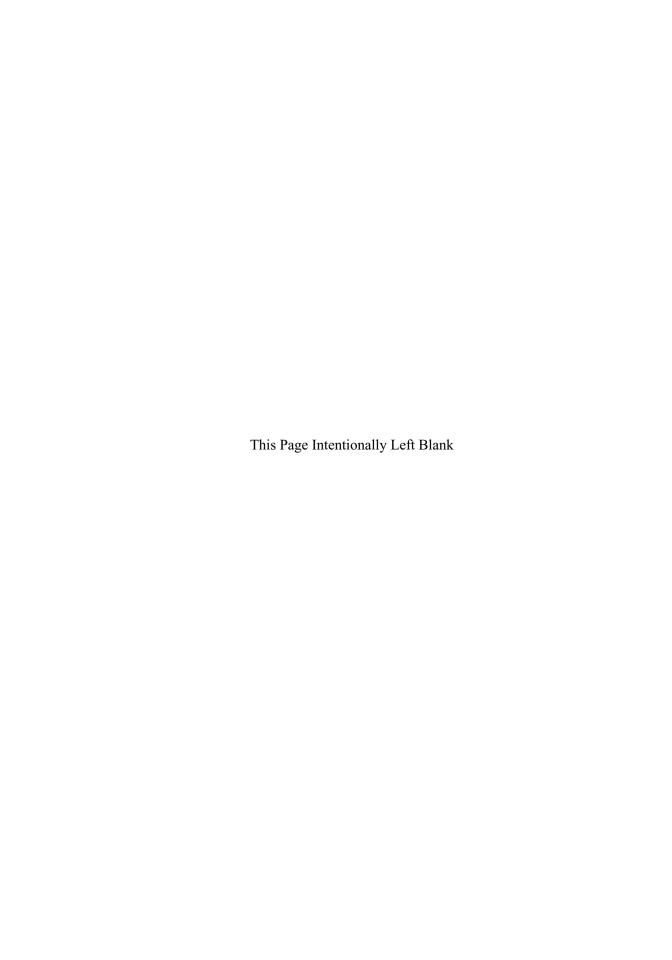

Johan Bieleman

Lackadditive


Weinheim • New York • Chichester Brisbane • Singapore • Toronto

Johan Bieleman

Lackadditive

Johan Bieleman

Lackadditive

Weinheim • New York • Chichester Brisbane • Singapore • Toronto

Johan H. Bieleman Servo Delden BV Langestraat 167 NL-7494 Delden

Das vorliegende Werk wurde sorgfältig erarbeitet. Dennoch übernehmen Herausgeber, Autoren, Übersetzer und Verlag für die Richtigkeit von Angaben, Hinweisen und Ratschlägen sowie für eventuelle Druckfehler keine Haftung.

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Bieleman, Johan:

Lackadditive / Johan Bieleman. - Weinheim; New York; Chichester; Brisbane; Singapore; Toronto: Wiley-VCH, 1998
ISBN 3-527-28819-8

© WILEY-VCH Verlag GmbH, D-69469 Weinheim (Federal Republic of Germany). 1998

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Alle Rechte, insbesondere die der Übersetzung in andere Sprachen, vorbehalten. Kein Teil dieses Buches darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form – durch Photokopie, Mikroverfülmung oder irgendein anderes Verfahren – reproduziert oder in eine von Maschinen, insbesondere von Datenverarbeitungsmaschinen, verwendbare Sprache übertragen oder übersetzt werden. Die Wiedergabe von Warenbezeichnungen, Handelsnamen oder sonstigen Kennzeichen in diesem Buch berechtigt nicht zu der Annahme, daß diese von jedermann frei benutzt werden dürfen. Vielmehr kann es sich auch dann um eingetragene Warenzeichen oder sonstige gesetzlich geschützte Kennzeichen handeln, wenn sie nicht eigens als solche markiert sind.

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law

Satzkonvertierung: ProSatz Unger, D-69469 Weinheim Druck: betz-druck gmbh, D-64291 Darmstadt Bindung: Wilhelm Osswald & Co, D-67433 Neustadt

Printed in the Federal Republic of Germany.

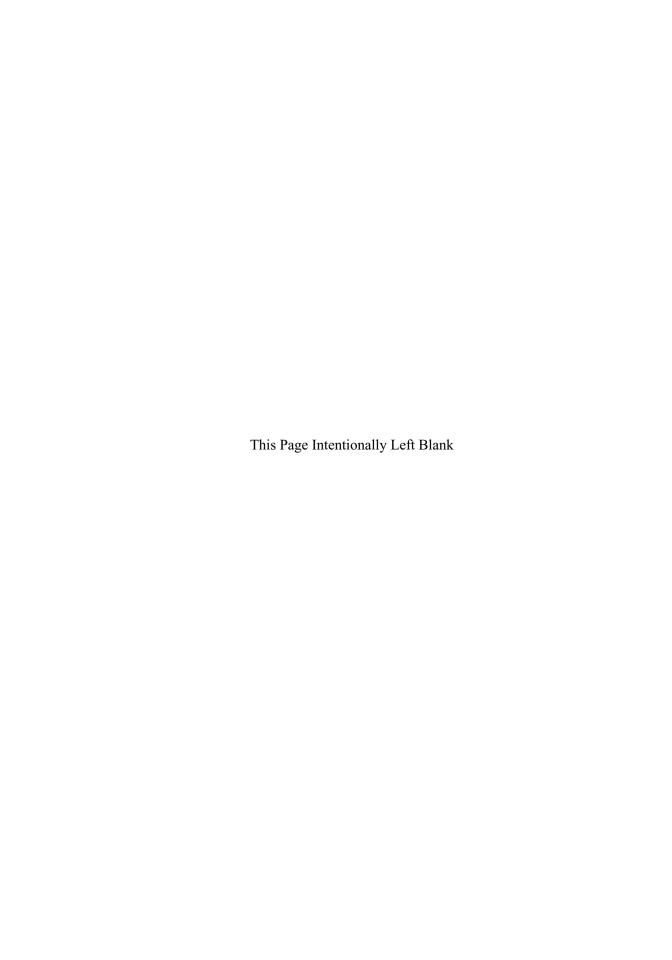
Vorwort

Lackadditive stellen eine äußerst wichtige Gruppe von Rohstoffen vor, die zur Herstellung von Lacken und Beschichtungen sowie verwandten technischen Erzeugnissen benötigt werden.

Die Qualität und manche Anwendungseigenschaften der Lacke werden in hohem Maße von den eingesetzten Additiven bestimmt. Die richtige Auswahl aus dem breiten Angebot der Additive ist daher von großer Bedeutung.

