is to be replaced row-wise by one of the 
relations '5' , '=' , or '2' . Then the task is obviously to find the-or at least 
one-optimal feasible solution x E lRn. Alternatively, we often find also the 
LP-formulation 

min cTx 
subject to Ax cc b (1.2) 

1. 0, 

under the analogous assumptions as above. For these two LP types it holds 
obviously that, given a problem of one type, it may be reformulated into an 
equivalent problem of the other type. More precisely, 
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given the LP in the formulation (1.2), by introducing the lower bounds 
1 = (0, . . . , o ) ~  and the upper bounds u = (co, . . . , oo)* (in computa- 
tions rather markers u = (M, . . , M ) ~  with a sufficiently large number 
M ,  e.g. M = lo2', just to indicate unboundedness), the problem is triv- 
ially of the type (1.1); and 

having the LP of type (1.1), introducing variables x+ E IR?, x- E 
IR?, inserting x = x+ - x-, x+ 2 0, x- 2 0, introducing the slack 
variables y E IRn+ and t E IR?, and restating the conditions 1 < x < u 
equivalently as 

the problem is transformed into the type (1.2). 

In the same way it follows that every LP may be written as 

min cTx 
subject to Ax = b 

x 2 0, 

i.e. as a special variant of (1.2). 

Numerical methods known to be efficient in solving LP's belong essentially 
to one of the following classes: 

- Pivoting methods, in particular the simplex andlor the dual simplex 
method; 

- interior point methods for LP's with very sparse matrices; 

- decomposition, dual decomposition and regularized decomposition ap- 
proaches for LP's with special block structures of their coefficient ma- 
trices A. 

In real life problems the fimdamental assumption for linear programming, 
that the problem entries--except for the variables x-be known fixed data, does 
often happen not to hold. It either may be the case that (some of) the entries 
are constructed as statistical estimates from some observed real data, i.e. from 
some samples, or else that we know from the model design that they are random 
variables (like capacities, demands, productivities or prices). The standard ap- 
proach to replace these random variables by their mean values-corresponding 
to the choice of statistical estimates mentioned before-and afterwards to solve 
the resulting LP may be justified only under special conditions; in general, it 
can easily be demonstrated to be dramatically wrong. 
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Assume, for instance, as a model for a diet problem the LP 

min cTx 
s. t. Ax 2: b 

x 2: 0, 

where x represents the quantities of various foodstuffs, and c is the correspond- 
ing price vector. The constraints reflect chemical or physiological requirements 
to be satisfied by the diet. Let us assume that the elements of A and b are fixed 
known data, i.e. deterministic, whereas at least some ofthe elements o f T  andlor 
h are random with a known joint probability distribution, which is not influ- 
enced by the choice of the decision x. Further, assume that the realizations of 
the random variables in T and h are not known before the decision on the diet 
x is taken, i.e. before the consumption of the diet. Replacing the random T and 
h by their expectations T and z and solving the resulting LP 

min cTx 
s.t. Ax 2: b 

x 2: 0, 

can result in a diet P violating the constraints in (1.4) very likely and hence 
with a probability much higher than feasible for the diet to serve successfully 
its medical purpose. Therefore, the medical experts would rather require a 
decision on the diet which satisfies all constraints jointly with a rather high 
probability, as 95% say, such that the problem to solve were 

min cTx 
s. t. Ax 2: b 

P ( T x  2: h)  2 0.95 
x 2: 0, 

a stochastic linearprogram (SLP) with jointprobabilistic constraints. Here we 
had at the starting point the LP (1.4) as model for our diet problem. However, 
the (practical) requirement to satisfy--besides the deierministic constraints 
Ax 2 b-also the reliability constraint P ( T x  2: h)  2: 0.95, yields with (1.6) a 
nonlinear program (NLP). This is due to the fact, that in general the probability 
function G ( x )  := P ( T x  2: h)  is clearly nonlinear. 

