ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Florestan Schindler

Zerspanungsmechanismen beim Schleifen von polykristallinem Diamant

Zerspanungsmechanismen beim Schleifen von polykristallinem Diamant

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Florestan Schindler

Berichter:

Univ.-Prof. Dr.-Ing. Dr.-Ing. E. h. Dr. h. c. Dr. h. c. Fritz Klocke Univ.-Prof. Dr.-Ing. habil. Dr.-Ing. E. h. Ekkard Brinksmeier

Tag der mündlichen Prüfung: 27. Juli 2015

ERGEBNISSE AUS DER PRODUKTIONSTECHNIK

Florestan Schindler

Zerspanungsmechanismen beim Schleifen von polykristallinem Diamant

Herausgeber: Prof. Dr.-Ing. Dr.-Ing. E. h. Dr. h. c. Dr. h. c. F. Klocke Prof. Dr.-Ing. Dipl.-Wirt. Ing. G. Schuh Prof. Dr.-Ing. C. Brecher Prof. Dr.-Ing. R. H. Schmitt

Band 46/2015

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.

Florestan Schindler:

Zerspanungsmechanismen beim Schleifen von polykristallinem Diamant

1. Auflage, 2015

Gedruckt auf holz- und säurefreiem Papier, 100% chlorfrei gebleicht.

Apprimus Verlag, Aachen, 2015 Wissenschaftsverlag des Instituts für Industriekommunikation und Fachmedien an der RWTH Aachen Steinbachstr. 25, 52074 Aachen Internet: www.apprimus-verlag.de, E-Mail: info@apprimus-verlag.de

ISBN 978-3-86359-378-0

D 82 (Diss. RWTH Aachen University, 2015)

Vorwort

Preamble

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Werkzeugmaschinenlabor WZL der Rheinisch-Westfälischen Technischen Hochschule Aachen.

Herrn Prof. Dr.-Ing. Dr.-Ing. E.h. Dr. h.c. Dr. h.c. Fritz Klocke, dem Inhaber des Lehrstuhls für Technologie der Fertigungsverfahren, danke ich herzlich für die fachliche und persönliche Förderung, die stetige Unterstützung meiner Tätigkeit sowie seine motivierende und wohlwollende Führung.

Herrn Univ.-Prof. Dr.-Ing. habil. Dr.-Ing. E. h. Ekkard Brinksmeier, dem Leiter des Instituts für Werkstofftechnik IWT der Universität Bremen, danke ich für die Durchsicht meiner Arbeit und die Übernahme des Korreferats. Mein Dank gilt Herrn Prof. Dr.-Ing. Hubertus Murrenhoff für die Übernahme des Prüfungsvorsitzes.

Ich bedanke ich mich bei allen Kollegen des Werkzeugmaschinenlabors, insbesondere bei den "Aachener Schleifern", für die Unterstützung und stete Hilfsbereitschaft. Die positive Atmosphäre am Institut hat in entscheidender Weise zur erfolgreichen Umsetzung dieser Arbeit beigetragen. Mein ganz besonderer Dank gilt meinen Freunden und Kollegen Janis Thiermann, Matthias Rasim, Richard Brocker, Sebastian Müller, Christian Wirtz und Dr.-Ing. Patrick Mattfeld für die eingehende Durchsicht und Diskussion meiner Arbeit.

Darüber hinaus danke ich den Mitarbeitern des Fraunhofer Instituts für Produktionstechnologie IPT, Herrn Andreas Janssen und Herrn Jan-Patrick Hermani, für die Unterstützung bei der Laser-Bearbeitung. Bei Herrn Dr. rer. nat. Thomas E. Weirich vom Gemeinschaftslabor für Elektronenmikroskopie GFE der RWTH Aachen bedanke ich mich für die zahlreichen Diskussionen und die Unterstützung bei der Auswertung.

Besonderer Dank gilt meinen studentischen Mitarbeitern, Herrn Seamus Laprell und Herrn Moritz Jochums, für ihr Engagement und für ihre tatkräftige Mithilfe.

Außerdem danke ich meinem Bruder Dr.-Ing. Sebastian Schindler für die inhaltlichen Diskussionen und die mentale Unterstützung.