In der Praxis kommt der Lacktechniker oft erst nach vielen Versuchsreihen, also meist rein empirisch, zu einer Auswahl von Additiven, eine Erklärung, warum das eine Additiv in der Formulierung wirkt und das andere nicht, wird dabei nicht gefunden.

Es ist das primäre Ziel dieses Buches, die Lacktechniker und ihre sachverständigen Mitarbeiter darüber zu informieren, wie die bekanntesten Additivgruppen wirken, welche Effekte diese bei einer richtigen Anwendung hervorrufen können und wo der Lacktechniker Vorteile erreichen kann.


Die chemisch-technischen Grundlagen und die Theorien über die Wirkungsweise von Additiven, wie Verdicker, grenzflächenaktive Verbindungen, Oberflächenmodifizierungsmittel, Katalysatoren, Biozide usw., werden ausführlich erläutert. Auch wurde großer Wert auf die Erfassung der für die Praxis wichtigen optischen Aspekte bei Lackierungen gelegt.

Das Buch ist ideal für Lackingenieure und -chemiker aus der Industrie, Handel, Instituten. Hochschulen und Behörden.

Obwohl zur Vervollständigung einige Handelsnamen genannt werden, ist das Buch keine Übersicht von Lackrohstoffen nach Handelsnamen. Ebenso ist es kein rein wissenschaftliches Buch mit detaillierter Beschreibung der Theorien und Veröffentlichungen, ohne daß diese in einen Zusammmenhang mit Praxisanwendungen gebracht werden.

Viele Fachspezialisten haben an der Ausgabe dieses Buches mitgewirkt. Ihnen gebührt herzlichen Dank. Besonders herzlich möchte ich mich bei Herrn Dr. Dieter Stoye, Dorsten, bedanken. Ohne seine Ermutigungen wäre dieses Buch wohl nicht so schnell entstanden. Der Leitung der SERVO-Delden B.V., Delden, und den Herren des Geschäftsführungsbereichs "Lackrohstoffe" der Hüls Aktiengesellschaft, Marl, sei gedankt für die persönliche Unterstützung und die Bereitstellung der technischen und materiellen Mittel.

Januar 1997 Johan H. Rieleman

Inhaltsverzeichnis

	Die Autoren und ihre Beiträge XV	II
1	Einführung	1
1.1	Additive in Farben und Lacken	1
1.2	Begriffsbestimmung	1
1.3	Einstufung nach Funktionen	2
1.4	Verbrauchsmengen	3
1.5	Wirtschaftliche Bedeutung von Additiven	4
	Literatur	4
2	Grundlagen J. Bieleman	5
2.1	Einführung	5
2.2	Wechselwirkungen	5
2.3	Chemische Zusammensetzung	7
2.4	Wirksamkeit der Additive	7
2.5	Anwendungen	8
	Literatur	8
3	Verdicker J. Bieleman und G. Kroon	9
3.0	Grundlagen	9
3.0.1	Einführung	9
3.0.2		10
3.0.3	,	14
3.1		17
3.1.1		17
3.1.2	Organoschichtsilikate	17

3.1.3 3.1.4 3.1.5	Herstellung der Organoschichtsilikate	20 21 25
3.1.5.1	Absetzen	26
3.1.5.2	Ablaufen	27
3.1.5.3	Verlaufen	28
3.1.6	Einarbeitung	29
3.1.6.1	Pulvermethode	29
3.1.6.2	Pastenmethode	30
3.1.6.3	Leicht dispergierbare Organoschichtsilikate	30
3.1.7	Handelsprodukte	30
3.2	Organische Verdicker	31
3.2.0	Einführung	31
3.2.0.1	Organische Verdickungsmittel für Anstrichstoffe auf Wasserbasis.	31
3.2.0.2	Verdickungsmittel für Lösemittelfarben	34
3.2.1	Cellulosederivate	35
3.2.1.1	Chemie von Celluloseethern	35
3.2.1.2	Zugabe von Celluloseethern zu einer Farbe	38
3.2.1.2	Farbeigenschaften, beeinflußt durch Celluloseether	41
3.2.1.3	Assoziative Celluloseether	45
3.2.1.4	Kommerzielle Produkte	48
3.2.1.5	Neue Entwicklungen	49
		50
3.2.1.7	Toxikologie und Entsorgung PUR-Verdicker	51
3.2.2		51
3.2.2.1	Einführung Auflage and Lieferform	52
3.2.2.2	Chemischer Aufbau und Lieferform	53
3.2.2.3	Wirkungsmechanismus	53 54
3.2.2.4	Eigenschaften der PUR-Verdicker	
3.2.2.5	Anwendungen	56
3.2.2.6	Lackformulierung	57
3.2.2.7	Lackeigenschaften	58
3.2.2.8	Handelsprodukte	59
3.2.3	Organische Verdicker für lösemittelhaltige Lacke	59
3.2.3.1	Einführung	59
3.2.3.2	Produktübersicht	60
3.2.3.3	Hydriertes Ricinusöl	60
3.2.3.4	Polyamide	62
3.2.3.5	Überbasische Sulfonate	62
3.2.3.6	Handelsprodukte	63
	Literatur	63
4	Grenzflächenaktive Verbindungen	67
	J. Bieleman, W. Heilen, S. Silber, M. Ortelt und W. Scholz	
41	Netz- und Dispergiermittel	69

	Inhaltsverzeichnis	IX
4.1.1	Einführung	69
4.1.2	Begriffsbestimmungen	69
4.1.3	Der Dispergierprozeß	71
4.1.3.1	Die Pigmentbenetzung	73
4.1.3.2	Mechanische Zerteilung	76
4.1.3.3	Stabilisierung	77
4.1.3.4	Stabilisierung in polaren Medien: Praxisbeurteilungen	84
4.1.3.5	Stabilisierung in apolaren Systemen: Praxisbeurteilungen	85
4.1.4	Chemische Zusammensetzung der Netz- und Dispergiermittel	87
4.1.4.1	Polymere Dispergiermittel	91
4.1.5	Problemlösungen	92
4.1.6	Bestimmungsmethoden	95
4.1.6.1	Messang der Grenzflächenledung	95 95
4.1.6.2	Messung der Grenzflächenladung	93 95
	Dispergiermittelbedarf	
4.1.6.3	Ablauf des Dispergierprozesses	96
4.1.6.4	Dispersionsgrad	97
4.1.6.5	Flockulationsgrad	97
4.1.6.6	Ausschwimmen: Rub-out-Test	98
4.1.7	Biologische und toxikologische Eigenschaften	99
4.1.7.1	Tenside	100
4.1.7.2	Polymere	100
4.1.8	Handelsprodukte	100
4.2	Entschäumung von wäßrigen Anstrichstoffen	101
4.2.1	Einführung	101
4.2.2	Schaumbildung in wäßrigen Anstrichstoffen	102
4.2.3	Ursachen der Schaumstabilisierung	103
4.2.3.1	Stabilitätsmindernde Parameter	104
4.2.3.2	Schaumstabilitätsfördernde Parameter	106
4.2.4	Aufbau und Wirkungsweise von Entschäumern und Schaum-	
	inhibitoren	107
4.2.4.1	Entschäumer	107
4.2.4.2	Schauminhibitoren	109
4.2.5	Formulierung der Wirkstoffe	110
4.2.6	Testmethoden zur Beurteilung von Entschäumern	111
4.2.7	Herstellerinformation	112
4.3	Haftvermittler	114
4.3.1	Definition	114
4.3.2	Modelle zur Interpretation von Haftungserscheinungen	114
4.3.3	Haftfestigkeit im Verbund	116
4.3.4	Haftvermittler	117
4.3.4.1	Allgemeines	117
4.3.4.2	Organofunktionelle Silane	118
4.3.4.3	Metallorganische Verbindungen	122
4.3.4.4	Chlorierte Polyolefine	125
		127

