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1

WHAT IS GEOBIOLOGY?

Andrew H. Knoll 1 , Donald E. Canfield 2 , and

Kurt O. Konhauser 3

1 Department of Organismic and Evolutionary Biology,

Harvard University, Cambridge MA 02138, USA

2 Nordic Center for Earth Evolution, University of Southern

Denmark, Campusvej 55, DK-5230 Odense M, Denmark

3 Department of Earth and Atmospheric Sciences, University

of Alberta, Edmonton, AB T6G 2E3 Canada

1.1 Introduction
Geobiology is a scientific discipline in which the principles

and tools of biology are applied to studies of the Earth. In

concept, geobiology parallels geophysics and geochemistry,

two longer established disciplines within the Earth sciences.

Beginning in the 1940s, and accelerating through the

remainder of the twentieth century, scientists brought the

tools of physics and chemistry to bear on studies of the

Earth, transforming geology from a descriptive science to a

quantitative field grounded in analysis, experiment and

modeling. The geophysical and geochemical revolutions

both reflected and drove a strong disciplinary emphasis on

plate tectonics and planetary differentiation, not least

because, for the first time, they made the Earth’s interior

accessible to research.



While geochemistry and geophysics occupied centre stage

in the Earth sciences, another multidisciplinary

transformation was taking shape nearer to the field’s

periphery. Paleontology had long brought a measure of

biological thought to geology, in no small part because

fossils provide a basis for correlating sedimentary rocks. But

while it was obvious that life had evolved on the Earth, it

was less clear to most Earth scientists that life had actually

shaped, and been shaped, by Earth’s environmental history.

For example, in Tempo and Mode in Evolution,

paleontology’s key contribution to the Neodarwinian

synthesis in evolutionary biology, G.G. Simpson (1944)

devoted less than a page to questions of environmental

interactions. As early as 1926, however, the Russian

scientist Vladimir Vernadsky had published The Biosphere,

setting forth the argument that life has shaped our planet’s

surface environment throughout geologic time. Vernadsky

also championed the idea of a noosphere, a planet

transformed by activities of human beings. A few years

later, the Dutch microbiologist Lourens Baas-Becking (1934)

coined the term geobiology to describe the interactions

between organisms and environment at the chemical level.

Whereas most paleontologists stressed morphology and

systematics, Vernadsky and Baas-Becking focused on

metabolism – and in the long run that made all the

difference.

Geobiological thinking moved to centre stage in the 1970s

with articulation of the Gaia Hypothesis by James Lovelock

(1979). Much like Vernadsky before him, Lovelock argued

that life, air, water and rocks interact in complex ways

within an integrated Earth system. More controversially, he

posited that organisms regulate the Earth system for their

own benefit. While this latter view, sometimes called ‘strong

Gaia,’ has found little favor with biologists or Earth

scientists, most now accept the more general view that



Earth surface environments cannot be understood without

input from the life sciences. The seeds of these ideas may

have been planted earlier, but it was Lovelock who really

captured the attention of a broad scientific community.

As the twentieth century entered its final decade, interest

in geobiology grew, driven by an increasing emphasis within

the Earth sciences on understanding our planetary surface,

and supported by accelerating research on the microbial

control of elemental cycling, the ecological diversity of

microbial life under even the most harsh environmental

conditions (commonly referred to as extremeophiles), the

use of microbes to ameliorate pollution (bioremediation) or

recover valuable metals from mine waste (biorecovery),

Earth’s ancient microbial history, and efforts to understand

human influences on the Earth surface system. And, in the

twenty-first century, universities are increasingly supporting

research and education in geobiology, international journals

(e.g., Geobiology, Biogeosciences) have prospered,

textbooks have been published (e.g., Schlesinger, 1997;

Canfield et al., 2005; Konhauser, 2007; Ehrlich and

Newman, 2009), and conferences occur regularly. Without

question, geobiology has come of age.