As another example, let some production problem be formulated as 
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min cTx 
s.t. Ax = b 

T x  = h 
x 2 0, 

where T and h may contain random variables (productivities, demands, ca- 
pacities, etc.) with a joint probability distribution (independent again of the 
choice of x), and the decision on x has to be taken before the realization of 
the random variables is known. Consequently, the decision x will satisfy the 
constraints Ax = b, x > 0; but after the observation of the random variables' 
realization it may turn out that T x  # h, i.e. that part of the target (like satisfying 
the demand for some of the products, capacity constraints, etc.) is not prop- 
erly met. However, it may be necessary-by a legal commitment, the strong 
intention to maintain goodwill, or similar reasons-to compensate for the de- 
ficiency, i.e. for h - Tx, after its observation. One possibility to cope with 
this obligation may be the introduction of recourse by defining the constraints 
Wy = h - Tx, y 2 0, for instance as model of an emergency production 
process or simply as the measurement of the absolute values of the deficiencies 
(represented by W = ( I ,  -I), with I the identity matrix). Let us assume W to 
be deterministic, and assume the recourse costs to be given as linear by qTy, say. 
Obviously we want to achieve this compensation with minimal costs. Hence 
we have the recourse problem 

For any x, feasible to thejrst stage constraints Ax = b, x 2 0, the recourse 
function, i.e. the optimal value Q(x; T, h) of the second stage problem (1.8), 
depends on T and h and is therefore a random variable. In many applications, 
e.g. in cases where the production plan x has to be implemented periodically 
(daily or weekly, for instance), it may be meaningkl to choose x in such a 
way that the average overall costs, i.e. the sum of the first stage costs cTx and 
the expected recourse costs IE Q(x; T, h), are minimized. Hence we have the 
problem 

min cTx + IE Q(x; T,  h) 
s.t. Ax = b (1.9) 

x L 0, 

a two-stage stochastic linear program (SLP) with Jixed recourse. 
Also in this case, although our starting point was the LP (1.7), the result- 

ing problem (1.9) will be an NLP if the random variables in T and h have a 
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continuous-type joint distribution (i.e. a distribution defined by a density func- 
tion). 

If, however, the random variables in T and h have a joint discrete distribution, 
defined by the realizations ( ~ j ,  hj) with the pr~babilitiesp~, j = 1, - . . , S (with 

S 

p j  > 0 and pj = I), problem (1.9) is easily seen to be equivalent to 
j=l 

S 

rnin cTx + CpjpTyj 
j=l 

s. t. Ax = b  1 (1.10) 
T ~ X  +Wyj = hj, j = l , . . . , S  

x 2 0 
j . 0, Y - 

such that under the discrete distribution assumption we get an LP again, with 
the special data structure indicated in Fig. 1.1. 

Figure 1.1. Dual decomposition structure. 

In applications we observe an increasing need to deal with a generalization 
of the two-stage SLP with recourse (1.9) and (1. lo), respectively. At this point 
we just give a short description as follows: In a first stage, a decision x l  is 
chosen to be feasible with respect to some deterministic first stage constraints. 
Later on, after the realization of a random vector (2, a deficiency in some 
second stage constraints has to be compensated for by ah appropriate recourse 
decision x2(J2). Then after the realization of a further random vector 6, the 
former decisions x1 and x2 (&) may not be feasible with respect to some third 
stage constraints, and a further recourse decision x3(t2, 53) is needed, and so 
on, until a final stage T is reached. Again, we assume that, besides the first 
stage costs cTxl, the recourse decisions xt(Ct), t 1. 2, imply additional linear 
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costs cTxt ( ~ t ) ,  where Ct = (E2, + . , &). Then the multi-stage SLP with f i ed  
recourse is formulated as 

subject to 

where, in general, we shall assume Att(Ct), t 2 2, the matrices on the diag- 
onal, to be deterministic, i.e. Att(Ct) Att. It will turn out that, for general 
probability distributions, this problem-an NLP again-is much more difficult 
than the two-stage SLP (1.9), and methods to approximate a solution are just 
at their beginning phase, at best. However, under the assumption of discrete 
distributions of the random vectors Ct, problem (1.1 1) can also be reformulated 
into an equivalent LP, which in general is of (very) large scale, but again with 
a special data structure to be of use for solution procedures. 