v	T 1 1	
X	ınnaı	tsverzeichnis

125 127 128 128
131 131 131 131 133 133 134 134 138 139 140
143
144 144 145 145 147 147 148 149
152 152 153 153 154 den
155 157 157 158 158 159 161

	Inhaltsverzeichnis	XI
5.2.3 5.2.3.1	Anwendung der Mattierungsmittel	162 162
5.2.3.2 5.2.3.3	Lösemittelhaltige Systeme	166 166
5.2.3.4	High-Solids/strahlenhärtende Systeme	167
5.2.3.5	Pulverlacke	167
5.2.4	Handelsprodukte	168
	Literatur	168
6	Verlauf- und Filmbildehilfsmittel	171
6.1	Verlaufmittel	172
6.1.1	Einführung	172
6.1.1.1	Definition und Messung des Verlaufs	172
6.1.1.2 6.1.1.3	Verlaufsbestimmende physikalische Eigenschaften	174 177
6.1.2	Handelsübliche Verlaufsadditive	177
6.1.2.1	Polymere	177
6.1.2.2	Silikone	179
6.1.2.3	Fluortenside	179
6.1.2.4	Lösemittel	179
6.1.2.5	Sonstige Additive	181
6.1.3	Eigenschaften der Verlaufsadditive	181
6.1.4	Verwendung der Verlaufsadditive	182
6.1.4.1	Polymere	182
6.1.4.2 6.1.4.3	Silikone	183 184
6.1.4.4	Lösemittel	185
6.1.4.5	Sonstige Additive	186
6.1.5	Praktische Hinweise	186
6.1.6	Toxikologie und Entsorgung der Verlaufsadditive	188
6.2	Filmbildehilfsmittel	189
6.2.1	Einführung	189
6.2.2	Polymerdispersionen: Struktur/Filmbildung	190
6.2.3 6.2.4	Wirkungsweise der Filmbildehilfsmittel	192
6.2.5	Produktübersicht	196 200
6.2.6	Ökologie und Toxikologie	206
6.2.7	Handelsnamen	207
	Literatur	207
7	Katalytisch wirksame Verbindungen	211
7.1	Trockenstoffe	212

XII	Inhaltsverzeichnis
-----	--------------------

7.1.1	Einführung	212
7.1.2	Historischer Überblick über die Verwendung von Trockenstoffen	212
7.1.3	Zusammensetzung	214
7.1.4	Harstellung	
7.1.4.1	Herstellung	217
	Fällungsverfahren	217
7.1.4.2	Schmelzverfahren	217
7.1.4.3	Direktumsetzung	218
7.1.5	Der Trocknungsmechanismus und die Funktion von Trockenstoffen	218
7.1.6	Trockenstoffmetalle	221
7.1.6.1	Aktive Trockenstoffe	222
7.1.6.2	Hilfstrockenstoffe	224
7.1.7	Kombinationstrockenstoffe	226
7.1.8	Verlust an Trocknungsvermögen	227
7.1.9	Bleifreie Trockenstoffsysteme	229
7.1.9.1	Bleitrockenstoffsysteme	229
7.1.9.2	Ersatz eines Bleitrockenstoffs	
7.1.9.2	Wassersading Dictirockensions	230
	Wasserverdünnbare Lacke	230
7.1.10.1	Charakteristische Trocknungsphänomene wasserverdünnbarer	
	Beschichtungsmittel	231
7.1.10.2	Koordinationswirkungen auf Trockenstoffe	233
7.1.10.3	Vorkomplexierte Trockenstoffe	234
7.1.11	High-Solids-Lacke	235
7.1.12	Analysenverfahren	237
7.1.13	Biologische und toxikologische Eigenschaften	237
7.1.14	Handelsnamen	239
7.2	Katalysatoren	240
7.2.1	Einführung	240
7.2.2	Melaminharz-vernetzende Systeme	242
7.2.2.1	Einführung	242
7.2.2.2	Katalyse von HMM-Systemen, Fremdvernetzung	244
7.2.2.3	Anbieternachweis	247
7.2.2.4	Katalyse reaktiver Melaminharzsysteme, Selbstkondensation	248
	ixatalyse reactive interaminal asysteme, selbstrongensation	
7225	Allgemeine Formulierungshinusise	
7.2.2.5	Allgemeine Formulierungshinweise	249
7.2.3	Allgemeine Formulierungshinweise	249 250
7.2.3 7.2.3.1	Allgemeine Formulierungshinweise Polyurethansysteme Einführung	249 250 250
7.2.3 7.2.3.1 7.2.3.2	Allgemeine Formulierungshinweise Polyurethansysteme Einführung 2K-PUR-Systeme	249 250 250 252
7.2.3 7.2.3.1 7.2.3.2 7.2.3.3	Allgemeine Formulierungshinweise Polyurethansysteme Einführung 2K-PUR-Systeme Wärmehärtende 1K PUR-Systeme	249 250 250 252 257
7.2.3 7.2.3.1 7.2.3.2 7.2.3.3 7.2.3.4	Allgemeine Formulierungshinweise Polyurethansysteme Einführung 2K-PUR-Systeme Wärmehärtende 1K PUR-Systeme Polyurethan-Pulverlacke	249 250 250 252 257 260
7.2.3 7.2.3.1 7.2.3.2 7.2.3.3 7.2.3.4 7.2.3.5	Allgemeine Formulierungshinweise Polyurethansysteme Einführung 2K-PUR-Systeme Wärmehärtende 1K PUR-Systeme Polyurethan-Pulverlacke Feuchtigkeitshärtende 1K PUR-Systeme	249 250 250 252 257
7.2.3 7.2.3.1 7.2.3.2 7.2.3.3 7.2.3.4 7.2.3.5 7.2.3.6	Allgemeine Formulierungshinweise Polyurethansysteme Einführung 2K-PUR-Systeme Wärmehärtende 1K PUR-Systeme Polyurethan-Pulverlacke Feuchtigkeitshärtende 1K PUR-Systeme Anbieternachweis	249 250 250 252 257 260
7.2.3 7.2.3.1 7.2.3.2 7.2.3.3 7.2.3.4 7.2.3.5 7.2.3.6 7.2.4	Allgemeine Formulierungshinweise Polyurethansysteme Einführung 2K-PUR-Systeme Wärmehärtende 1K PUR-Systeme Polyurethan-Pulverlacke Feuchtigkeitshärtende 1K PUR-Systeme Anbieternachweis Epoxidharzsysteme	249 250 250 252 257 260 260
7.2.3 7.2.3.1 7.2.3.2 7.2.3.3 7.2.3.4 7.2.3.5 7.2.3.6 7.2.4 7.2.4.1	Allgemeine Formulierungshinweise Polyurethansysteme Einführung 2K-PUR-Systeme Wärmehärtende 1K PUR-Systeme Polyurethan-Pulverlacke Feuchtigkeitshärtende 1K PUR-Systeme Anbieternachweis Epoxidharzsysteme Einführung	249 250 250 252 257 260 260 263
7.2.3 7.2.3.1 7.2.3.2 7.2.3.3 7.2.3.4 7.2.3.5 7.2.3.6 7.2.4 7.2.4.1 7.2.4.2	Allgemeine Formulierungshinweise Polyurethansysteme Einführung 2K-PUR-Systeme Wärmehärtende 1K PUR-Systeme Polyurethan-Pulverlacke Feuchtigkeitshärtende 1K PUR-Systeme Anbieternachweis Epoxidharzsysteme Einführung	249 250 250 252 257 260 260 263 263
7.2.3 7.2.3.1 7.2.3.2 7.2.3.3 7.2.3.4 7.2.3.5 7.2.3.6 7.2.4 7.2.4.1	Allgemeine Formulierungshinweise Polyurethansysteme Einführung 2K-PUR-Systeme Wärmehärtende 1K PUR-Systeme Polyurethan-Pulverlacke Feuchtigkeitshärtende 1K PUR-Systeme Anbieternachweis Epoxidharzsysteme Einführung Epoxy-Amin-Systeme	249 250 250 252 257 260 263 263 263
7.2.3 7.2.3.1 7.2.3.2 7.2.3.3 7.2.3.4 7.2.3.5 7.2.3.6 7.2.4 7.2.4.1 7.2.4.2	Allgemeine Formulierungshinweise Polyurethansysteme Einführung 2K-PUR-Systeme Wärmehärtende 1K PUR-Systeme Polyurethan-Pulverlacke Feuchtigkeitshärtende 1K PUR-Systeme Anbieternachweis Epoxidharzsysteme Einführung	249 250 250 252 257 260 263 263 263 265

