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Preface 

This book has grown out of undergraduate and postgraduate lecture courses 
given at the University of Hertfordshire and the University of Bergamo. Its pri- 
mary focus is on numerical methods for nonlinear optimization. Such methods 
can be applied to many practical problems in science, engineering and manage- 
ment: but, to provide a coherent secondary theme, the applications considered 
here are all drawn from financial mathematics. (This puts the book in good 
company since many classical texts in mathematics also dealt with commer- 
cial arithmetic.) In particular, the examples and case studies are concerned 
with portfolio selection and with time-series problems such as fitting trend- 
lines and trend-channels to market data. 

The content is intended to be suitable for final-year undergraduate students 
in mathematics (or other subjects with a high mathematical or computational 
content) and exercises are provided at the end of most sections. However the 
book should also be useful for postgraduate students and for other researchers 
and practitioners who need a foundation for work involving development or 
application of optimization algorithms. It is assumed that readers have an un- 
derstanding of the algebra of matrices and vectors and of the Taylor and Mean 
Value Theorems in several variables. Prior experience of using computational 
methods for problems such as solving systems of linear equations is also de- 
sirable, as is familiarity with iterative algorithms (e.g., Newton's method for 
nonlinear equations in one variable). 

The approach adopted in this book is a blend of the practical and theoretical. A 
description and derivation is given for most of the currently popular methods 
for continuous nonlinear optimization. For each method, important conver- 
gence results are outlined (and we provide proofs when it seems instructive to 
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do so). This theoretical material is complemented by numerical illustrations 
which give a flavour of how the methods perform in practice. 

It is not always obvious where to draw the line between general descriptions 
of algorithms and the more subtle and detailed considerations relating to re- 
search issues. The particular themes and emphases in this book have grown 
out of the author's experience at the Numerical Optimization Centre (NOC). 
This was established in 1968 at the Hatfield College of Technology (predeces- 
sor of the University of Hertfordshire) as a centre for research in optimization 
techniques. Since its foundation, the NOC has been engaged in algorithm de- 
velopment and consultancy work (mostly in the aerospace industry). The NOC 
staff has included, at various times, Laurence Dixon, Ed Hersom, Joanna Go- 
mulka, Sean McKeown and Zohair Maany who have all made contributions 
to the state-of-the-art in fields as diverse as quasi-Newton methods, sequential 
quadratic programming, nonlinear least-squares, global optimization, optimal 
control and automatic differentiation. 

The computational results quoted in this book have been obtained using a 
Fortran90 module called SAMPO. This is based on the NOC's OPTIMA library 
- a suite of subroutines for different types of minimization problem. The 
name SAMPO serves as an acronym for Software And Methods for Portfolio 
Optimization. (However, it is also worth mentioning that The Sampo appears 
in Finnish mythology as a magical machine which grinds out endless supplies 
of corn, salt and gold. Its relevance to a book about financial mathematics 
needs no further comment.) The SAMPO software is not described in detail in 
this book (which does not deal with any programming issues). Interested read- 
ers can obtain it from an f t p  site as specified in the appendix. Some of the 
student exercises can be attempted using SAMPO but most of them can also be 
tackled in other ways. For instance, the SOLVER tool in Microsoft Excel can 
handle both constrained and unconstrained optimization problems. Alterna- 
tively, users of MATLAB, can access a comprehensive toolbox of optimization 
procedures. The NAG libraries in C and Fortran include a wide range of mini- 
mization routines and the NEOS facility at the Argonne National Laboratories 
allows users to submit optimization problems via email. 

I am indebted to a number of people for help in the writing of this book 
Besides the NOC colleagues already mentioned, I would like to thank Alan 
Davies and all the staff in the Mathematics Department at the University of 
Hertfordshire for their support. I am particularly grateful to Don Busolini and 
Steve Kane, for introducing me to the financial applications in this book, and 
to Steve Parkhurst for sharing the lecture courses which underpin it. I have 
received encouragement and advice from Marida Bertocchi of the Universty of 
Bergamo, Alistair Forbes of the National Physical Laboratory, Berc Rustem of 
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Imperial College and Ming Zuo of the University of Alberta. Useful comments 
and criticisms have also been made by students who were the guinea-pigs for 
early versions of the text. Surrounded by such clouds of witnesses, any mis- 
takes or omissions that remain in the text are entirely my responsibility. 