1.2 Life interacting with

the Earth
Geobiology is predicated on the observation that biological

processes interact with physical processes at and near the

Earth’s surface. Take, for example, carbon, the defining

element of life. Within the biosphere – the sum of all

environments that support life on Earth – carbon exists in a

number of forms and in several key reservoirs. It is present

as CO2 in the atmosphere; as CO2,  and CO3
2−



dissolved in fresh and marine waters; as carbonate minerals

in soils, sediments and rocks; and as a huge variety of

organic molecules in organisms, in sediments and soils, and

dissolved in lakes and oceans. Physical processes move

carbon from one reservoir to another; for example,

volcanoes add CO2 to the atmosphere and chemical

weathering removes it. Biological processes do as well. In

two notable examples, photosynthesis reduces CO2 to

sugar, and respiration oxidizes organic molecules to CO2.

Since the industrial revolution, humans have oxidized

sedimentary organic matter (by burning fossil fuels) at rates

much higher than those characteristic of earlier epochs,

making us important participants in the Earth’s carbon

cycle. Given the centrality of the carbon cycle to both

ecology and climate, its biological and geological

components are explored in two early chapters of this book

(Chapters 2 and 3) and revisited in the context of human

activities in Chapter 22.

Other biologically important elements also cycle through

the biosphere. Sulfur, nitrogen, and iron (Chapters 4–6) all

link the physical and biological Earth, interacting with each

other and, importantly, with the carbon cycle. And oxygen,

key to environments that support large animals, including

humans, is regulated by a complex and incompletely

understood set of processes that, again, have both

biological and physical components (Chapter 7).

Unlike physical processes, life evolves, and so the array of

biological processes in play within the biosphere has

changed through time. The state of the environment

supporting biological communities has changed as well.

Indeed, given the close relationship between environment

and population distributions on the present day Earth, it is

reasonable to hypothesize that evolving life has significantly

influenced the chemical environment through time and,



conversely, that environmental change has influenced the

course of evolution.

While metabolism encompasses many of the biological

cogs in the biosphere, other processes also play important

roles. For example, many organisms precipitate minerals,

either indirectly by altering local chemical environments

(Chapter 8), or directly by building mineralized skeletons

(Chapter 10). Today, skeletons dominate the deposition of

carbonate and silica on the seafloor, although this was not

true before the evolution of shells, spicules and tests. More

subtly, organisms interact with clays and other minerals in a

series of surface interactions that are only now beginning to

be understood (Chapter 9). While much of geobiology

focuses on chemical processes, organisms influence the

Earth through physical activities as well – think of microbial

communities that can stabilize sand beds (Chapter 16) or

worms that irrigate sediments as they burrow (Chapter 11).

The example of burrowing reminds us that while

microorganisms garner much geobiological attention, plants

and animals also act as geobiological agents, and have

done so for more than 500 million years (Chapter 11).

In short, Earth surface processes once considered to be

largely physical in nature – for example weathering and

erosion – are now known to have key biological components

(Chapter 12). Life plays a critical role in the Earth system.

1.3 Pattern and process in

geobiology
Geobiologists, then, study how organisms influence the

physical Earth and vice versa, and how biological and

physical processes have interacted through our planet’s

long history. Much of this research focuses on illuminating

process: field and experimental studies of how organisms



participate in the Earth system, and what consequences

these activities have for local to global environmental state.

Geobiological research can be fundamental – that is, aimed

at achieving a basic understanding of the Earth system and

its evolution – or it can be applied. In the case of the latter,

microbial populations have been deployed and even

engineered to perform tasks that range from concentrating

gold dispersed in the talus piles of mines, and removing

arsenic from the water supply of Los Angeles, to respiring

vast amounts of the petroleum that gushed into the Gulf of

Mexico in 2010. Building on earlier chapters, Chapters 13–

16 focus on techniques that are prominent in modern

geobiological research.

Elucidating the changing role of life through Earth history,

sometimes called historical geobiology, begins with a basic

understanding of geobiological processes, but from there

takes on a distinctly geological slant. We would like to

interpret the geologic record in terms of active processes

and chemical states, but rocks preserve only pattern. Thus,

the geobiological interpretation of ancient sedimentary

rocks requires that we understand how biological processes

and aspects of the ambient environmental state are

reflected in the geologically preservable patterns they

create. For example, we can use the sulfur isotopic

composition of minerals in billion-year-old shales to

constrain the biological workings of the ancient sulfur cycle

and sulfate abundance in ancient seawater, but can do so

only in light of present day observations and experiments

that show how biological and physical processes result in

particular isotopic patterns.