	Inhaltsverzeichnis	XIII
7.2.4.5	Anbieternachweis	269
	Literatur	270
8	Speziell wirksame Additive	273
8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.5.1 8.1.5.2 8.1.5.3 8.1.5.4 8.1.6 8.1.7 8.1.8	Hautverhinderungsmittel Einführung Begriffsbestimmung Ursachen der Hautbildung Folgen der Hautbildung Bekämpfung der Hautbildung Antioxidantien Blockierungsmittel des Polymerisationskatalysators Lösemittel Retentionsmittel Praktische Hinweise Toxikologische Eigenschaften Handelsprodukte	274 274 274 275 275 276 279 282 283 283 284
8.2 8.2.1 8.2.1.1 8.2.1.2 8.2.1.3 8.1.1.4 8.2.2 8.2.2.1 8.2.2.2 8.2.3.3 8.2.3.1 8.2.3.2	Lichtschutzmittel Einführung Umwelteinflüsse auf Lacke Photooxidation von Polymeren Stabilisierungsmöglichkeiten Wirtschaftliche Bedeutung Grundlagen UV-Absorber Sterisch gehinderte Amine (HALS) Eigenschaften von Lichtschutzmitteln Anforderungsprofil an Lichtschutzmittel Löslichkeit und Verträglichkeit von Lichtschutzmitteln Flüchtigkeit von Lichtschutzmitteln Einfluß der Eigenfarbe der Lichtschutzmittel auf die Farbe des	285 285 285 286 288 288 288 293 296 296
8.2.3.5 8.2.3.6 8.2.3.7 8.2.4 8.2.4.1 8.2.4.2 8.2.4.3 8.2.4.4 8.2.4.5 8.2.5	Lackes Interaktionsneigung von UV-Absorbern Beständigkeit von UV Absorbern Nebenreaktionen von HALS Verwendung von Lichtschutzmitteln Stabilisierung von 2-Schichtlackierungen Stabilisierung von 1-Schichtlackierungen Stabilisierung von Pulverlacken Stabilisierung UV-härtender Klarlacke Stabilisierung von Holzlacken Praktische Hinweise	298 299 300 300 302 303 305 305
8.2.5.1	Prüfmethoden	305 305

XIV Inhaltsverzeichnis

8.2.5.2 Empfehlungen für den Einsatz von Lichtschutzmitteln	
8.2.5.3 Handelsnamen	307
8.2.6 Toxikologie und Entsorgung	308
8.3 Korrosionsinhibitoren	309
	309
	309
8.3.1.2 Elektrochemische Korrosionsprozesse	311
8.3.1.3 Korrosionsschutz durch organische Beschichtungen	313
8.3.2 Handelsübliche Korrosionsinhibitoren	314
8.3.2.1 Definition	314
8.3.2.2 Inhibierungsmechanismen	315
8.3.2.3 Inhibitorklassen/Charakteristika	318
8.3.3 Produkte und Produkteigenschaften	319
8.3.3.1 Flugrostinhibitoren	319
8.3.3.2 Inhibitoren für permanenten Korrosionsschutz	320
8.3.4 Praktische Hinweise, Formulierungsgrundsätze	322
8.3.4.1 Flugrostinhibitoren	322
8.3.4.2 Inhibitoren für permanenten Korrosionsschutz	322
8.3.5 Toxikologie und Entsorgung	324
8.3.6 Hersteller und Handelsnamen	324
	324
8.4 Biozide	325
8.4.1 Einführung	325
8.4.2 Definitionen	326
8.4.3 Topf- oder Lagerkonservierung	328
8.4.4 Betriebshygiene	330
8.4.5 Topfkonservierende Wirkstoffe	332
8.4.5.1 Formaldehyd	332
8.4.5.2 Formaldehydabspalter	333
8.4.5.3 Glutaraldehyd	334
8.4.5.4 Phenolderivate	334
8.4.5.5 Säuren	335
8.4.5.6 Carbonsäurenamide	336
8.4.5.7 Quarternäre Ammoniumverbindungen (Quats)	
	336
	336
8.4.5.9 Alkohole	338
8.4.6 Filmkonservierung	338
8.4.7 Sanieren von Untergründen	341
8.4.8 Filmkonservierende Wirkstoffe	341
8.4.8.1 Benzimidazole	342
8.4.8.2 Carbamate und Dithiocarbamate	342
8.4.8.3 <i>N</i> -Haloalkylthio-Verbindungen	343
8.4.8.4 2- <i>n</i> -Octyl-4-isothiazolin-3-on (OIT)	343
8.4.8.5 Zink-Pyrithion	343
8.4.8.6 Diuron	344