My thanks are also due to John Martindale and Angela Quilici-Burke at Kluwer 
Academic Publishing for their encouragement and help with the preparation of 
the final version of the book. 

Most of all, my deepest thanks go to my wife Nancy Mattson who put up 
with the hours I spent incommunicado and crouched over my laptop! Nancy 
does not share my attachment to computational mathematics: but she and I do 
have a common commitment to poetry. Therefore, scattered through the book, 
the reader will find a number of short mathematically-flavoured poems which 
occupy pages that would otherwise have been mere white space. To those 
who have asked how mathematical aptitude interacts with poetic composition 
a reply could be 

Two cultures 

Poets show, don't tell: 
build metaphors from concrete 
and specific bricks. 

In mathematics 
the abstract and general's 
our bread and butter. 

For more on this subject, the reader may wish to consult [66,67,68]. 



Chapter 1 

PORTFOLIO OPTIMIZATION 

1. Nonlinear optimization 

Optimization involves finding minimum (or maximum) values of functions. 
Practical applications include calculating a spacecraft launch trajectory to max- 
imize payload in orbit or planning distribution schedules to minimize trans- 
portation costs or delivery times. In such cases we seek values for certain 
optimization variables to obtain the optimum value for an objective function 

We now give a simple example of the formulation of an optimization problem. 
Suppose we have a sum of money M to split between three managed investment 
funds which claim to offer percentage rates of return rl, r;! and r3. If we invest 
amounts y l ,  y:! and yg we can expect our overall return to be 

If the management charge associated with the i-th fund is calculated as ciyi, 
then the total cost of malung the investment is 

Suppose we are aiming for a return Rp% and that we want to pay the least 
charges to achieve this. Then we need to find yl , y2 and y3 to solve the problem 

Minimize c ly l+  c2y2 + cgy3 (1.1.1) 



This is an optimization problem involving both equality and inequality con- 
straints to restrict the values of the variables. The inequalities are included 
because investments must obviously be positive. If we tried to solve the prob- 
lem without these restrictions then an optimization algorithm would attempt to 
reduce costs by making one or more of the yi large and negative. 

In fact, since they only involve linear expressions, (1.1.1) - (1.1.3) represents a 
Linear Programming problem. However, we do not wish to limit ourselves to 
linear programming (which is a substantial body of study in its own right - see, 
for instance, [I] - and involves a number of specialised methods not covered 
in this book). Instead, we shall be concerned with the more general problem in 
which the function andlor the constraints are nonlinear. 

The simple investment decision considered above could be represented as a 
nonlinear programming problem if we imagined that an attempt to make a 
negative investment would be penalised by a very high management charge! 
Thus we could consider the problem 

subject to r l y l+  r2y2 + r3y3 = MRp and yl +y2 +y3 = M (1 . I S )  

where K is a large positive constant and the function y~ is defined by 

The objective function (1.1.4) is now nonlinear (being linear for some values of 
the yi and quadratic for others) and it features two linear equality constraints. 

Equality constraints can sometimes be used to eliminate variables from an op- 
timization problem. Thus, since y3 = M - yl - y2, we can transform (1.1.4), 
(1.1.5) into the problem of minimizing the two-variable function 

subject to the single constraint 

Obviously (see Exercise 1 below) we could go further and use the equality 
constraint (1.1.7) to express yl in terms of y2. Our problem could then be 
expressed as an unconstrained minimization of a f~lnction of a single variable. 
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In the chapters which follow we shall describe several methods for solving 
nonlinear optimzation problems, with and without constraints. Applications 
of these methods will be taken from the field of portfolio optimization, using 
ideas due to Markowitz [2, 31 which are introduced in the next section. 

Exercises 
1 .  Reformulate (1.1.6), (1.1.7) to give an unconstrained minimization problem 
involving yl only. 

2. Using the values M = 1000,Rp = 1.25, K = low3 together with 

cl = 0.01, c2 = 0.009, c3 = 0.014 and r l  = 1.2, r2 = 1.1, r3 = 1.4 

plot a graph of the function obtained in question 1 in the range 0 5 yi 5 M. 
Hence deduce the minimum-cost that produces a return of 1 .25%. 
How does the solution change in the cases where c3 = 0.012 and c3 = 0.01 l ?  

