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Preface

Scientific computing has become an invaluable tool in many diverse fields,
such as physics, engineering, mechanics, biology, finance and manufacturing.
For example, through the use of efficient algorithms adapted to today’s
computers, we can simulate, without physically testing costly mock-ups, the
deformation of a roof under the weight of snow, the acoustics of a concert hall
or the airflow around the wings of an aircraft.

The goal of this book is to explain and illustrate, using concrete examples,
the recent techniques of scientific computing for the numerical simulation of
large-size problems, using systems modeled by partial differential equations.
The different methods of formation and solving of large linear systems are
presented. Recent numerical methods and related algorithms are studied in
detail. Implementation and programming techniques are discussed for direct
and preconditioned iterative methods, as well as for domain decomposition
methods. Programming techniques based on message-passing and loop
parallelization are illustrated by using examples that employ MPI and
OpenMP.

The main objective of this book is to examine numerical techniques
applied to parallel computing for machines with a very large number of
processors and distributed memory. Knowledge of numerical analysis, and
basic computer science concepts are required for optimal understanding.
Though the functioning of scientific computers is described, this book will
not go beyond what is useful for writing efficient programs. The underlying
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idea is to show, in a reasonably complete manner, recent numerical methods
used in scientific computing, with an emphasis on their adaptation to parallel
computing. We present a number of examples of parallel algorithms, which
are more or less standard in scientific computing. Most of these examples are
drawn from problems arising from the implementation of the finite element
method.

We follow a didactic approach and gradually introduce mathematical and
computing concepts where appropriate, and whenever the need arises to
enhance understanding. And we present, as examples, the introduction of new
architectural characteristics of computers, and current management issues of
parallelism due to the increasing complexity of applications. This book is
designed to be an introduction to the issues of parallel computing for users of
scientific computers, and is not meant as a reference work on parallel
computing in terms of information technology (IT).

This book is intended primarily for Master’s students of applied
mathematics, as well as of computational mechanics, and more generally to
students in all fields of engineering who are concerned with high-performance
computing. It may also interest any engineer faced with the numerical
simulation of large-scale problems from systems modeled by partial
differential equations, as well as more generally, the solving of large linear
systems.

Portions of this book have been used, for a number of years by the authors,
in lectures on scientific computing at Wuhan University of Science and
Technology (China), Université Pierre et Marie Curie (France), Université
Henri Poincaré (France), Conservatoire National des Arts et Métiers (France),
École Centrale des Arts et Manufactures (France), École Normale Supérieure
de Cachan (France), École Supérieure des Sciences et Technologies de
l’Ingénieur de Nancy (France), Institut des Sciences de l’Ingénieur de Toulon
et du Var (France), University Duisburg-Essen (Germany), Chuo University
(Japan), Doshisha University (Japan), Keio University (Japan), University of
Electro Communications (Japan) and the Partnership for Advanced
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Introduction

Recent advances in computer architectures (clock frequency, cache,
memory hierarchy, multi-core, etc.) have led to the development of today’s
scientific computers with millions of cores, which often carry out more than
1015 floating-point operations per second (flops). For comparison, this figure
would correspond to more operations in 1 second than the world’s population
could make in 2 days, with our estimation based on one floating-point
operation per second per person. Twice a year, the TOP500 establishes the list
of the most powerful (declared) supercomputers in the world, in terms of
flops. Currently, the first rank supercomputer, Tianhe-2 in China, is composed
of more than 3 million cores and has a maximum performance of almost 34
petaflops. Nowadays, the limitation in the increase of computational power is
the electrical power needed to run these systems. The power of the
aforementioned supercomputer is 17,808 kW, which corresponds to the
consumption of an average European city of 80,000 inhabitants. The
development of more ecological supercomputers is thus a challenge and is
now a high priority area of research. But, it is not only necessary to develop
lower power computers... but also to develop efficient algorithms that take full
benefit of these architectures.