Für ihre liebevolle Unterstützung und Geduld während der Erstellung dieser Arbeit danke ich von Herzen meiner lieben Frau, Celia Jiménez García. Der größte Dank gilt meinen Eltern, die mich stets in jeder Hinsicht unterstützt und mir die Möglichkeit für meinen Werdegang geschaffen haben.

Aachen, im Juli 2015

Florestan Schindler

Inhaltsverzeichnis

Сс	ontent					
1	Einleitung1					
2	Stand der Erkenntnisse5					
	2.1	.1 Kohlenstoff und seine Modifikationen				
	2.2	Diama	nt und seine Eigenschaften	8		
		2.2.1	Aufbau von Diamant	8		
		2.2.2	Eigenschaften von Diamant	10		
	2.3	Graphi	t und seine Eigenschaften	13		
		2.3.1	Aufbau von Graphit	13		
		2.3.2	Eigenschaften von Graphit	13		
	2.4	Polykri	stalliner Diamant	15		
		2.4.1	Herstellung von polykristallinem Diamant	16		
		2.4.2	Herstellung von PKD-Werkzeugschneiden	17		
		2.4.3	Eigenschaften von polykristallinem Diamant	19		
	2.5	Schleif	en von polykristallinem Diamant	22		
		2.5.1	Prozessführung und Schleifparameter	22		
		2.5.2	Zerspanungsmechanismen beim PKD-Schleifen	27		
	2.6	Alterna	ative Bearbeitungsverfahren			
		2.6.1	Zerspanungsmechanismen beim Polieren			
	o =	2.6.2	Verschleißmechanismen von PKD beim Einsatz als Schne	eidstoff.32		
	2.7	Zwisch	ienfazit aus dem Stand der Erkenntnisse			
3	Aufgabenstellung und Zielsetzung		37			
4	Entv	wicklun	g und Charakterisierung eines Analogieprüfstands zur			
	Ana	lyse de	s PKD-Schleifens	41		
	4.1	Versuo	chsaufbau und -durchführung des Analogieprozesses	42		
		4.1.1	PKD-Spezifikation und Analogiewerkstückgeometrie	42		
		4.1.2	Werkzeugschleifmaschine und Werkstückeinspannung	43		
		4.1.3	Schleifscheibenspezifikation und Einsatzvorbereitung	45		
		4.1.4	Prozesskinematik des Analogieprozesses	47		
	4.2	Analys	e des statischen und dynamischen Maschinenverhaltens	49		
	4.3	Bestim	mung der mechanischen Prozesslast beim Schleifen	55		
	4.4	Bestim	mung der thermischen Prozesslast beim Schleifen	56		
		4.4.1	Messprinzip der Pyrometrie	56		
		4.4.2	Versuchsaufbau zur Temperaturmessung			
		4.4.3	Kalibrierung des Messequipments	59		
5	Bew	vertung	des Schleifprozesses	63		
	5.1	Einflus	s der Schleifparameter auf die Prozessbelastung	63		
	5.2	Interpr	etation des Schleifscheibenverschleißverhaltens	69		

6	Anal	yse der	Prozessbelastungen beim Schleifen	77
	6.1 6.2 6.3	Abschä Abschä Thermis 6.3.1 6.3.2	tzung der mesoskopischen mechanischen Prozesslast tzung der mesoskopischen thermischen Belastung sche Belastungsgrenzen für D15A und CTB 010 Dynamische Wärmestrom-Differenzkalorimetrie Beugungsanalyse der Graphitisierung für CTB 010	77 80 87 87 87 89
7	lden	tifikatio	n der Zerspanungsmechanismen	93
	7.1 7.2	Analyse 7.1.1 7.1.2 7.1.3 Erklärut	e der PKD-Randzone FIB-Präparation und TEM-Analyse PKD-Randzone vor dem Schleifen PKD-Randzone nach dem Schleifen ngsmodell für das PKD-Werkstoffverhalten	93 94 97 100 106
8	PKD Schl	-Bearbe eifen	itung durch die Kombination von Laserstrahlabtragen und	113
	8.1 8.2 8.3 8.4 8.5 8.6	Mechar Analyse Bewertu Schleife Validier Wirtsch 8.6.1 8.6.2	nismen beim Kurzpulslaserstrahlabtragen von PKD e der PKD-Randzone nach der Laserbearbeitung ung des Analogieschleifprozesses nach der Laserbearbeitung en von PKD-Schneidplatten nach der Laserbearbeitung ung der PKD-Werkzeugqualität im Einsatztest aftlichkeitsanalyse des Kombinationsprozesses Berechnung der Bewertungsgrößen Ergebnisse der Wirtschaftlichkeitsbetrachtung	115 118 124 125 128 130 131 133
9	Zusa	ammenf	assung und Ausblick	135
	9.1 9.2	Zusamr Ausblic	nenfassungk	135 136
10	Liter	aturver	zeichnis	141
11	Anha	ang		153
	11.1 11.2	Konven Kombin	tionelles PKD-Schleifen ation von Laserstrahlabtragen und Schleifen von PKD	153 155
Lel	bensl	auf		161