3. Formulate the problem of finding the maximum return that can be obtained 
for a fixed management cost Cr. (Note that the problem of maximizing a func- 
tion F ( x )  is equivalent to the problem of minimizing -F (x) .) 

2. Portfolio return and risk 

Suppose we have a history of percentage returns, over m time periods, for each 
of a group of n assets (such as shares, bonds etc.). We can use this information 
as a guide to future investments. As an example, consider the following data 
for three assets over six months. 

Return % for 
January February March April May June 

Assct 1 1.2 1.3 1.4 1.5 1.1 1.2 
Asset 2 1.3 1 .0 0.8 0.9 1.4 1.3 
Asset 3 0.9 1.1 1.0 1.1 1.1 1.3 

Table 1.1. Monthly rates of return on three assets 

In general, we can calculate the mean return Yi for each asset as 

where ri,i (i = 1, .., n,  j = 1, .., m) denotes the return on asset i in period j. 
Hence, for the data in Table 1.1 we get 



If we spread an investment across the n assets and if yi denotes the fraction in- 
vested in asset i then the values of the yi define aportjolio. Since all investment 
must be split between the n assets, the invested fractions must satisfy 

The expected portfolio return is given by 

Thus, for the data in Table 1.1, we might choose to put half our investment 
in asset 1, one-third in asset 2 and one-sixth in asset 3. This would give an 
expected return 

The risk associated with a particular portfolio is determined from variances 
and covariances that can be calculated from the history of returns rij. The 
variance of asset i is 

0; = 
C:=l (rij - ~ i ) ~  

m 
while the covariance of assets i and k is 

Evaluating (1.2.4), (1.2.5) for the returns in Table 1.1 we get 

0: = 0.0181; 0; = 0.0514; 0; = 0.0147; (1.2.6) 

The variance of the portfolio defined by the investment fractions y l ,  ...,y,, is 

which can be used as a measure of portfolio risk. Thus for a three asset problem 
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Using (1.2.6) and (1.2.7), the risk function V for the data in Table 1.1 is 

1 1 Thus, for a portfolio defined by yl = &, y2 = T ,  y3 = 

1 1 
-0.00388 x - + 0.01056 x - 

12 18 
which gives a risk V z 0.00153. 

The return and risk functions (1.2.3) and (1.2.8) can be written more conve- 
niently using matrix-vector notation. Expression (1.2.3) is equivalent to 

where 7 denotes the column vector (71, 72, . . . , 7,) and y is the column vector 
of invested fractions (yl ,y2, ...,yn)T. Moreover, we can express (1.2.8) as 

where the variance-covariance matrix Q is defined by 

In (1.2.12) we have used the equivalent notation 

Thus, for data in Table 1.1, 

We can also write (1.2.2) in vector form as 

T S = e  y = 1  

where e  denotes the n-vector (1,1, .. , 



Exercises 
1. Returns on assets such as shares can be obtained from day-to-day stock 
market prices. If the closing prices of a share over five days trading are 

calculate the corresponding returns using the formula 

Pi - Pi- 
ri = 100 

Pi- 1 

What returns are given by the alternative formula 

Pi ri = 1001og,(-)? 
pi- 1 

Show that the two formulae for ri give similar results when [Pi - Pi-1 1 is small. 

2. Calculate the mean returns and the variance-covariance matrix for the asset 
data in Table 1.2. 

Return % for 
Day 1 Day 2 Day 3 Day 4 Day 5 

Asset 1 0.15 0.26 0.18 0.04 0.06 
Asset 2 0.04 -0.07 -0.05 0.07 0.03 
Asset 3 0.11 0.21 0.06 -0.06 0.12 

Table 1.2. Daily rates of return on three assets 

3. Optimizing two-asset portfolios 

We begin by considering simple portfolios involving only two assets. There 
are several ways to define an optimal choice for the invested fractions yl and 
y2 and each of them leads to a one-variable minimization problem. The ideas 
introduced in this section can be extended to the more realistic case when there 
are n (> 2) assets. 