This book is an introduction to high-performance computing (HPC). Its
purpose is to present some numerical methods, using scientific
supercomputers, for solving engineering problems that cannot be treated by
using classical computers. Current issues of HPC are successively addressed:
data parallelism, vectorization, message-passing, parallel formation of
matrices, parallelization of the product of matrices, direct and iterative
parallel methods for solving large linear systems, etc.
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The presentation of these methods is brought to life by the systematic use
of the programming environments of MPI and OpenMP, for which the main
commands are gradually introduced. All algorithms presented here are in the
form of pseudo-codes. This allows the readers to quickly visualize the
properties of these algorithms, in particular, the sequence of operations,
dependencies among data, etc. The resolution of various problems, often
drawn from concrete applications, is the subject of numerous examples and
problem-solving exercises. At the end of this book, an appendix presents
more advanced concepts and provides bibliographic data, which enables
readers to deepen their acquired knowledge.

For this purpose, the book can be divided into four parts.

The first part, introduced in Chapter 1, discusses the architecture of
scientific computers, different types of parallelism and the memory
architecture of these computers. Chapter 2 presents programming models,
performance criteria and data parallelism. Then in Chapter 3, we provide a
concrete example of the product of matrices to illustrate the parallelization
process, temporal and spatial locality of data.

The second part provides a concise complementary numerical matrix
analysis. Chapter 4 recalls some basic notions of linear algebra and the
properties of matrices, and also explains the notation used later in this book.
Chapter 5 focuses particularly on sparse matrices in the context of the finite
element, finite difference and finite volume methods, and more specifically on
their origins and parallel formation. Chapter 6 outlines the main methods of
solving linear systems. The implementations of these methods are detailed in
the sections which follow.

The third part examines methods for solving large linear systems.
Chapter 7 presents the principles of direct methods (LU, Cholesky,
Gauss–Jordan and Crout’s factorization), which leads to Chapters 8 and 9 that
focus, respectively, on the parallelization of LU methods for dense matrices,
and then sparse matrices.

The fourth part treats iterative methods for solving large linear systems by
using Krylov methods. A quick review of Krylov subspaces and the
construction of Arnoldi algorithms are detailed in Chapter 10. Chapter 11
presents the Krylov methods with complete orthogonalization for symmetric
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positive definite matrices. Chapter 12 examines exact orthogonalization
methods for general matrices, followed by Chapter 13 that considers
biorthogonalization methods for non-symmetric matrices. The parallelization
techniques of the Krylov methods are discussed and detailed in Chapter 14.
Preconditioning techniques and hybrid methods, such as those used in domain
decomposition, are briefly described in Chapter 15.





1

Computer Architectures

This chapter does not claim to be a course in computer programming.
Only those architectural features which are not obvious to the user, i.e. those
that imperatively need to be taken into account for coding which achieves the
optimal performance of scientific computers, are presented here. Therefore,
we will not be going into the details of hardware and software technologies of
computer systems, but will only explain those principles and notions that are
indispensable to learn.

1.1. Different types of parallelism

1.1.1. Overlap, concurrency and parallelism

The objective of numerical simulation is to approximate, as closely as
possible, physical reality, through the use of discrete models. The richer the
model, and the more parameters it takes into account, the greater the amount
of computational power. The function of supercomputers is to permit the
execution of a large number of calculations in a sufficiently short time, so that
the simulation tool can be exploited as part of a design process, or in
forecasting.

The natural criterion of performance for a supercomputer is based on the
speed of calculations, or the number of arithmetic operations achievable per
second. These arithmetic operations – addition, subtraction, multiplication or
division – involve data, either real or complex, which are represented by
floating point numbers. A floating point number is a real number that is

Parallel Scientific Computing, First Edition. Frédéric Magoulès,  
François-Xavier Roux and Guillaume Houzeaux.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.
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represented by two integers, a mantissa and an exponent. Since computers
work in base 2, the value of a real number, represented in floating point
representation, is equal to the mantissa or signific and multiplied by 2 times
the power of the exponent. The precision of a real number is then limited by
the length of the mantissa. The unit used to measure calculation speeds is the
“flops” (floating point operations per second). As the frequencies of current
microprocessors have increased, the following terms are commonly
employed: Mflops, or a million operations per second (Mega = 106); Gflops,
or a billion operations per second (Giga = 109); Tflops, which is a trillion
operations per second (Tera = 1012); and even Pflops, or a quadrillion
operations per second (Peta = 1015). Speeds are dependent upon the
technologies used for components and depend on the frequencies of the
microprocessors. Up until the early 2000s, there were enormous
improvements in the integration of semi-conductor circuits due to
manufacturing processes and novel engraving techniques. These
technological advances have permitted the frequency of microprocessors to
double, on average, every 18 months. This observation is known as Moore’s
law. In the past few years, after that amazing acceleration in speeds, the
frequencies are now blocked at a few GHz. Increasing frequencies beyond
these levels has provoked serious problems of overheating that lead to
excessive power consumption, and technical constraints have also been raised
when trying to evacuate the heat.