Of course, there are at least two features that complicate

this linkage of geobiological process to geologic pattern. For

one, populations evolve, so biological processes observable

today may not been active during the deposition of ancient

sedimentary rocks. For this reason, historical geobiology has



among its goals the establishment of evolutionary pattern in

Earth history. The second complication is that many

environmental states on the ancient Earth have no modern

counterpart. Most obviously, modern surface environments

are permeated with oxygen in ways unlikely to have existed

during the first two billion years of our planet’s

development. Other differences exist, as well. Therefore, the

present-day Earth system is far removed from the earliest

systems where life evolved and then spread out across the

planet; it represents a long accumulation of biological,

physical and chemical changes through Earth history.

Following a chapter on the origin of life (Chapter 17),

perhaps the ultimate example of the intimate relationship

between biological and physical processes, we present three

chapters that outline Earth’s geobiological history (Chapters

19–21). Oxygen, biological evolution and chemical change

dominate these discussions, but there are other aspects to

the story. For example, Chapter 18 discusses how the

diversity of minerals found on Earth has expanded through

time as the biosphere has changed, providing a twenty-first

century account of an intriguing subject suggested long ago

by Vernadsky.

Finally, there is the question of us. Either directly or

indirectly, humans appropriate nearly half of the total

primary production on Earth’s land surface. We fix as much

nitrogen as bacteria do, and shuttle phosphate from rocks to

the oceans at unprecedented rates. As Vernadsky predicted

in his early discussion of the noosphere, humans have

become extraordinarily important agents of geobiological

change. In areas that range from climate change to

eutrophication, from ocean acidification to Earth’s declining

supplies of fossil fuels and phosphate fertilizer, the human

footprint on the biosphere is large and growing. Our societal

future depends in part on understanding the geobiological

influences of humans and in governing the technological



processes that have come to play such important roles in

the modern Earth system (Chapter 22).

1.4 New horizons in

geobiology
It is difficult, if not impossible, to predict the future, and

while it would be fun to attempt a forecast of the status of

geobiology in say 20 years, we will avoid this. Rather, we

highlight that under all circumstances, geobiology will

increasingly look to the heavens. Astrobiology can be

thought of as the application of geobiological principles to

the study of planets and moons beyond the Earth. At the

moment, claims about life in the universe largely constitute

under-constrained statistical extrapolations from our

terrestrial experience: some hold that life is abundant

throughout the universe, but intelligent life is rare (Ward

and Brownlee, 2000), while others suggest that life is rare,

but intelligence more or less inevitable wherever life occurs

(Conway Morris 2004). Clearly, the way forward lies in

exploration. Both remote sensing and lander operations

have made remarkable strides during the past decade (e.g.,

Squyres and Knoll, 2006), so we can be confident that on

planets and moons within our solar system, direct

observation of potentially geobiological patterns will sharply

constrain arguments about life in our planetary

neighborhood. And arguments about life in nearby solar

systems will be framed in terms of geobiological models of

planetary atmospheres glimpsed by Kepler and its

technological descendents (Kasting, 2010).

This book, then, is a status report. It contains detailed but

accessible summaries of key issues of geobiology, hopefully

capturing the state and breadth of this emerging discipline.

We have tried to be inclusive in our choice of topics covered



within this volume. We recognize, however, that the borders

defining geobiology are fluid, and we have likely missed or

underrepresented some relevant geobiological topics. We

apologize in advance for this. We also hope and trust that in

the future, geobiology will expand in both depth and

breadth well beyond what is offered here. Our crystal ball is

cloudy, but we can be certain that a similar book written

twenty years from now will differ fundamentally from this

one.
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2.1 Introduction
Carbon is the fourth most abundant element in our solar

system and its chemistry forms the basis of all life on Earth.

It is used both as the fundamental building block for all

structural biological molecules and as an energy carrier.

However, the vast majority of carbon on the surface of this

planet is covalently bound to oxygen or its hydrated

equivalents, forming mineral carbonates in the lithosphere,

soluble ions in the ocean, and gaseous carbon dioxide in the

atmosphere. These oxidized (inorganic) forms of carbon are

moved on time scales of centuries to millions of years

between the lithosphere, ocean and atmosphere via

tectonically driven acid-based reactions. Because these

reservoirs are so vast (Table 2.1) they dominate the carbon

cycle on geological time scales, but because the reactions

are so slow, they are also difficult to measure directly within

a human lifetime.