Formelzeichen und Abkürzungsverzeichnis

Formula Symbols and Abbreviations

Großbuchstaben

А	μm	Mittlere Korundkorngröße in Mikrometer
Â	10 ⁻⁹ m s ⁻²	Schwingungsamplitude der Beschleunigung
A _f	μm²	Bruchfläche
A _{PKD}	mm ²	Makroskopische Kontaktfläche
An	%	Projizierter Schnittflächenanteil in der Schnittebene z orthogonal zur Oberfläche eines Körpers
At	μm	Auflösung
Bi	-	BIOT-Zahl
Ci	%	Konzentration des Stoffes i
C ₀	€	Kapitalwert zur Periode Null
C _{Stat}	mm⁻³	Statische Schneidendichte
D	μm	Mittlerer Durchmesser der Diamantkörner
D _{max}	μm	Maximaler Diamantkorndurchmesser
D _{min}	μm	Minimaler Diamantkorndurchmesser
E	MPa	Elastizitätsmodul
Eb	kJ mol⁻¹	Bindungsenergie
E _f	J	Energie für einen Sprödbruch nach GRIFFITH
EK	€	Einkaufspreis
Ep	J	Energie für plastisches Fließen
E _P	keV	Bandlückenenergie
E_{ph}	eV	Photonenenergie
F``n	N mm ⁻²	Auf die Eingriffsfläche bezogene Normalkraft
F``n,grenz	N mm ⁻²	Grenzwert der flächenbezogenen Normalkraft
F`n	N mm ⁻¹	Bezogene Normalkraft
F`t	N mm ⁻¹	Bezogene Tangentialkraft
F`` _A	N mm⁻²	Anpressdruck beim Schleifen
F _A	Ν	Anpresskraft beim kraftgebundenen Schleifen
FK	€	Fertigungskosten

Fn	Ν	Schleifnormalkraft
Ft	Ν	Schleiftangentialkraft
$F_{X,Y,Z}$	Ν	Kraftmessbereich in X-, Y- und Z-Richtung
Fz	Ν	Fliehkraft
G	-	Schleifverhältnis
G	MPa	Schubmodul
G	-	GRIFFITH-Faktor
Ga ²⁺	-	Gallium-Ionen
G _d	-	Abrichtverschleißverhältnis
G _{ax}	-	Axiales Verschleißverhältnis bezogen auf die Zustellung beim Schleifen
Gu	µm s⁻¹	Güteklasse der Unwucht
GW	€	Gewinn
Gxx	µm N⁻¹	Nachgiebigkeit in X-Richtung bei Anregung in X-Richtung
Gyy	µm N⁻¹	Nachgiebigkeit in Y-Richtung bei Anregung in Y-Richtung
Gzz	µm N⁻¹	Nachgiebigkeit in Z-Richtung bei Anregung in Z-Richtung
Н	%	Häufigkeitsverteilung
Н	MPa	Nanohärte
H_{K}	GPa	KNOOP-Härte
ΗK	€	Herstellungskosten
${\sf H}_{\sf M}$	-	Монs-Härte
${\sf H}_{\sf V}$	GPa	VICKERS-Härte
К	-	Kohärenz
K _E	€	Energieeinzelkosten
K _{Energie}	€	Stromkosten je KWh
K _F	€	Fertigungskosten je Werkstück
Kı	€	Instandhaltungskosten
K _{IC}	MPa m ^{0,5}	Spannungsintensitätsfaktor
KL	€	Lohnkosten
K _M	€	Maschinenkosten
K _{MH}	€ s ⁻¹	Maschinenstundensatz