From this short sketch of the subject called SLP, which is by far not complete 
with respect to the various special problem formulations to be dealt with, we 
may already conclude that a basic toolkit of linear and nonlinear programming 
methods cannot be waived if we want to deal with the computational solution 
of SLP problems. To secure the availability of these resources, in the following 
sections of this chapter we shall remind to basic properties of and solution 
methods for LP's and NLP's as they are used or referred to in the SLP context, 
later on. 

In Chapter 2, we present various Single-stage SLP models (like e.g. prob- 
lem (1.6) on page 9) and discuss their theoretical properties, relevant for their 
computational tractability, as convexity statements, for instance. 

In Chapter 3 follows an anlogous discussion of Multi-stage SLP models (like 
problem (1.9) in particular, and problem (1.11) in genekal), focussed among 
others on properties allowing for the construction of particular approximation 
methods for computing (approximate) solutions. 

For some of the models discussed before, Chapter 4 will present solution 
methods, which have shown to be efficient in extensive computational experi- 
ments. 
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2. Linear Programming Prerequisites 
In this section we briefly present the basic concepts in linear programming 

and, for various types of solution methods, the conceptual algorithms. 
As mentioned on page 8 we may use the following standard formulation of 

an LP: 

min cTx 
s.t. Ax = b 

x 2 0. 1 
With A being an (m x n)-matrix, and b and c having corresponding dimensions, 
we know from linear algebra that the system of equations 

Ax = b is solvable if and only if rank(A, b) = rank(A). 

Therefore, solvability of the system Ax = b implies that 

either rank(A) = m, 

or the system contains redundant equations which may be omitted, such that 
for the remaining system Ax = 6 we have the same set of solutions as for 
the original system, and that, for the (ml x n)-matrix A, m l  < m, the 
condition rank(A) = ml holds. 

Observing this well known fact, we henceforth assume without loss of gener- 
ality, that rank(A) = m (5  n) for the (m x n)-matrix A. 

2.1 Algebraic concepts and properties 
Solving the LP (2.1) obviously requires to find an extreme (minimal in our 

formulation) value of a linear function on a feasible set described as the in- 
tersection of a linear manifold, {x I Ax = b} ,  and finitely many halfspaces, 
{x I x j  :j 01, j = 1, . - , n, suggesting that this problem may be discussed in 
algebraic terms. 

DEFINITION 2.1 Any feasible solution P of (2.1) is called a feasible basic 
solution if; for I(?) = { i  1 2 > O}, the set {Ai, i E I(P))  of columns in A is 
linearly independent. 

According to this definition, for any feasible basic solution P of (2.1) holds 

Pi > O f o r i E  I(?), 1-, = O f o r j @  I(*), and Ai&= b. 
iEZ(&) 

Furthermore, with I I(2) I being the cardinality of this set (i.e. the number of 
its elements), if II(P)l < m such that the basic solution P contains less than 
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m strictly positive components, then due to our rank assumption on A there 
is a subset IB(2) with IB(2) > I (2)  and IIB(2) I = m such that the col- 
umn set {Ai, i E IB(2)} is linearly independent or equivalently, that the 
(m x m)-matrix B = (Ai I i E IB(2)) is nonsingular. Introducing, with 
IB(2) = { i l , - + + , i m }  and IN(*) = { I l . . - , n }  \ IB(2) = { j l l - ~ ~ , j n - m } ,  
the vectors xtB) E Rm-the basic variables-and x { ~ )  E Rn-m-the non- 
basic variables-according to 

then, with the (m x (n-m))-matrix N = (Aj I j E IN ( 2 ) )  the system Ax = b 
is, up to a possible rearrangement of columns and variables, equivalent to the 
system 

BxtB) + N X { ~ )  = b. 