At the beginning of the 1980s, the fastest scientific computers clocked in
around 100 MHz and the maximum speeds were roughly 100 Mflops. A little
more than 20 years later, the frequencies are a few GHz, and the maximum
speeds are on the order of a few Tflops. To put this into perspective, the
speeds due to the evolution of the basic electronic components have been
increased by a factor in the order of tens, yet computing power has increased
by a factor bordering on hundreds of thousands. In his book Physics Of The
Future, Michio Kaku observes that: “Today, your cell phone has more
computer power than all of NASA back in 1969, when it placed two
astronauts on the moon.” How is this possible? The explanation lies in the
evolution of computer architectures, and more precisely in the use of
parallelization methods. The most natural way to overcome the speed limits
linked to the frequencies of processors is to duplicate the arithmetic logic
units: the speed is twice as fast if two adders are used, rather than one, if the
functional units can be made to work simultaneously. The ongoing
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improvements in semi-conductor technology no longer lead to increases in
frequencies. However, recent advances allow for greater integration, which in
turn permits us to add a larger number of functional units on the same chip,
which can even go as far as to completely duplicate the core of the processor.
Pushing this logic further, it is also possible to multiply the number of
processors in the same machine. Computer architecture with functional units,
or where multiple processors are capable of functioning simultaneously to
execute an application, is referred to as “parallel”. The term “parallel
computer” generally refers to a machine that has multiple processors. It is this
type of system that the following sections of this work will primarily focus
on.

But even before developing parallel architectures, manufacturers have
always been concerned about making the best use of computing power, and in
particular trying to avoid idle states as much as possible. This entails the
recovery of execution times used for the various coding instructions. To more
rapidly perform a set of operations successively using separate components,
such as the memory, data bus, arithmetic logic units (ALUs), it is possible to
begin the execution of a complex instruction before the previous instruction
has been completed. This is called instruction “overlap”.

More generally, it is sometimes possible to perform distinct operations
simultaneously, accessing the main or secondary memory on the one hand,
while carrying out arithmetical operations in the processor, on the other hand.
This is referred to as “concurrency” . This type of technique has been used for
a long time in all systems that are able to process several tasks at the same
time using timesharing. The global output of the system is optimized, without
necessarily accelerating the execution time of each separate task.

When the question is of accelerating the execution of a single program, the
subject of this book, things become more complicated. We have to produce
instruction packets that are susceptible to benefit from concurrency. This
requires not only tailoring the hardware, but also adapting the software. So,
parallelization is a type of concurrent operations in cases where certain parts
of the processor, or even the complete machine, have been duplicated so that
instructions, or instruction packets, often very similar, can be simultaneously
executed.
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1.1.2. Temporal and spatial parallelism for arithmetic logic units

The parallelism introduced in the preceding section is also referred to as
spatial parallelism. To increase processing output, we can duplicate the work;
for example, with three units we can triple the output.

Figure 1.1. Spatial parallelism: multiplication of units

There is also what is called temporal parallelism, which relies on the
overlap of synchronized successive similar instructions. The model for this is
the assembly line. The principle consists of dividing up assembly tasks into a
series of successive operations, with a similar duration. If the chain has three
levels, when the operations of the first level are completed, the object being
assembled is then passed onto the second level where immediately the
operations of the first level for a new object are begun, and so forth. Thus, if
the total time of fabrication of each object consists of three cycles, a new
finished object is completed every three cycles of the chain. Schematically,
this is as fast as having three full workshops running simultaneously. This
way of functioning allows us, on the one hand, to avoid duplication of all the
tools, and on the other hand, also assures a more continuous flow at the
procurement level of the assembly line. This type of processing for the
functional units of a computer is referred to as “pipelining”. This term comes
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from the fact that a pipeline is in fact a form of transportation chain, unlike
independent forms of transportation using trucks, trains or boats.