The basic minimum risk problem 

A major concern in portfolio selection is the minimization of risk. In its sim- 
plest form, this means finding invested fractions yl , . . . , y, to solve the problem 

MinriskO 
I2 

Minimize V = y T ~ J 1  subject to yi = 1. (1.3.1) 
i= l 
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Like the earlier example (1.1.4), (1.1.5), this is an equality constrained min- 
imization problem for which a number of solution methods will be given in 
later chapters. Our first approach involves using the constraint to eliminate y, 
and yield an unconstrained minimization problem involving only yl , . . . , y,- 1. 

In the particular case of a two-asset problem, we wish to minimize V = y T ~ y  
with the constraint yl + y2 = 1. If we write x in place of the unknown fraction 
yi then y2 = 1 - yl = 1 - x. We can now define 

and then it follows that y = a + px so that problem MinriskO 

Minimize V = (a + px) ~ ( a  + px) . 

Expanding the matrix-vector product we get 

V = aT ~a + (2pT Qa)x + ( pT ep)x2.  

At a minimum, the first derivative of V is zero. Now 

= 2pT Q a  + 2pT Q& 
dx 

and so there is a stationary point at 

becomes 

(1.3.3) 

This stationary point will be a minimum (see chapter 2) if the second derivative 

and we shall be able to show later on that this cannot be negative. 

We now consider a numerical example based on the following Table 1.3. 

Return % for 
January February March April May June 

Asset 1 1.2 1.3 1.4 1.5 1.1 1.2 
Asset 2 1.3 1 .0 0.8 0.9 1.4 1.3 

Table 1.3. Monthly rates of return on two assets 

These are, in fact, simply the returns for the first two assets in Table 1.1 and 



so ? is given by (1.2.1) and the elements of Q come from (1.2.6) and (1.2.7). 

1.2833 
i = (  1.1167 a n d  

If we use Q from (1.3.6) then ( 

V = 0.05 

Hence, by (1.3.4) and (1.3.5), 

Specifically we have 

a =  ( 0.0181 -0.0281 ) (1.3.6) -0.0281 0.0514 ' 

1.3.3) becomes 

14-0.1590x+0.1256~. 

dV 0.159 
- = -0.159 +O.2512x and so x = - - 
dx 0.25 12 0'633' 

Since V has a positive second derivative, 

we know that a minimum of V has been found. Hence the minimum-risk port- 
folio for the assets in Table 1.3 has yl = x % 0.633. Obviously the invested 
fraction y2 = 1 - yl z 0.367 and so the "least risky" strategy is to invest about 
63% of the capital in asset 1 and 37% in asset 2. The portfolio risk is then 
V z 0.001 12 and, using the ? values in (1.3.6), the expected portfolio return is 

Exercise 
Find the minimum-risk portfolio involving the first two assets in Table 1.2. 

Optimizing return and risk 

The solution to problem MinriskO can sometimes be useful; but in practice we 
will normally be interested in both risk and return rather than risk on its own. 

In a rather general way we can say that an optimal portfolio is one which gives 
"biggest return at lowest r i sk .  One way of trying to determine such a portfolio 
is to consider a composite function such as 

The first term is the negative of the expected return and the second term is a 
multiple of the risk. If we choose invested fractions yi to minimize F then we 
can expect to obtain a large value for return coupled with a small value for risk. 
The positive constant p controls the balance between return and risk. 
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Based on the preceding discussion, we now consider the problem 

Risk-Retl 
n 

Minimize F = -rTY+ p y T ~ y  subject to Cyi = 1. (I .3.8) 
i= 1 

As in the previous section, we can use the equality constraint to eliminate Y , ~  
and then find the unconstrained minimum of F, considered as a function of 
y1,. . ., yn-p In particular, for the two-asset case, we can we write x in place 
of the unknown yl and define a and P by (1.3.2) so that y = a + px. Problem 
Risk-Retl then becomes 

Minimize F = - ( F ~ ~ ) x +  p [ a T ~ a +  2(pTQa)x+ (pTQp)x2]. (1 -3.9) 

Differentiating, we get 

and so a stationary point of F occurs at 

We now consider the data in Table 1.3. As before, values for T; and Q are given 
by (1.3.6) and so F becomes 

In order to minimize F we solve 

This gives 

and this stationary point is a minimum because the second derivative of F is 
0.25 12p which is positive whenever p > 0. 

For p = 5, (1.3.1 1) gives yl = x = 0.765. This implies y2 = 0.235 and the 
portfolio expected return is about 1.244% with risk V FZ 0.00333. If we choose 
p = 10 (thus placing more emphasis on reducing risk) the optimal portfolio is 

y1 = 0.7, y2 = 0.3 giving R FZ 1.233% and V = 0.00167. 



