


CONTENTS

INTRODUCTION

WHO THIS BOOK IS FOR

WHAT THIS BOOK COVERS

HOW THIS BOOK IS STRUCTURED

WHAT YOU NEED TO USE THIS BOOK

CONVENTIONS

SOURCE CODE

ERRATA

P2P.WROX.COM

PART I OPENSTACK OVERVIEW

1 INTRODUCING OPENSTACK

WHAT IS CLOUD COMPUTING?

WHY SHOULD I CARE?

UNDERSTANDING THE ARCHITECTURE

SUMMARY

2 UNDERSTANDING THE OPENSTACK

ECOSYSTEM: CORE PROJECTS

IDENTITY

COMPUTE

STORAGE

IMAGING

DASHBOARD

NETWORKING

BRINGING IT ALL TOGETHER

SUMMARY



3 UNDERSTANDING THE OPENSTACK

ECOSYSTEM: ADDITIONAL PROJECTS

OPENSTACK HEAT

OPENSTACK DATABASE AS A SERVICE: TROVE

DESIGNATE: DNS AS A SERVICE

MAGNUM

MURANO: APPLICATION AS A SERVICE

CEILOMETER: TELEMETRY AS A SERVICE

SUMMARY

PART II DEVELOPING AND DEPLOYING

APPLICATIONS WITH OPENSTACK

4 APPLICATION DEVELOPMENT

CONVERTING A LEGACY APP TO AN

OPENSTACK APP

BUILDING APPS FROM SCRATCH

OPENSTACK APP DESCRIPTION AND

DEPLOYMENT STRATEGIES

SUMMARY

5 IMPROVING ON THE APPLICATION

FAILURE SCENARIOS

HOSTNAME AND IP ADDRESSING

SCALING

IMPROVING OUR APPLICATION

SUMMARY

6 DEPLOYING THE APPLICATION

BARE METAL, VIRTUAL MACHINES, AND

CONTAINERS

ORCHESTRATION AND CONFIGURATION

MANAGEMENT

MONITORING AND METERING



ELASTICITY

UPDATING AND PATCHING

SUMMARY

BOOK WRAP UP

TITLE PAGE

COPYRIGHT

ABOUT THE AUTHOR

ABOUT THE TECHNICAL EDITORS

CREDITS

ACKNOWLEDGMENTS

EULA

List of Illustrations

Chapter 1

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Chapter 2

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5



Figure 2.6

Figure 2.7

Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Chapter 3

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Chapter 4

Figure 4.1

Figure 4.2



Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Chapter 5

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Chapter 6

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5



INTRODUCTION

OpenStack is a set of software packages that manage

virtualized resources, including computing, networking,

and storage. It enables you to create and destroy virtual

machines, connect them together with private networks,

provide network-based storage, and make them available to

the rest of your network and the world. OpenStack

provides consistent, uniform API services for all of this,

hiding hypervisor and vendor specific details from the

applications that are using the APIs. It also provides a user

interface, built on top of the same APIs, that allows users to

see and manage their virtual resources.



WHO THIS BOOK IS FOR

This book is for application developers that are interested

in learning more about OpenStack and how it will

transform the application design and development process.

It is for someone who is new to the cloud environment, who

wants a broad understanding of that environment, as well

as a deep enough knowledge to make practical use of

OpenStack.



WHAT THIS BOOK COVERS

This book will provide a broad understanding of cloud

concepts and how they fit into the life of an application

developer. It will drill in deeply to the OpenStack services

that are most important to an application developer, and

show you how these services will change not only how you

deploy applications, but also how you design them. It will

provide detailed information on each service, and provide

examples of how each service may be used by an

application developer.



HOW THIS BOOK IS STRUCTURED

This book was written in two parts. Part 1 provides an

overview of OpenStack. The purpose of this part is to lay

the groundwork, covering all of the OpenStack

technologies and what is most important.

Part 2 takes the reader through developing and deploying

applications with OpenStack. In this part you will build an

example on top of OpenStack that drills down much deeper

on the technologies, provides tips, and helps you learn

about OpenStack through the lens of these same

technologies.