K _R	€	Raumkosten
KT	kg	Masse eines Karats (1 KT = 2 x 10 ⁻⁴ kg)
Kw	€	Anteilige Werkzeugkosten
K _{WT}	€	Werkzeuggesamtkosten
K _x	€	Anteilige Restfertigungsgemeinkosten
Kz	μm	Schartigkeit der Schneidkante
Kz	€	Kalkulatorische Zinskosten
L	W m⁻² µm⁻¹	Wärmestrahlung
L	€ h ⁻¹	Stundenlohn
L _m	W m⁻² µm⁻¹	Von einem Körper emittierte Wärmestrahlung
L _n	€	Lohnnebenkosten
Lr	W m⁻² µm⁻¹	Reflektierter Anteil der Wärmestrahlung
Ls	W m⁻² µm⁻¹	Wärmestrahlung eines schwarzen Strahlers
Lt	μm	Länge des Perthometerschriebs
L _{tr}	W m⁻² µm⁻¹	Transmittierter Anteil der Wärmestrahlung
Lu	W m⁻² µm⁻¹	Umgebungsstrahlung (reflektiert + transmittiert)
Lu	W m⁻² µm⁻¹	Von einem Körper reflektierte Umgebungsstrahlung
L_{w}	W m⁻² µm⁻¹	Von einem Körper emittierte Eigenstrahlung
Lα	W m⁻² µm⁻¹	Absorbierter Anteil der Wärmestrahlung
$M_{X,Y,Z} \\$	Nm	Drehmomentmessbereich um die X-, Y- und Z-Achse
Ν	µm N⁻¹	Nachgiebigkeit
N(f)	µm N⁻¹	Dynamische frequenzabhängige Nachgiebigkeit
N _{kin}	-	Kinematische Schneidenanzahl
Nu	-	NUSSELT-Zahl
P _{Nenn}	kW	Nennleistung
Pr	-	PRANDTL-Zahl
Q _{FIB}	µm h⁻¹	Abtragrate der Focused-Ion-Beam-Präparation
Q _w	mm³ s⁻¹	Zeitspanungsvolumen
R	μm	Spannweite
R	GPa	Druckfestigkeit
R	-	Matrix des reziproken Gitters im Fourier Raum

Re	-	REYNOLDS-Zahl
R _m	GPa	Zugfestigkeit
R _{mr}	%	Materialtraganteil
Rz	μm	Gemittelte Rautiefe
Т	°C	Absolute Temperatur in Grad Celsius
Т	min	Werkzeugstandzeit
Ť	min ⁻¹	Aufheizrate
Tμ	μm	Schnitteinsatztiefe
T ₀	°C	Chemische Standardtemperatur
T _{mess}	°C	Temperaturmessbereich
T _N	Jahre	Nutzungsdauer der Maschine
Τ _Ρ	°C	Mittels Infrarot-Pyrometer gemessene Temperatur
T _{Pr}	°C	Temperatur der Probe
T _R	°C	Temperatur der Referenzseite
Ts	°C	Schmelztemperatur
T _{TE}	°C	Temperatur des Thermoelements
Τυ	°C	Umgebungstemperatur
T _{UW}	°C	Umwandlungs- bzw. Zersetzungstemperatur
Tv	°C	Siede- bzw. Sublimationstemperatur
T _w	°C	Die Eigentemperatur einer Oberfläche
U	m	Umfang des Speicherrings
Ub	kV	Beschleunigungsspannung
VB _{max}	μm	Verschleißmarkenbreite
VK	€	Verkaufspreis
Vp	μm³	Plastisch verformtes Volumen
V _{PKD}	mm³	Zerspantes PKD-Werkstoffvolumen
V _{PKD,i}	mm³	Zerspantes PKD-Volumen pro Schleifhub
Vr	mm³	Verschleißvolumen der Abrichtscheibe
Vs	mm³	Verschlissenes Schleifbelagsvolumen
V_{sd}	mm³	Verschleißvolumen des Schleifbelags beim Abrichten
W	W m⁻² µm⁻¹	Spektrale spezifische Wärmestrahlung