	Inhaltsverzeichnis	XV
8.4.10	Handelsprodukte	345
8.5	Flammhemm-Mittel	346
8.5.1	Grundlagen	346
8.5.1.1	Brennbarkeitsklassen und Prüfmethoden	346
8.5.1.2	Der Verbrennungsvorgang	347
8.5.1.3	Wirkungsweise der Flammhemmung	349
8.5.2	Gebräuchliche Flammhemm-Mittel: Aufbau, Wirkungsmechanis-	
0.5.3.1	men und Eigenschaften	351
8.5.2.1	Anorganische Flammhemm-Mittel	351
8.5.2.2	Halogenhaltige Flammhemm-Mittel	352
8.5.2.3	Phosphorhaltige Flammhemm-Mittel	354
8.5.2.4	Verkohlungsfördernde Flammhemm-Mittel	355
8.5.2.5	Intumescenzsysteme	355
8.5.3	Verbrauch und Verwendung	357
8.5.4	Lieferantenverzeichnis; Handelsprodukte	358
8.6	Photoinhibitoren als Additive in UV-härtbaren Lacken	359
8.6.1	Einführung	359
8.6.1.1	Abrenzung von Photoinitiatoren gegenüber anderen Lackadditiven	359
8.6.1.2	Entwicklung der UV-Härtung	360
8.6.2	Hauptkomponenten UV-härtbarer Lacke	361
8.6.2.1	Photoinitiatoren	361
8.6.2.2	Reaktive Harze und Verdünner	362
8.6.3	Radikalische Photohärtung	363
8.6.3.1	Mechanistische Betrachtungen	363
8.6.3.2	Untersuchungen zur Reaktionskinetik	364
8.6.4	UV-Härtungstechnik	365
8.6.5	Anwendungsbeispiele für Photoinitiatoren	366
8.6.5.1	Klarlacke	367
8.6.5.2	Pigmentierte Lacke	368
8.6.6	Toxikologie und Entsorgung	370
8.6.7	Handelsnamen	370
	Literatur	370
_		
9	Arbeitssicherheit und Entsorgung	375
9.1	Einführung	375
9.2	Begriffserläuterung	375
9.3	Biologische und toxikologische Eigenschaften	376
9.4	Sicherheitsdaten	377
9.5	Arbeitssicherheit	377
9.6	Entsorgung und Verpackungen	378
	Literatur	379

XVI Inhaltsverzeichnis

1	10	Qualitätssicherung	380
1	10.1	Einführung	380
1	10.2	Begriffsbestimmungen	380
1	10.3	Qualitätsnorm ISO-9000	382
1	10.4	Umweltschutz und Arbeitssicherheit	382
1	10.5	Qualitätsprüfung der Additive	382
		Literatur	383
		Register	385

Die Autoren und ihre Beiträge

Johan Bieleman, SERVO-Delden BV, Delden/NL

- 1 Einführung
- 2 Grundlagen
- 3 Verdicker
- 3.1 Anorganische Verdicker
- 3.2.2 PUR-Verdicker
- 3.2.3 Verdicker für lösemittelhaltige Lacke
- 4 Grenzflächenaktive Verbindungen
- 4.1 Netz- und Dispergiermittel
- 5.1.2 Additive zur Verbesserung der Oberflächenglätte
- 6 Verlauf- und Filmbildehilfsmittel
- 7 Katalytisch wirksame Verbindungen
- 7.1 Trockenstoffe
- 8 Speziell wirksame Additive
- 8.1 Hautverhinderungsmittel
- Dr. Thomas Bolle, Ciba Spezialitätenchemie AG, Basel/CH
 - 8.2 Lichtschutzmittel
- Dr. Adelbert Braig, Ciba Spezialitätenchemie AG, Basel/CH
 - 8.3 Korrosionsinhibitoren
- Dr. Klaus Dören, Polymer Latex GmbH & Co. KG, Marl/D
 - 6.2 Filmbildehilfsmittel
- Dr. Uwe Ferner, Georg Lüers, Grace GmbH, Worms/D
 - 5.2 Mattierungsmittel
- Jürgen Glaser, Acima A.G., Buchs/CH
 - 8.4 Biozide
- János Hajas, Byk-Chemie GmbH, Wesel/D
 - 6.1 Verlaufmittel
- Dipl.-Ing Wernfried Heilen, Dr. Stefan Silber, Tego Chemie Service GmbH, Essen/D
 - 4.2 Entschäumer
 - 5.1.4/5 Additive zur Verbesserung der Oberflächenglätte

XVIII Die Autoren und ihre Beiträge

Dr. Manfred Köhler, Dr. Andreas Valet, Ciba Spezialitätenchemie AG, Basel/CH 8.6 Photoinitiatoren als Additive in UV-härtbaren Lacken

Gijsbert Kroon, Hercules BV, Zwijndrecht/NL

- 3.2 Organische Verdicker
- 3.2.1 Cellulose Verdicker

Dr. Rainer Lomölder, Hüls AG, Marl/D

7.2 Katalysatoren

Dr. Martina Ortelt, Hüls AG, Marl/D

4.3 Haftvermittler

Aljan Postma, SERVO-Delden BV, Delden/NL

- 9 Arbeitssicherheit und Ökologie
- 10 Qualitätssicherung

Dr. Wilfried Scholz, Byk Chemie GmbH, Wesel/D

- 5 Oberflächenmodifizierungsmittel
- 5.1.1/.3/.6/.7/.8/.9 Additive zur Verbesserung der Obenflächenglätte

Dr. Raimund Spang, Sika Chemie AG, Bad Urach/D

8.5 Flammhemm-Mittel

1 Einführung

Johan Bieleman

1.1 Additive in Farben und Lacken

Bei der Zusammensetzung von Farben und Lacken sind folgende Basiskomponenten zu unterscheiden:

- Bindemittel
- Pigmente und Füllstoffe
- Lösemittel
- Additive

Über die Wahl des Bindemittels werden die primären Eigenschaften der Lackschicht bestimmt. Haftung, manche optische und mechanische Eigenschaften sowie Beständigkeiten werden in hohem Maße von der Art des Bindemittels bestimmt.