Therefore, up to the mentioned rearrangement of variables, the former feasible 
basic solution 2 corresponds to (2tB) = B-lb 2 0, ktN) = O), and the 
submatrix B of A is called a feasible basis . With the same rearrangement of 
the components of the vector c into the two vectors ctB) and ctN) we may 
rewrite problem (2.1) as 

Solving the system of equations for xiB) we get xtB) = B-lb - B d l ~ x t N )  
T 

such that-with y~ := ctB) B-lb the objective value of the feasible basic 
solution (piB) = B-lb 2 0, 2{N) = 0)-problem (2.1) is equivalent to 

For computational purposes (2.2) is usually represented by the simplex tableau 

Qmn-m 

such that the objective and the equality constraints of (2.2) are rewritten as 
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T 
with ( = YB = dB) B-lb, (I = (PI , . . , = ~ - l b ,  and furthermore 

and 
T 

Although not written down explicitly, we assume that also for the reformulation 
(2.3) and (2.4) the nonnegativity constraints xIB) 2 0, xjN) > 0 have to hold. 

To justify the simplex algorithm as a solution method for (2.1) the following 
statements are essential. 

PROPOSITION 2.1 Provided that the LP (2.1) is feasible, i.e. that the feasible 
set B := {x I Ax = b, x > 0) # 8, there exists at least onefeasible basic 
solution. 

PROPOSITION 2.2 Ifthe LP (2.1) is solvable with the optimal value T, then - T I  
there exists at least one feasible basis B, yielding cIB) B-lb = T. 

DEFINITION 2.2 Assume that rank(A) = m. Iffor a feasible basis B and 
the corresponding feasible basic solution 2 with ( ~ ( ~ 1  = B-lb, 2{N) = 0) it 
happens that I I(?) I < m, i.e. that less than m of the basic variables are strictly 
positive, then the basic solution 2 is called degenerate. 

Finally, if we have a feasible basis B such that 8 5 0, than obviously 
this basis is optimal, i.e. (2{B) = P, 2{N) = 0) solves (2.1), since by (2.4) 
z = ( - dTxiN) 2 ( V X { ~ )  > 0. On the other hand, assume that (2.1) 
is solvable, and that in addition all feasible basic solutions are nondegenerate. 
Then for an optimal feasible basis B, existing due to Prop. 2.2, dT 5 0 has to 
hold due to the following argument: 

If, for any feasible basis, dj  > 0 would hold for some j E (1, . - - , n - m), 
due to ,t? > 0 by the assumed nondegeneracy, we could choose x { ~ )  = Tej (ej 
the j-th unit vector in IRn-m) with some T > 0, such that according to (2.4) 
would follow 

Hence, the basis at hand would not be optimal. 
Even without the nondegeneracy assumption the above optimality condition, 

also known as the simplex criterion, can be shown to hold true. 
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PROPOSITION 2.3 The LP (2.1) is solvable ifand only ifthere exists an op- 
timal feasible basis B such that the condition 

is satisfied. 

The proof of the above statements may be found in the literature, e.g. in 
Dantzig 1441, Maros [191], or Vanderbei [295]. 

2.2 Geometric interpretation 
Besides the algebraic formulation of LP's, it is sometimes intuitively helpful 

to have in mind their geometric interpretation. To this end we need the concepts 
of a convex polyhedron and of a convex polyhedral cone. 