Kleinbuchstaben

а	10⁻ ⁶ m² s⁻¹	Temperaturleitfähigkeit
a 0	nm	Gitterparameter
a 0	nm	Identitätsabstand
a _e	μm	Zustellung pro Schleifhub
a _{e,ges}	μm	Gesamtaufmaß beim Schleifen
a _{ed}	μm	Zustellung pro Hub beim Abrichten
a _{ed,ges}	μm	Gesamtzustellung beim Abrichten
a _{ed,r}	μm	Radiales Abrichtaufmaß
b	mm	Kantenlänge der PKD-Schneide
b ₀	nm	Gitterparameter
bs	mm	Breite des Schleifbelags
b _{s,eff}	mm	Effektive Schleifbelagsbreite
С	m/s	Lichtgeschwindigkeit
C ₀	nm	Gitterparameter
Cp	J Kg⁻¹ K⁻¹	Spezifische Wärmekapazität
d	μm	Größenordnung der Betrachtung
d _B	μm	Bohrungsdurchmesser
d _F	μm	Durchmesser der Glasfaser
dg	nm	Abstand der Gitterebenen
d_{HM}	μm	Hartmetallschichtdicke
d _{PKD}	μm	PKD-Schichtdicke
d _R	mm	Rondendurchmesser
d_{sa}	mm	Schleifscheibenaußendurchmesser
d _{si}	mm	Schleifscheibeninnendurchmesser
dt	μm	Abstand paralleler Messbahnen
d_{TEM}	nm	Punktauflösevermögen des TEM
e⁻	-	Elektron, negativ geladenes Teilchen
es	J m⁻²	Spezifische Energie für das Abgleiten zweier Ebenen
eu	μm	Exzentrizität
f	Hz	Frequenz

fa	kHz	Abtastfrequenz
f _g	Hz	Grenzfrequenz einer Hoch- oder Tiefpassfilterung
h	mm	Werkstückhöhe
h _{cu}	μm	Unverformte Spanungsdicke
h _{cu,krit}	μm	Kritische Spanungsdicke
h _{cu,max}	μm	Maximale unverformte Spanungsdicke
h _ü	mm	Auskraghöhe
k	μm	Kerbtiefe
k _E	€	Stromkosten
I _{WSP}	mm	Schneidkantenlänge der Wendeschneidplatte
I _b	nm	Bindungslänge
lg	μm	Kontaktlänge
ls	mm	Schleifweg
m	kg	Masse
ms	kg	Masse des Schleifwerkzeugsystems
n	-	Stichprobenumfang
n _r	min ⁻¹	Abrichtscheibendrehzahl
n _s	min⁻¹	Schleifscheibendrehzahl
n _{s,max}	min⁻¹	Maximale Schleifscheibendrehzahl
n _{sd}	min ⁻¹	Schleifscheibendrehzahl beim Abrichten
n _{w,max}	min⁻¹	Maximale Werkstückdrehzahl
n _{WM}	-	Losgröße
n_{WT}	-	Anzahl Werkstücke je Werkzeug
р	GPa	Druck
p ₀	bar	Chemischer Standarddruck
r	μm	Eckenradius der Schneidplatte
r _e	nm	Gleichgewichtsabstand
r _t	μm	Tastspitzenradius (Perthometer)
S	10⁻ ⁹ m	Schwingweg
Ś	10 ⁻⁹ m s ⁻¹	Schwinggeschwindigkeit
Ŝ	10 ⁻⁹ m s ⁻²	Schwingbeschleunigung

S	μm	Standardabweichung
Si	mm	Bearbeitungsweg
sp	-	Linear hybridisiertes Orbital
sp²	-	Trigonal-planar hybridisiertes Orbital
sp³	-	Tetraedisch hybridisiertes Orbital
Ss	mm	Dicke des Schleifbelags
S _{wsp}	Mm	Wendeschneidplattendicke
t	S	Zeit
t _e	min	Bearbeitungszeit je Werkstück
t _{er}	min	Erholzeit
tı	min	Leerlaufzeit
t _h	min	Hauptzeit
t _n	min	Nebenzeit
tr	min	Rüstzeit
tv	min	Verteilzeit
t _{vv}	min	Werkzeugwechselzeit
t _{WST}	min	Werkstückwechselzeit
Vc	m s⁻¹	Schnittgeschwindigkeit
Vf	mm min ⁻¹	Vorschubgeschwindigkeit
V _{f,max}	m min⁻¹	Maximale Vorschubgeschwindigkeit
V _{fad}	mm min ⁻¹	Abrichtvorschubgeschwindigkeit
V _{fi}	mm min ⁻¹	Bearbeitungsgeschwindigkeit
Vr	m s⁻¹	Umfangsgeschwindigkeit der Abrichtscheibe
V _{rel}	m s⁻¹	Relativgeschwindigkeit beim Abrichten
Vs	m s⁻¹	Schleifscheibenumfangsgeschwindigkeit
Vc	m s⁻¹	Schnittgeschwindigkeit
V _{sd}	m s⁻¹	Umfangsgeschwindigkeit der Schleifscheibe beim Abrichten
v _t	µm s⁻¹	Messgeschwindigkeit des Perthometers
Xi	%	Anteil in Volumenprozent
Xd	-	Verschleißfaktor beim Abrichten