Die weiteren festen Komponenten der Lackschicht wie Pigmente und Füllstoffe werden vom Bindemittel in einer Matrix fixiert. Die Auswahl des Pigmentes bestimmt den Farbton sowie in starkem Maße Eigenschaften wie Deckfähigkeit und Korrosionsfestigkeit.

Füllstoffe dienen besonders zur Verbilligung der gesamten Rohstoffkosten, beeinträchtigen daneben jedoch auch viele andere Eigenschaften.

Das Lösemittel bzw. Verdünnungsmittel dient vor allem dazu, die Verarbeitbarkeit der festen und hochviskosen Kompenten des Lackes während der Herstellung, Applikation und Filmbildung zu ermöglichen.

Neben den genannten Hauptkomponenten des Lackes bestimmen die eingesetzten Additive in hohem Maße die Lackeigenschaften. Die Grundeigenschaften der drei Hauptkomponenten eines Lackes – Bindemittel, Pigment und Füllstoff – können mit Additiven stark modifiziert werden.

1.2 Begriffsbestimmung

Es ist äußerst schwierig, eine einheitliche und genaue Definition der Additive zu geben: die Zusammensetzung dieser Gruppe ist sehr inhomogen. Über Additive lassen sich viele unterschiedliche Funktionen beeinflussen.

Eine mögliche Definition ist folgende:

"Als Additive sind die Komponenten zu bezeichnen, die in kleinen Mengen neben Bindemitteln, Pigmenten/Füllstoffen und Lösemitteln zur Formulierung der Farbe eingesetzt werden, um während ihrer Herstellung, Lagerung, Verarbeitung oder in der Lackschicht gewünschte Eigenschaften erzielen zu können."

1.3 Einstufung nach Funktionen

Der Ausdruck "geforderte Eigenschaften" deutet nicht nur auf technische Eigenschaften hin; auch wirtschaftliche Aspekte, wie z.B. Kostenreduzierung während der Produktion und Verbesserung der Ausbeute von Pigmenten, gehören in diesen Komplex.

Der Anteil an Additiven in einer Lackrezeptur beträgt selten mehr als insgesamt 5 Massenprozent. Übliche Dosierungen einzelner Additive liegen in der Größenordnung von 1 Massenprozent, bezogen auf die gesamte Lackrezeptur.

Es gibt eine große Auswahl an Additiven. Diese sind, eingestuft nach ihren Funktionen, in folgenden Gruppen einzuteilen:

Verdicker

Es handelt sich um Additive, die das rheologisches Verhalten des Lackes beeinflussen.

Grenzflächenaktive Verbindungen

Dazu gehören:

- Netz- und Dispergiermittel
- Entschäumer
- Haftvermittler

Oberflächenmodifizierungsmittel

Diese Gruppe wird unterteilt in:

- Slipadditive
- Mattierungsmittel

Verlaufmittel und Filmbildehilfsmittel

Filmbildehilfsmittel sind auch bekannt als Koalescenzmittel und werden in Polymerdispersionssystemen verwendet.

Katalytisch wirksame Additive

Zu dieser Gruppe gehöhren:

- Trockenstoffe
- Katalysatoren

Speziell wirksame Additive

Die übrigen Additive werden unter dieser Bezeichnung zusammengefaßt. Es handelt sich um:

- Hautverhinderungsmittel
- Lichtschutzmittel
- Korrosionsinhibitoren
- Biozide
- Flammhemm-Mittel
- Photoinitiatoren

1.4 Verbrauchsmengen

Aus den relativen Verbrauchsmengen der Additivgruppen ergibt sich, daß mengenmäßig die katalytisch wirksamen Additive das größte Volumen ausmachen, sie stehen in dieser Hinsicht noch vor den grenzflächenaktiven Verbindungen und den Verdickern (Abb. 1.4-1)^[1-1]. Die geschilderten Verhältnisse basieren auf dem Weltverbrauch und können je nach Region länderspezifisch stark abweichen.

Trockenstoffe für oxidativ trocknende Farben und Lacke haben bei den katalytisch wirksamen Additiven immer noch den größten Anteil. Der Trend für die Verbrauchsmengen an Trockenstoffen ist jedoch rückläufig, da immer mehr hochkonzentrierte Trockenstoffe verwendet werden und der Verbrauch an physikalisch trocknenden Lacken unter Verdrängung der oxidativ trocknenden Systeme ständig zunimmt.

Additivgruppe	Verbrauch in % des Gesamtvolumen	
Katalytisch wirksame Additive	28	
Oberflächenmodifizierungsmittel	12	
Verdicker	16	
Grenzflächenaktive Verbindungen	19	
Verlauf- und Filmbildehilfsmittel	10	
Speziell wirksame Additive	15	

Abb. 1.4-1. Relative Verbrauchsmengen der Additivgruppen

1.5 Wirtschaftliche Bedeutung von Additiven

Obwohl der Anteil an Additiven in einer Lackformulierung relativ gering ist, liegt der Gesamtverbrauch in Europa jährlich über 100000 t^[1-2]!

Die relative Bedeutung der Additive in einer Lackrezeptur ist nicht einfach mit den Begriffen "verbrauchte Menge" oder "Wert" zu beschreiben; entscheidend ist der technische Einfluß des Additivs auf die Lackeigenschaften. Die Bedeutung der Additive für eine Lackrezeptur wird am besten ausgedrückt als dessen Beitrag zur Qualitätsverbesserung des Lackes. Leider läßt sich ein solcher Beitrag generell schlecht als Wirtschaftsfaktor – wie es häufig gewünscht wird – quantifizieren.

Die rein wirtschaftliche Bedeutung der Additive, bezogen auf die Rohstoffkosten oder auf das Rohstoffvolumen, ist hingegen eher bescheiden (Abb. 1.4-2)^[1-3].

Lackrohstoff	Mengen in %	Wert in %
Bindemittel	29,5	31,7
Lösemittel	27,4	15,5
Wasser	10,6	_
Pigmente	18,7	45,9
Füllstoffe	12,3	3,5
Additive	1,5	3,4
Gesamt	100	100

Abb. 1.4-2. Relative Verbrauchsmengen der Lackrohstoffe

Additive nehmen also, bezogen auf die Mengen, nur einen sehr bescheidenen Platz ein. Der relativ höhere Anteil, bezogen auf den Wert, deutet auf die hohen Kosten pro Volumeneinheit mancher Additive hin.