Here is a list of the chapters:

Part I: OpenStack Overview

Chapter 1: Introduction to OpenStack

Chapter 2: Understanding the OpenStack Ecosystem:

Core Projects

Chapter 3: Understanding the OpenStack Ecosystem:

Additional Projects

Part II: Developing and Deploying Applications with

OpenStack

Chapter 4: Application Development

Chapter 5: Improving on the Application

Chapter 6: Deploying the Application

WHAT YOU NEED TO USE THIS BOOK

You should understand the basics of application

development - how applications are composed of multiple

servers like web servers, application servers, and database

servers. You do not need any cloud-specific knowledge,



though you should be aware of what virtualization and

virtual machines are, and have a basic understanding of

networks.

CONVENTIONS

To help you get the most from the text and keep track of

what’s happening, we’ve used a number of conventions

throughout the book.

Examples that you can download and try out for yourself

generally appear in a box like this:

EXAMPLE TITLE

This section gives a brief overview of the example.

Source

This section includes the source code.

Source code 

Source code 

Source code

Output

This section lists the output:

Example output 

Example output 

Example output

NOTE Notes indicates notes, tips, hints, tricks, or and

asides to the current discussion.



As for styles in the text:

We highlight new terms and important words when we

introduce them.

We show code within the text like so:

persistence.properties.

SOURCE CODE

As you work through the examples in this book, you may

choose either to type in all the code manually, or to use the

source code files that accompany the book. All the source

code used in this book is available for download at

www.wrox.com. Specifically for this book, the code

download is on the Download Code tab at:

www.wrox.com/go/openstackcloudappdev

and at:

https://github.com/johnbelamaric/openstack-appdev-book

You can also search for the book at www.wrox.com by ISBN

(the ISBN for this book is 978-1-119-19431-6) to find the

code. And a complete list of code downloads for all current

Wrox books is available at

www.wrox.com/dynamic/books/download.aspx.

Note Because many books have similar titles, you may

find it easiest to search by ISBN; this book’s ISBN is

978-1-119-19431-6.

Once you download the code, just decompress it with your

favorite compression tool. Alternately, you can go to the

main Wrox code download page at

www.wrox.com/dynamic/books/download.aspx to see the

code available for this book and all other Wrox books.

http://www.wrox.com/
http://www.wrox.com/go/openstackcloudappdev
https://github.com/johnbelamaric/openstack-appdev-book
http://www.wrox.com/
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download.aspx


ERRATA

We make every effort to ensure that there are no errors in

the text or in the code. However, no one is perfect, and

mistakes do occur. If you find an error in one of our books,

like a spelling mistake or faulty piece of code, we would be

very grateful for your feedback. By sending in errata, you

may save another reader hours of frustration, and at the

same time, you will be helping us provide even higher

quality information.

To find the errata page for this book, go to

www.wrox.com/go/openstackcloudappdev

And click the Errata link. On this page you can view all

errata that has been submitted for this book and posted by

Wrox editors.

If you don’t spot “your” error on the Book Errata page, go

to www.wrox.com/contact/techsupport.shtml and complete

the form there to send us the error you have found. We’ll

check the information and, if appropriate, post a message

to the book’s errata page and fix the problem in subsequent

editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at

http://p2p.wrox.com. The forums are a Web-based system

for you to post messages relating to Wrox books and

related technologies and interact with other readers and

technology users. The forums offer a subscription feature

to e-mail you topics of interest of your choosing when new

posts are made to the forums. Wrox authors, editors, other

industry experts, and your fellow readers are present on

these forums.

http://www.wrox.com/go/openstackcloudappdev
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com/


At http://p2p.wrox.com, you will find a number of different

forums that will help you, not only as you read this book,

but also as you develop your own applications. To join the

forums, just follow these steps:

1. Go to http://p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any

optional information you wish to provide, and click

Submit.

4. You will receive an e-mail with information describing

how to verify your account and complete the joining

process.

NOTE You can read messages in the forums without

joining P2P, but in order to post your own messages, you

must join.

Once you join, you can post new messages and respond to

messages other users post. You can read messages at any

time on the Web. If you would like to have new messages

from a particular forum e-mailed to you, click the Subscribe

to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be

sure to read the P2P FAQs for answers to questions about

how the forum software works, as well as many common

questions specific to P2P and Wrox books. To read the

FAQs, click the FAQ link on any P2P page.

http://p2p.wrox.com/
http://p2p.wrox.com/


PART I 

OpenStack Overview

CHAPTER 1: INTRODUCING OPENSTACK

CHAPTER 2: UNDERSTANDING THE OPENSTACK

ECOSYSTEM: CORE PROJECTS

CHAPTER 3: UNDERSTANDING THE OPENSTACK

ECOSYSTEM: ADDITIONAL PROJECTS



1 

Introducing OpenStack

WHAT’S IN THIS CHAPTER?                   