DEFINITION 2.3 Givenfinitely many vectors x('), . . . , x(') E IRn, then their 
convex hull 

:= {x I x = x X j x ( j )  with x~j = 1, Xj 2 O V j )  
j=1 j=1 

is called a convex polyhedron, and their positive hull 

is called a convex polyhedral cone. 
Finally, P +C = { z  I z = x + y : x E P, y E C) is called a convexpolyhedral 
set. 

To generate the polyhedron P of Fig. 2.1, the elements x@) and x ( ~ )  are obvi- 
ously redundant, i.e. omitting these elements would result in the same polyhe- 
dron P, whereas no one of the elements x@), - . , x ( ~ )  can be deleted without 
changing the polyhedron essentially. The simple reason is that a polyhedron is 
uniquely determined by its vertices. 

DEFINITION 2.4 Given a convexpolyhedron P, an element y E P is a vertex 
ifand only ifthere are no two further elements v, w E P such that v # y # w 
and y = Xv + (1 - X)w, X E (0,l). 

Similarly, for a convex polyhedral cone not all of the generating elements 
mentioned in Def. 2.3 might be really needed to represent the cone. More 
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Figure 2.1. Polyhedron P = cconv {x('), . . . , ~(~1). 

precisely, whenever one of the generating elements equals a nonnegative linear 
combination ofthe other generating elements, it can be deleted without changing 
the cone. 

With the LP (2.1) the set C = {y I Ay = 0, y 2 0) can be associated. 

PROPOSITION 2.4 The set C = {y I Ay = 0, y 1 0) is a convexpolyhedral 
cone, 

generated either trivially by {0), ifC = {O), 

OK if3y E C : y # 0, generated for instance by ty(l), . . , y(S)), the set of 
feasible basic solutions of the system 

Ay = 0 
eTy = 1, whereeT = (l,..., 1) ,  
Y 2 0. 

With these concepts we may describe the feasible set 

as follows: 

PROPOSITION 2.5 For the feasible set t3 # 0 holds 

where C = y I Ay = 0, y 2 0) and P = conv {x('), a ,  x(')), with \ {x(l), - , x(* ) being the set offeasible basic solutions of B. 
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The set of feasible basic solutions of 13 can be shown to coincide with the set 
of vertices of P (and 23). The proofs of these statements may be found in the 
standard LP literature, or else in Kall-Wallace [152]. 

DEFINITION 2.5 For any nonempty set M C IRn its polar cone is the set 

An obvious consequence of this definition is 

PROPOSITION 2.6 For any nonempty set M c IRn itspolar cone M c IRn 
is a closed convex cone, i.e. MP # 0 is a closed set such that for any two 
z ( ~ )  E MP, i = 1,2, holds Xlz( l)  + ~ ~ z ( ~ )  E MP VXi 2 0. In particulal; for 
any convex polyhedral cone C its polar cone cP is a convex polyhedral cone as 
well. 

Pro08 Obviously, 0 E MP and hence MP # 0 is a convex cone. For 
(z(")  E M P ,  v E IN) converging to i we have for any arbitrary 2 E M that 

T 
z("lT2 5 0 V v  E IN and hence f T 2  = lim z(") 2 5 0, such that i E MP, 

u+OO 

i.e. MP is closed. 
If C is a convex polyhedral cone generated by id ( ' ) ,  . . , d(T) ) ,  with the matrix 

D = (d('), . . . , d(')) the polar cone of C is given as cP = { z  I D ~ Z  5 0 )  
which, in analogy to Prop. 2.4, is a convex polyhedral cone. 0 

According to Proposition 2.5, using the set of feasible basic solutions 
{ x ( l ) ,  - . , x ( ~ ) ) ,  i.e. the vertices of P ,  and the generating set {y( ' ) ,  . . , y(')) 
of C as described in Prop. 2.4, the LP (2.1) can now be rewritten as 

min C Xi cTx(') + C pj cTY(j)  
i=l j=1 

i=l 
Xi  2 0 V i  

> 0 Qj. Pj - 

This representation implies the following extension of Prop. 2.2. 