Figure 1.2. Temporal parallelism: pipeline of additions

To illustrate how pipeline processing works, let us consider the example
of the addition of floating point numbers. This operation takes place in three
stages. The first step consists of comparing the exponents, so that the mantissas
can be aligned; the second step involves adding up the mantissas; and third to
normalize the result by truncating or shifting the mantissa. More specifically,
we will take an example written in base 10, just to show how this works. In
our example, let us assume the mantissa has four digits. To add 1234 × 10−4

and −6543 × 10−5, we notice that −4 − (−5) = 1. Thus, we have to shift
the second mantissa one cell to the right. This is exactly how we treat two
operands that we would like to add, when we write one over the other and we
align the position of the decimal points. Returning to our example, we then
calculate the addition of the mantissas: 1234 + (−0654) = 0580. And finally,
the normalization of the result consists of again shifting the mantissa, but this
time back one cell to the left, and reducing the exponent by 1, which gives the
final result of 5800 × 10−5. As an aside, we can note that, in the same way
that the precision of the decimal representation of a real number is limited by
the size of the mantissa, operations are performed by using an approximation
due to this truncation, even if we momentarily expand the size of the mantissa
to limit round-off errors. In fact, what is the right extension to five digits of
1234× 101: 12340, 12345 or 12350?
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The potential improvements in performance obtained by using pipeline
architectures are limited by the size of elementary operations that we can
execute in just one clock cycle, like the addition of two signed integers. It
would not serve any purpose to split tasks up more than that. We will find
both temporal and spatial parallelism used simultaneously in scientific
computers that employ pipeline architectures, which is to say that they use
multiple pipelined units.

1.1.3. Parallelism and memory

A vision of performance based solely on the speed of the execution of
arithmetic operations leaves out one important element – the data.

In a scientific code, in general, the most important part of calculation
resides in the resolution phase of discretized problems, which necessitate
algebraic operations on arrays in one or more dimensions. An emblematic
operation of this sort of calculation is the linear combination of vectors:

f o r i = 1 to n
y(i) = y(i) + α× x(i)

end f o r

At each iteration of the loop, it is necessary to carry out an addition and
a multiplication, to recuperate the data x(i) and then the data y(i), from the
memory, and then finally update the result y(i). The data α which are the
same for each iteration can be conserved in the internal buffer memory cells
of the processor, the registers, for the duration of the execution of the loop.
Finally, the memory needs to be accessed 3 times, twice in read mode and
once in write mode, for these two arithmetical operations. Therefore, nothing
is gained by multiplying the number of arithmetic units, nor processors, if the
“bandwidth” of the memory is not also increased. If we want to increase the
speed of calculation, it is to be able to treat models with more parameters. So,
the memory should be of a sufficiently large size to contain all the data, and
simultaneously be fast enough to supply all the available arithmetic logic units.
To carry this out, the memory would need to function at a faster rate than the
processors, which is obviously unrealistic because both the processors and the
memory use the same semi-conductor technology.

Therefore, what is most important for the realization of high-performance
scientific computers is, in reality, the architecture of the memory.
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1.2. Memory architecture

As we just saw, computing power is in large part dependent on the
duplication of functional units, which treat the data stored in the memory.
Naturally, this raises the question about how to best supply data to the logic
units, so as to obtain optimal performance.

1.2.1. Interleaved multi-bank memory

To simultaneously increase the size and bandwidth of the memory, the
obvious solution consists of duplicating memory units. Doing this evidently
increases the size of the memory, however, access time for a particular piece
of data always remains the same. So that the global access times can be
increased, as in the case of accessing a series of data from an array, it is
necessary for the different memory units to function simultaneously in
parallel. The different elements of the array, which occupy successive
memory addresses, must be allocated to the different memory units, or banks.
The memory is thus referred to as interleaved.

Figure 1.3. Interleaved multi-bank memory

Let us assume that an array x is allocated to eight memory banks, as is
illustrated in Figure 1.3. Access time to one bank would normally be eight
clock cycles, yet after an initialization phase, the interleaved multi-bank
memory is capable of providing a new value x(i) with each cycle, because
each bank is called upon only once during the eight cycles.