Exercises 
I .  Solve (1.3.9) using data for assets 2 and 3 in Table 1.2 and taking p = 100. 

2. Based on the data in Table 1.3, determine the range of values of p for which 
the solution of (1.3.9) gives x lying between 0 and 1. What, in general, is the 
range for p which ensures that (1.3.10) gives 0 5 x < l ?  

Minimum risk for specified return 

Problem Risk-Retl allows us to balance risk and return according to the choice 
of the parameter p. Another approach could be to fix a target value for return, 
say R,%, and to consider the problem 

Minriskl 
Minimize V = yT Qy (1.3.12) 

subject to z fiyi = R,, and 1 yi = 1. (1.3.13) 
i= 1 i= 1 

One way to tackle Minriskl is to consider the modijied problem 

Minrisklm 

P " 
I1 

Minimize F = yTQY + -(L fiyi - R , , ) ~  subject to yi = 1. (1.3.14) 
R; j=1 i= 1 

At a minimum of F we can expect the risk yTQy to be small and also that the 
return F~~ will be close to the target figure R,,. As in Risk-Retl, the value of 
the parameter p will determine the balance between return and risk. 

For the two-asset case we can solve Minrisklm by eliminating ya and using 
the transformation y = a + px where x = yl . We then get the problem 

P -7' Minimize F = ( a + p x ) ' ~ ( a + P x ) + ~ ( r  a - R , + ~ ~ b ) ~ .  (1.3.151 
RP 

After some simplification, and writing p in place of p / ~ g ,  F becomes 

T 2 2  aT~a+p(rTa-~,,)2+2(~T~a+p(rTa-~,)~TP)x+(pT~P+p(? P) )x . 

A minimum of F occurs when its first derivative is zero, i.e. at 

For the assets in Table 1.3, values of r and Q are given in (1.3.6) and so 
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Hence ( 1.3.16) gives 

-0.0794+0.16671,(1.1167-R,) 
X M -  

0.1256 + 0. 16672P 

If the target return Rp is 1.25% then (1.3.16) becomes 

Setting p = 10 gives x z 0.2214/0.3036 z 0.73. Hence the corresponding 
invested fractions are 

yl z 0.73, y2 M 0.27 

giving portfolio risk and return V z 0.00233 and R M 1.24%. 

Solutions with rTy closer to its target value can be obtained by increasing the 
parameter p. Thus, when p = 100, we get the solution 

y1 z 0.79, y2 z 0.21 with y T ~ y  z 0.0042 and rTy z 1.25%. 

Exercises 
1. For the data in Table 1.3, estimate the minimum-risk portfolio for a target 
return of 1.2% using values of p = 10,100,1000 in the function (1.3.15). 

2. If, for a two-asset problem, Rp is taken as 0.5(rl + F2), is it necessarily true 
that the solution to Minrisklm has yl and y2 both approximately equal to 0.5? 
What can you say about the possible ranges for yl and y2 when p is large? 

4. Minimimum risk for three-asset portfolios 

In the case of a three-asset portfolio we can reduce problem Minriskl to a 
one-variable minimization by using both constraints to eliminate the invested 
fractions y2 and yg. Equations (1.3.13) imply 

Y2+Y3=1-~1 (1.4.2) 

Multiplying (1.4.2) by ?3 and subtracting it from (1.4.1) gives 

(r2 - h)y2 = Rp - Tlyl 

and hence 

- r3-Y1 
and P2 = - . (1.4.4) 

r2 - 6 



Moreover, (1.4.2) gives ys = 1 - y l  -y2 which simplifies to 

y3 = 6 3  + p s y l  where = 1 - and p s  = - (1 + p2). (1.4.5) 

If we write x in place of the unknown y l  and also define 

then y = & + px. The risk V can now be expressed as a function of x, i.e., 

Hence 
dV 
- = 2BTQ&+ 2(pTQp)x 
dx 

and a stationary point of V occurs at 

Exercises 
1 . Show that, for the asset data in Table 1 .I , the mean returns ? in (1.2.1) imply 
& z (0, 3.5, -2.5)T and p z (1, -6, 5)T when the target return is Rp = 1.2%. 
Hence show that the minimum risk strategy for an expected return of 1.2% is 
to spread the investment in the ratio 0.53 : 0.32 : 0.15 over assets 1, 2 and 3. 