PROPOSITION 2.7 Provided that B # 0, the LP (2.1) is solvable ifand only 
if cTy 2 0 V y E C, i.e. -c E cP; in this case an optimal solution can 
be chosen as a vertex x ( ~ o )  of B (a feasible basic solution of B) such that 
C T 2 ( i ~ )  = min cTx(i). 

i€{l, . . . ,~} 

Pro08 The assumption, that cTy 2 0 V y E C, is equivalent to the requirement 
that cTy(j)  2 0,  j = 1, .  . . , s. If this condition is violated for at least one y(j)  
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(e.g. for jl), then according to (2.7) for pj1 -t oo follows for the objective 
z + -oo, such that the LP is unsolvable. 
If, on the other hand, the condition is satisfied, then-to solve (2.7)-we would 
choose ~ l j  = 0 V j, which implies the assertion immediately. 0 

As a consequence we get 

PROPOSITION 2.8 IfB # 8, and ifcTx 2 y Vx E B for some y E R, then 
the LP min{cTx I x E B) is solvable. 

Pro08 For any fixed 2 E B and an arbitrary y E C it holds true that 2 + py E 
B Vp > 0, and by assumption we have cT2 + pcTy 2 7, which implies that 
cTy > 0 is satisfied for each y E C; hence the assertion follows from Prop. 2.7. 
0 

2.3 Duality statements 
To the primal LP in its standard formulation 

min cTx 
sa t .  Ax = b 

x 2 0 

another LP, called its dual, is assigned as 

max bTu 
s. t. ATu 5 c. 

The technical rules according to which the dual LP (2.8) is constructed from the 
primal LP (2.1) may roughly be stated as follows: To the equality constraints 
Ax = b in (2.1) correspond the free variables u E IRm in (2.8); to the non- 
negative variables x E R"+ correspond the inequality contraints ATu 5 c with 
the transpose of A as the matrix of coefficients; the right-hand-side b of the 
primal program yields the objective's gradient of the dual program, whereas 
the objective's gradient c of the primal LP turns into the right-hand-side of the 
dual LP; finally, to the minimization in (2.1) corresponds the maximization in 
(2.8). 

Rewriting (2.8) into the standard form, we want to solve the problem 
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To this LP we assign analogously the dual LP 

- max cTz 
s. t. Az 5 -b 

-Az 5 b 
z 5 0 

which, using x := -z, yields 

- max -cTx = min cTx 
s.t. Ax = b 

x > 0 

coinciding with (2.1) again. Hence, the dual of the dual LP is the primal program 
again and we therefore can speak of a pair of dual LP's. 

There are further relations between the primal and the dual LP which are less 
obvious. First, we have the weak duality theorem. 

PROPOSITION 2.9 For any pair of feasible solutions Z and ii of (2.1) and 
(2.8), respectively, it holds that bTii 5 cT5. 

Pro08 According to the assumed feasibilities A5 = b, 5 2 0, and ATii 5 c it 
follows that 

bTii = ( ~ 5 ) ~ i i  = ~ ~ ( ~ ~ i i )  5 ZTc. 

Moreover, there is the following relation between pairs of dual LP's. 

PROPOSITION 2.10 Ifboth of the dual LP's (2.1) and (2.8) are feasible, then 
both of them are solvable. 

Pro08 Let 6 be feasible for (2.8). Then, by the weak duality theorem, cTx > 
bT6 Vx E B. Hence Prop. 2.8 yields the solvability of (2.1). The solvability of 
(2.8) follows analogously. 0 

Finally, we have the strong duality theorem. 

PROPOSITION 2.11 I f  the primal problem is solvable, then so is the dual 
problem, and the optimal values of the two problems coincide. 

Pro08 According to Prop. 2.3 the LP (2.1) is solvable if and only if there exists 
an optimal feasible basis B such that the simplex criterion (2.5) 