In Abbildung 1.4-2 kommt deutlich zum Ausdruck, daß die zusätzlichen Rohstoffkosten eines Lackes durch den Einsatz von Additiven nur minimal sind. Die Begründung für den Einsatz eines Additivs ist dessen Beitrag zu einer höheren Lackqualität.

Literatur

^[1-1] Bieleman, J.H., Coatings Agenda Asia Pacific 1996/1997, Campden Publ. London, S. 150

^[1-2] Stoye-Freitag, Lackharze, Carl Hanser Verlag, München 1996, S. 396

^[1-3] The Demand for Coating Additives, 3. Auflage; IRL Ltd., London 1991, S. 118-120

2 Grundlagen

Johan Bieleman

2.1 Einführung

Als Additive sind die Komponenten zu bezeichnen, die in kleineren Mengen neben Bindemitteln, Pigmenten/Füllstoffen und Lösemitteln zur Formulierung der Farbe eingesetzt werden, um während der Herstellung, Lagerung und Verarbeitung der Farbe oder in der Lackschicht gewünschte Eigenschaften ermöglichen zu können (s. Abschn. 1.2).

Aus dieser Definition kann man erkennen, daß es eine Vielfalt an Anwendungszwecken für Additive gibt; die Additivgruppe ist sehr inhomogen. Lackadditive sind hinsichtlich ihrer chemischen Zusammensetzung und ihrer Funktionen außerordentlich unterschiedlich.

Die einzigen Phänomene, die die verschiedenen Additivgruppen gemeinsam haben, sind die Tatsachen, daß Additive definitionsgemäß "in kleineren Mengen eingesetzt werden" und daß es Zweck ihrer Verwendung ist, "gewünschte Eigenschaften zu ermöglichen".

Diese Fakten deuten schon an, daß es sehr unwahrscheinlich ist, generelle und typische physikalische oder chemische Eigenschaften für alle Additive gemeinsam aufzeichnen zu können.

In der Tat ist es so, daß die verschiedenen Gruppen getrennt betrachtet werden müssen. In diesem Kapitel werden die Basiskonditionen, auf denen die typische Anwendung eines Additivs beruhen, erläutert.

2.2 Wechselwirkungen

Additive werden eingesetzt zur Modifizierung der Lackeigenschaften, die über das Bindemittel, Pigment und Lösemittel erreicht werden. Charakteristisch für Additive ist weiterhin, daß sie ihre Wirksamkeit an bestimmten Orten im Lack oder in der Lackschicht entfalten sollten. Aufgabe der Additivhersteller ist es, die Additive so zu konzipieren, daß die Additivmoleküle tatsächlich dort im Lack konzentriert werden, wo sie ihre Wirkung zeigen sollen (Abb. 2.2-1).

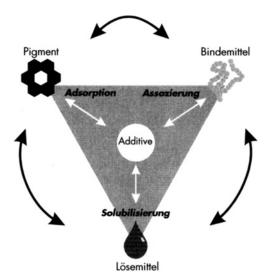


Abb. 2.2-1. Wechselwirkungen zwischen Additiven und sonstigen Lackbestandteilen

Typische charakteristische Eigenschaften des Additivs, die von großer technischer Bedeutung sind:

- Grenzflächenaktivität
- Dampfdruck
- Löslichkeit des Additivs in der Flüssigphase
- chemische Stabilität

Die Bedeutung dieser Eigenschaften wird im folgenden anhand einiger Beispiele demonstriert.

Grenzflächenaktivität

Über chemische Modifizierungen können Moleküle so maßgeschneidert werden, daß sie eine erhöhte Affinität zur bestimmten Grenzflächen aufweisen.

Carboxylierung, Sulfatierung bzw. Phosphatierung von Fettalkoholen führt zur Bildung anionaktiver, also negativ geladener Gruppen im Molekül. Diese chemische Modifizierung des Fettalkohols hat eine erhöhte Adsorption an den Oberflächen basischer Pigmente zur Folge (kovalente Bindungskräfte).

Dampfdruck

Als Hautverhinderungsmittel für oxidativ trocknende Farben wird in der Praxis überwiegend Methylethylketoxim verwendet. Die Wirkung beruht auf einer chemischen Komplexierung und als Folge davon einer Blockierung des Katalysators. Der hohe Dampfdruck des Oxims führt zu einer schellen Verdunstung des Oxims, sobald der Lack appliziert ist und sich somit die Verdunstungsoberfläche des Lackes sehr stark vergrößert hat; dabei wird der Katalysator freigesetzt.

Löslichkeit

Entschäumer sollen ihre Wirkung an der Grenzfläche Flüssigkeit/Luft zeigen. Oft sind Entschäumer nur schwach in der Flüssigphase löslich. Sobald der Lack aufgetragen ist, findet eine Abtrennung und ein Aufrahmen des Entschäumers statt; es bildet sich somit eine erhöhte Konzentration des Entschäumers an der Grenzfläche Flüssigkeit/Luft.

Chemische Stabilität

Eine beschränkte chemische Stabilität bei erhöhter Temperatur ermöglicht zum Beispiel die Freisetzung von Säuren im Falle von säurekatalysierten Lacken.

2.3 Chemische Zusammensetzung

In ihren chemischen Zusammensetzungen unterscheiden sich die Additive außerordentlich voneinander. Teils sind es chemisch eindeutig definierbare Verbindungen wie zum Beispiel Oxime, Silikone, Celluloseether, Metallseifen, teils sind es sehr komplexe Präparationen aus verschiedenen Verbindungen.

Es handelt sich dabei nicht ausschließlich um synthetische Produkte. Manche Additive bestehen aus Naturstoffen (z.B. Lecithin) oder modifizierten bzw. aufbereiteten Naturstoffen (z.B. Cellulosederivate). Jedoch gehöhrt die Mehrheit der Additive zur Klasse der synthetischen Verbindungen.

2.4 Wirksamkeit der Additive

Additive, zum Beispiel Entschäumer, werden eingesetzt, um gut definierbare Eigenschaften zu erhalten. Jedoch sind Additive oft in mehrfacher Hinsicht wirksam. Manchmal ist diese mehrfache Wirksamkeit gewollt: Netzmittel führen zu einer besseren Pigmentbenetzung und nicht selten auch zu einer verbesserten Haftung der Lackschicht auf dem Substrat und wirken dazu verlaufsfördernd. Auch Hautverhinderungsmittel wirken zusätzlich als Verlaufmittel.

Es können aber auch negative Nebenwirkungen auftreten: Verdicker wirken zusätzlich unerwünscht auch als Mattierungsmittel, Dispergiermittel zusätzlich als Polymerisationskatalysatoren.

Diese Phänomene sind mit hoher Wahrscheinlichkeit auf die komplexe Struktur eines Lackes zurückzuführen; hinzu kommt, daß auch Additive oft komplex zusammengesetzt sind.