XL	%	Lohnnebenkostenfaktor
ZL	μm	Schruppaufmaß für die Laserbearbeitung
Zs	μm	Schlichtaufmaß beim Schleifen
v	mm² s⁻¹	Viskosität

Griechische Buchstaben

ΔG	kJ mol⁻¹	Freie Enthalpiedifferenz
ΔH	kJ mol⁻¹	Enthalpiedifferenz
ΔS	kJ mol⁻¹	Entropiedifferenz
∆a _e	μm	Veränderung der Zustellung durch die Unwucht
∆a₅	μm	Axialverschleiß der Schleifscheibe
Δa_{sd}	μm	Axialverschleiß der Schleifscheibe beim Abrichten
Δm	kg	Veränderung der Masse
$\Delta r_{\rm r}$	μm	Radialverschleiß der Abrichtscheibe
Δx	μm	Verbiegung in X-Richtung
Δz	μm	Abstand der Schnittebene zum höchsten Profilpunkt
α	o	Durchschnittlicher Winkel zwischen einzelnen Orbitalen einer molekularen Struktur
α	0	Winkel der Phasenverschiebung einer Schwingung
α	10 ⁻⁶ K ⁻¹	Wärmeausdehnungskoeffizient
α _a	-	Koeffizient für den absorbierten Anteil der Wärmestrahlung
α_y	0	Verkippung des Werkstücks um die Y-Achse
μ	-	Reibungskoeffizient
μ	-	Schleifverhältnis
γ	J m⁻²	Oberflächenenergie
8	-	Emissionsgrad
λ	0	Freiwinkel
λ	nm	Wellenlänge
λ	W m ⁻¹ K ⁻¹	Wärmeleitfähigkeit
λ_L	nm	Wellenlänge des Lasers
λ_{max}	nm	Wellenlänge des Wärmestrahlungsmaximums

Λ_{Mess}	nm	Messwellenlänge
λ_{SB}	$W m^{-1} K^{-1}$	Wärmeleitfähigkeit des Schleifbelags
π	-	Nicht-kovalenter Bindungstyp über VAN-DER-WAALS-Kräfte
ρ _r	-	Koeffizient für den reflektierten Anteil der Wärmestrahlung
ρ_{SB}	g cm ⁻³	Dichte des Schleifbelags
$ ho_{th}$	g cm⁻³	Theoretische Dichte
σ	MPa	Zug- bzw. Druckspannung
σ	-	Kovalenter Bindungstyp über Elektronenpaarbindung
σ_{bB}	MPa	Biegefestigkeit
σ_{dB}	MPa	Druckfestigkeit
σ_{hyd}	MPa	Hydrostatische Druckspannung
σ_{max}	MPa	Maximale Zug- bzw. Druckspannung
σ_{min}	MPa	Minimale Zug- bzw. Druckspannung
σ_{s}	$W m^{-2} K^{-4}$	STEFAN-BOLTZMANN-Konstante
σ_{T}	MPa	Trennfestigkeit
т	MPa	Schubspannung
т _В	MPa	Schubfestigkeitsgrenze
T _F	MPa	Schubfließgrenze
T _{max}	MPa	Maximale Schubspannung
T _{tr}	-	Koeffizient für den absorbierten Anteil der Wärmestrahlung
ω	Hz	Kreisfrequenz
Ω	Rad	Raumwinkel
θ	0	Beugungswinkel

Chemische Elemente

^{12,13,14} C	-	Kohlenstoff Isotope mit 12, 13 oder 14 Nukleonen im Kern
С	-	Kohlenstoff
Со	-	Kobalt
CO	-	Kohlenmonoxid
CO ₂	-	Kohlenstoffdioxid