2. Find the minimum-risk portfolio that will give an expected return of 1.1 % 
for the assets in Table 1.1. 

3. For the data in Table 1.2, find the minimum-risk portfolio to achieve an 
expected return Rp = 0.5%. 

4. Suppose yl , . . .y4 are invested fractions for a four-asset portfolio. Use (1.2.3) 
and (1.2.2) to obtain expressions - similar to (1.4.4) and (1.4.5) - for y3 and y4 
in terms of yl and y2. 

5.  Two- and t hree-asset minimum-risk solutions 

It is useful to have computer implementations of the solution methods de- 
scribed in sections 3 and 4. The results given in this section have been ob- 
tained using a suite of software called SAMPO, which is written in Fortran90. It 
is not essential for the reader to understand or use this software (although it can 
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be downloaded from an f t p  site as described in the appendix). Solutions to 
MinriskO, Risk-Retl and Minriskl can easily be coded in other languages or 
expressed as spreadsheet calculations. Results obtained with the SAMPO soft- 
ware will be quoted extensively this book in order to compare the performance 
of different optimization methods. However, we shall defer discussion of this 
until later chapters. For the moment we simply note that the results below are 
from a program sample1 which is designed to read asset data (like that appear- 
ing in Tables 1.1 - 1.3) and then calculate solutions to MinriskO, Risk-Retl 
or Minriskl. 

The first problems we consider are based on data for the first two assets in 
Table 1.2. The expected returns turn out to be = 0.138, ?2 = 0.004 and the 
variance-covariance matrix is 

The solution to problem MinriskO appears in Table 1.4. 

Table 1 . I .  Solution of MinriskO for first two assets in Table 1.2 

Table 1.5 shows solutions to Risk-Retl for the same data. These are obtained 
by minimizing (1.3.9) for various values of the weighting parameter p. 

Tuble 1.5. Solutions of Risk-Retl for first two assets in Table 1.2 

The values of yl and y2 vary appreciably with p and tend towards the solution 
of MinriskO as p gets larger. It can be shown (Exercise 3 below) that this will 
be the case for any asset data and is not just a feature of the present problem. 

We now turn to problem Minrisklm, still considering the first two assets in 
Table 1.2. Table 1.6 shows the solutions obtained by minimizing (1.3.15) for 
various values of p when Rp = 0.1%. We observe that the choice of p is quite 
important. When p is small, the invested fractions which minimize (1.3.15) 
do not yield the target value for expected return; and it is only as p increases 



Table 1.6. Solutions of Minrisklm for first two assets in Table 1.2 

that R tends to the required value R,, = 0.1%. If we take p > 10 then - for 
this particular problem - there will not be any significant change in yl and y2. 
(However, for different asset data, values of p very much greater than 10 might 
be needed before an acceptable solution to Minriskl was obtained.) 

We next consider a three-asset problem involving the data in Table 1.1. We can 
use the program sample1 to solve Minriskl by minimizing ( 1.4.6). Table 1.7 
shows the results obtained for various values of target return Rp. 

Tahle 1.7. Solutions of Minriskl for assets in Table 1.1 

The first two rows of Table 1.7 show that a reduction in the value of Rp does 
not necessarily imply a reduced risk. If we decrease the target expected return 
from 1.2% to 1.15% we bias investment away from the better performing asset 
1. This means that the positive co-variance 023 in (1.2.7) will contribute more 
to V than the negative co-variances ~ 1 2 ,  G13 and so the optimum value of risk 
is not so small. By comparing rows two and three of Table 1.7, however, we 
see that an increase in Rp from 1.2% to 1.25% does produce a corresponding 
increase in risk. 

The negative value for y3 in the third row of Table 1.7 is not an error. It in- 
dicates that, for a target return Rp = 1.25%, the optimal investment strategy 
involves short selling - i.e., selling shares in asset 3 even though the investor 
does not own them. This can be done by borrowing the shares from a broker 
with the intention of returning them later. The strategy is only effective if the 
price of the shares falls because then the cost of buying replacement shares at 
a later date is less than the receipts from the sale of the borrowed ones. 


