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Preface

The research work presented in this book arises from the involvement of
the author in engineering studies of the reliability of drinking water pipes.
This type of infrastructure is organized as a network of pipelines, and failures,
namely leakage or breakage, tend to occur in an aggregative manner on the
same network segments. Building relevant strategies of infrastructure asset
management requires, therefore, accurate modeling tools of the repeated
failures that can affect some pipes, due to the heavy socioeconomic and
environmental consequences of leakage and breakage.

Yves LE Gar
October 2015






Introduction

Examples of recurrent failures abound in the literature devoted to the
reliability of technical objects, and in many cases, the occurrence rates tend to
increase not only with the ageing of the object, but also with the number of
past failures. The effect of ageing can be relevantly modeled using the now
classical non-homogeneous Poisson process (NHPP), a comprehensive
presentation of which can be found in [LAW 87], and a good example of
application to drinking water pipe failures in [R@S 00]. In this same context
of pipe failures, the PhD work of [EIS 94] emphasizes the critical importance
of past failures. The consideration of the dependency of the failure process on
its past is not a trivial question, and motivates a theoretical effort which the
present book attempts to contribute to.

The basic concept of a stochastic process underlies all developments of the
present work. A stochastic process must be understood as a function X() of
time ¢, each X(f) being considered as a random variable (r.v.).

The stochastic process theory is the natural mathematical framework for
studying the repetition of random events of the same kind. As presented by
[COO 02], this question can be addressed from two alternative perspectives,
which are equivalent and respectively consist of modeling:

— either the distribution of successive inter-arrival times;

—or the distribution of the number of events that occur in a given time
interval.

Recurrent Event Modeling Based on the Yule Process: Application to Water Network
Asset Management, First Edition. Yves Le Gat.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.



2 Recurrent Event Modeling Based on the Yule Process

The method chosen by [EIS 94] arises from the first approach. The
“classical” presentation of [ROS 83] arises from the second approach. The
linear extension of the Yule process (called LEYP throughout the rest of the
book) aims at building a failure occurrence model that cumulates the
advantages of both NHPP and [EIS 94]’s approaches. This involves a
theoretical setup, focused on the counting process concept, which is to be
developed throughout the next two chapters.

A counting process is a particular stochastic process, simply designed to
count repeated events, as presented in section 1.2.1.

As this presentation is to have a general scope, the entity subjected to
repeated failures will be called a technical object or more simply an object;
this term will be replaced by “water main” or “water pipe” when the context
refers more specifically to failures that affect a water network.

1.1. Notation

The following mathematical notations will be used throughout this book:

— N and IN* respectively denote the sets of natural integers {0, 1,2,. .., co}
and the set of strictly positive natural integers {1,2,..., co};

— R, R, and R} are the real sets ] — oo, +oo[, [0, +oo[ and ]0, +oo[ ;

—P(A) and P (A | B) respectively denote the probability of the event A, and
the conditional probability of A given that the other event B occurs;

—P(AN B) and P (A, B) equivalently denote the joint probability of events
Aand B; P (ﬂ jA j) more generally stands for the joint probability of events
J»
—t € Ry is a positive time variable that stands for the age of a technical
object;
— N(t) € N is an integer-valued step function that counts the failures;

—dN(t) = N(t+dr)— N(¢) is the differential of N(¢), i.e. dN(¢f) = 1 whenever
a failure occurs within [z, ¢ + d¢f[, dN(¢) = O otherwise;

— AN(t) = N(t) — N(t—) stands for the increment of N(¢) at t;
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— Ma, stands for the auto-exciting o--algebra generated by the process N ()
within [a, 1] ;

— ;- stands for the auto-exciting o-algebra Ao [

— Z is a vector of failure factor values specific to a given technical object,
also called “covariates”;

= Playg = NMay V 0(Z) denotes the information on the process g
increased by the knowledge of the covariates Z, or more technically the
smallest o-algebra that contains all events composed with events of o-algebras
Maq and 0(Z);

— A(r) is a real positive function bounded on any compact interval, and its
integral is A(¢) = fot A(u)du;

—EX and E (X | A) respectively denotes the expectation of the random
variable (r. v.) X and its conditional expectation given A;

— Var (X) denotes the variance of the r. v. X
— U stands for the uniform distribution on the set E;
— Ujo,17 denotes in particular the uniform distribution on interval [0, 1] ;

— N(u,0?) stands for the Gaussian distribution with expectation u and
variance o2;
— Po(u) is the Poisson distribution with expectation u € Ry;

— N8B0, p) is the negative binomial distribution with two parameters 6 €
R? and p € [0, 1];

.....

.....

k € N* and p; € [0, 1], where 2?21 pi=1
— x2(k) is the Chi-squared distribution with k € N* degrees of freedom;

— L(0) stands for the likelihood of a theoretical process with parameter 6
given a sequence of observed events;

— T stands for the product integral operator, which plays the same role for
products as the integral operator f plays for sums;