2.5 Anwendungen

Additive werden üblicherweise nach folgenden Kriterien ausgewählt [2-1]:

- Funktionalität
- Verfügbarkeit
- Verträglichkeit
- Preis-/Leistungsverhältnis

Die Funktionalität hängt direkt mit der Zusammensetzung und den mengenmäßigen Einsatzempfehlungen des Lieferanten zusammen. Additive sind oft "Problemlöser"; sie werden zur Beseitigung aktueller Produktionsprobleme ausgesucht und sofort in die Rezeptur aufgenommen. Allein die Verfügbarkeit des Additivs ist dabei entscheidend.

Verträglichkeit ist ebenfalls ein äußerst wichtiges Kriterium. In der Praxis werden verschiedene Additive in der gleichen Formulierung eingesetzt. Dabei können sich manche Wirkungen gegenseitig aufheben. So können Dispergiermittel die Effektivität der Assoziativverdicker negativ beeinflußen. Auch kann die Wirkung und Effektivität des Additivs während der Lagerung der Farbe als Folge von physikalischen oder chemischen Wechselwirkungen mit anderen Komponenten der Lackrezeptur stark beeinträchtigt werden.

Die Risiken solcher unerwünschter Prozesse können bei ausreichenden Kenntnissen aller eingesetzten Rohstoffe und deren Chemie reduziert werden, jedoch kann – was den Beitrag der Additive anbelangt – auch die Reihenfolge der Rohstoffzugabe von Bedeutung sein.

Additive werden üblicherweise vor dem Dispergierprozeß, z.B. Dispergiermittel, Verdicker, Bakterizide, oder während der Auflackungsphase des Lackproduktionsprozeßes zugegeben.

Auch die Dosierungsmenge mancher Additive ist kritisch; die Komplexität einer Lackrezeptur erfordert, daß die einzusetzende Menge in jeder Rezeptur empirisch ermittelt wird.

Da Additive Substanzen sind, die nur in kleinen Mengen zugefügt werden, ist der Einfluß auf die Gesamtrohstoffkosten relativ unbedeutend. Entscheidend ist vielmehr, ob die gewünschte Verbesserung erreicht wird.

Literatur

[2-1] Sharma, M. K., Parikh, A, Surface Phenomena Waterborne Coatings, Plenium Press, New York 1995, S. 203

3 Verdicker

Johan Bieleman

3.0 Grundlagen

3.0.1 Einführung

Verdicker werden in Lacken und Farben eingesetzt, um dem System die gewünschten rheologischen Eigenschaften zu geben. Das rheologische Verhalten eines Lackes beeinflußt sowohl dessen Herstellung und Lagerung als auch die anwendungstechnischen Eigenschaften.

Verdicker werden während der Herstellung meist schon vor dem Dispergierungsprozeß der Mahlpaste – abgestimmt auf das Dispergiergerät – zur Erzielung eines optimalen Fließverhaltens zugegeben. Werden die Pigmente in einem zu dünnen Medium dispergiert, dann tritt turbulentes Fließverhalten auf, wodurch ein großer Teil der zugeführten Energie verloren geht, also nicht optimal für den Dispergierprozeß genutzt wird.

Während der Lagerung sollte die Farbe eine ausreichend hohe Viskosität haben, damit auch schwere Pigmentteilchen nicht sedimentieren.

In ähnlicher Weise werden über die Viskositätseinstellung viele anwendungstechnische Eigenschaften bestimmt, z.B. das Fließ-, Ablauf- und Streichverhalten sowie die Schichtdicke und Deckfähigkeit.

Zur Einstellung der Rheologie gibt es viele Möglichkeiten. Durch Zugabe des Verdickers wird eine Viskositätserhöhung erzielt. Als geignete Verdicker werden in der Praxis sehr häufig sowohl organische als auch anorganische Produkte verwendet.

Um die Wirkungsweise dieser Verdicker in Lacken zu verstehen, sind einige rheologische Grundkenntnisse erforderlich; daher werden zunächst einige Begriffe der Rheologie erläutert.

3.0.2 Rheologie und Viskosität

Definitionsgemäß versteht man unter Rheologie "die Lehre von der Verformung und dem Fließverhalten der Materie unter Einwirkung äußerer Kräfte"^[3-1, 3-2]. Wörtlich übersetzt bedeutet der aus dem Griechischen stammende Begriff "rheos" das Fließen.

Fließverhalten und Strömung

Bei der Strömung in Flüssigkeiten wird zwischen laminarer und turbulenter Strömung unterschieden. Eine Strömung wird als laminar bezeichnet, wenn die parallelen, unendlich dünnen Flüssigkeitsschichten – aus denen wir uns die Flüssigkeit zusammengesetzt vorstellen können – sich im Verhältnis zueinander so bewegen, daß keine Vermischung stattfindet^[3-3].

Als Folge davon lassen sich laminare Strömungen, vorausgesetzt daß dabei keine turbulenten Strömungen entstehen, mathematisch leicht beschreiben.

Die Strömung wird als turbulent oder dilatant bezeichnet, wenn eine Vermischung erfolgt. Bei einer turbulenten Strömung geht ein großer Teil der Energie, die eingesetzt wird, um eine Strömung zu bewirken, verloren und kann somit – im Unterschied zur laminaren Strömung – nicht für das eigentliche Ziel, eine Strömung zu erreichen, genutzt werden.

Sowohl während der Herstellung als auch während der Anwendung sind die Strömungen in Lacken und Beschichtungsmitteln hauptsächlich laminar.

Scherspannung, Schergeschwindigkeit und Viskosität

Zur Veranschaulichung rheologischer Größen wird häufig das Zwei-Platten-Modell verwendet (Abb. 3.0-1).

Stellen wir uns, wie bei der laminaren Strömung beschrieben, ein Flüssigkeitsvolumen vor, das aus einer Vielzahl von Flüssigkeitsschichten besteht. Die oberste Schicht mit der Fläche A wird durch die Kraft F (N= kg m/s²) mit der Geschwindigkeit ν (m/s) bewegt. Die untere Schicht ist fixiert. Die Richtung dieser Kraft verläuft parallel zu den Grenzflächen der Schichten.

In diesem Fall beträgt die "Beanspruchung" Kraft F/Fläche A. Diese Beanspruchung wird als Scherspannung oder als Schubspannung τ bezeichnet. Die Scherspannung ist somit diejenige Kraft, mit der zwei angrenzende Flüssigkeitsschichten im Verhältnis zueinander bewegt werden [3-1].

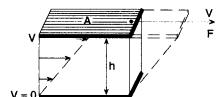


Abb. 3.0-1. Das Zwei-Platten-Modell