In reality, the access time to a bank is of the order of a few tens of cycles. To
best supply in a satisfactory manner a few tens of processors, each with its own
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arithmetic unit, a few hundred or even a few thousand banks would be required.
The memory controller and the interconnection network between the banks and
all the processors would then become very complex and consequently very
costly to implement.

This solution is only found in specialized scientific supercomputers known
as “vector supercomputers”. The term “vector” indicates that these
computers, in order to facilitate the administration of the system and to
improve performance, feature a set of instructions which do not cover just one
datum, but a full series of data in an array, known as a vector. The processors
generally have vector registers, which are capable of temporarily storing these
vectors.

This solution is not “scalable”, in the sense that system performance does
not increase in a linear manner, according to the number of processors. In
fact, to effectively put into place an increase in the number of processors, it is
necessary to raise the memory bandwidth, which means increasing the
number of banks. If not, the processors will not be correctly supplied and the
total computing speed will not increase just because more processors have
been added. Moreover, if the number of processors and the number of banks
are multiplied by a factor p, the complexity of interconnection between the
memory and processors will increase by a factor of p2. At a certain point, the
state of the technology imposes a barrier on the maximal size of systems that
are feasible.

1.2.2. Memory hierarchy

It is altogether possible to produce memory units with short access times,
but which have a reduced capacity. Specifically, increasing the number and
density of circuits allows us to add memory on the same chip as the processor.
This memory can have an access time of one cycle, however, its size is limited.
Nevertheless, the time unit to access large capacity memory can be reduced by
putting access procedures into place, which address contiguous blocks of data.

Between a memory of a large size and the processor, there is “cache”, which
is rapid, and serves the purpose of temporary storage for data used by the
processor. In order to optimize the bandwidth between the memory and cache,
the transfers are carried out using small blocks of data called “cache lines”.
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Figure 1.4. Cache memory

The lines transferred to the cache are only temporary copies of memory
lines. The system manages the list of lines that are present in the cache. When
the processor needs data, there are two possibilities:

– Either the line of data is already in the cache, in which case that is
favorable, because the access time to the data would be that of the cache.

– Or, the line is not in the cache and therefore it must be sent from the
memory. But before doing this, space in the cache needs to be freed up, so a
former cache-line is sent back to the memory first. The cache line being sent
back is preferably the one that had the longest inactive period, and is thus
considered to be the least useful. Figure 1.5 illustrates this mechanism.

With this type of operation, a new potential problem crops up – the access
times to the memory become non-uniform. The organization of the data
structures in the code and their use patterns will strongly influence the smooth
functioning of the memory system, which reduces both efficiency and
performance levels.

First, the system relies on transfer mechanisms, by block or line, of data
stored in the memory toward the cache, which is supposed to enhance the data



10 Parallel Scientific Computing

flow rate. Each time data are accessed in memory, the entire line that contains
the data is recopied to the cache, before the data are finally transmitted to the
processor. If only these data are subsequently used, it is evident that the transfer
procedure is more costly than unitary access directly to the memory. However,
if other data that are part of the memory line are used by the processor, either
in the same instruction or in instructions that immediately follow, then the
mechanism proves to be beneficial. Therefore, the use of “spatial locality of
data” would be encouraged to access contiguous data in memory.

Figure 1.5. Management of the cache memory

Yet, if the processor is using data from the same line repeatedly in a short
period, the data will stay in the cache line and provide for quick access.
Therefore, we should try to group, in a short time frame, successive access to
the same datum, which favors the use of “temporal locality of data”.

In effect, it is the cache memory of the processor that loads it. To assure a
supply to separate processors, separate caches are also needed.

As we can see, both caches share the same central memory. If both caches
need to simultaneously access it, access times will be longer. Moreover, this
can also produce the phenomenon of a conflict of access to the memory lines.
In fact, if a line is stored in the cache, the processor that uses it could modify
the data values. If another processor wants to access the same line, the updated
content needs to be written to the central memory first. At any given point
in time, a line can only be used in write mode by a single processor. So, at
each instant, the main memory needs access to a list of the lines stored in the