Models of cloud computing

Relevance of cloud computing to application developers

Why OpenStack is a good cloud platform choice

How OpenStack is put together

WHAT IS CLOUD COMPUTING?

There is so much hype around cloud computing that it is

often difficult to get a clear sense of what anyone means by

those words. Is it just virtualization? Is it Software-as-a-

Service (SaaS), such as Microsoft’s Office 365 and

Salesforce.com? Or is it the ability to get a virtual machine

instantly from Amazon Web Services (AWS) or Azure? And

what about online storage such as Dropbox?

Types of Cloud Computing

The reality is that cloud computing refers to all of these

things just described and more. The National Institute of

Standards and Technology (NIST) has come up with an

“official” definition based upon five key components: on-

demand self-service, broad network access, pooled

resources, elasticity, and metered service. In general, these

characteristics may be provided in several different models.

These models help sort out the confusion and hype. In fact,

these can be thought of as layers in a stack, with each layer

being built on top of the previous one (see Figure 1.1).



Figure 1.1  

In Figure 1.1, “Manually Provisioned Infrastructure”

represents the traditional method of building your

information technology infrastructure—this is not cloud

computing. In this environment, physical machines are

racked, connected, and configured on a one-by-one basis.

This provides complete control, but requires substantial

time and effort to build out, or to change when necessary.

Of course, all clouds need to run on physical gear at some

point, so this provides the basic foundation for everything

else. One of the keys to making cloud computing

successful, however, is to move the complexity out of this

layer and up higher in the stack.

Infrastructure-as-a-Service (IaaS) is the most basic layer in

the cloud computing stack. This is OpenStack’s primary

focus, as well as the primary focus for AWS. It enables

automated or self-service provisioning of compute,

networking, and storage. Typically, these resources are

provided as Virtual Machines (VMs), but you could also use

it to spin up bare metal servers (i.e. physical hosts). This is

known as “Metal-as-a-Service,” and OpenStack provides a

project for managing this service as well. Alternatively, you



can also spin up containers rather than VMs or bare metal

servers. The essential point is that it enables the

provisioning of compute instances, with (optionally)

attached networking and storage.

Platform-as-a-Service (PaaS) builds on top of IaaS to enable

the provisioning of applications, rather than simply the

infrastructure that might be used to run the application.

So, a PaaS provides core common services needed by

applications, along with the machinery to configure and

deploy applications to use those services. A PaaS typically

will provide a complete application stack (web server,

application server, database server, etc.) into which you can

easily deploy your application. Heroku

(https://www.heroku.com) is an example of a popular PaaS for

applications built with a variety of standard frameworks,

such as Ruby-on-Rails. With Heroku you can deploy your

application to the Internet with a simple git push. As the

application author and deployer, you don’t need to worry

about configuring and deploying the different tiers, or even

worry about how to scale them. If you follow the Heroku

conventions, everything is handled by the PaaS.

Software-as-a-Service (SaaS) is the layer farthest from the

underlying physical infrastructure. It may be built on IaaS

or a PaaS, but need not be—the point is the user never

really knows. This is the simplest form of cloud computing

from the point of view of the user because they have no

insight into the actual mechanics or systems behind the

service. It’s just a service they use. Often this is provided in

the form of a website, such as Salesforce.com. But you can

also get lower-level services such as Database-as-a-Service,

where you simply request via an API (or website) for a

database with certain parameters, and are given an IP and

port to connect to. As a user of the service, you don’t need

to worry about how to scale that service—though you will

need to pay more as your use of the service increases.

https://www.heroku.com/


Put succinctly, IaaS provides the tools to “build” your

systems from the ground up. PaaS allows you to “deploy”

your applications, without needing to worry about the

underlying infrastructure. SaaS allows you to “buy” your

applications—you do not even need to deploy or manage

them at all. This is a steady progression of decreasing

control and complexity, while increasing direct business

value.

While these are general models for cloud computing, in

reality the distinctions between them are not always crystal

clear. The relationship of SaaS to PaaS in particular can be

complicated. A specific, complex Software-as-a-Service may

use PaaS or even other more granular Software-as-a-

Service. Even a PaaS may assemble lower-level pieces as a

collection of software services. For example, most services

will require an identity management (authentication,

authorization, and accounting) service. This identity service

is one of the key features a PaaS provides to applications.

However, there is no reason that service cannot be, in turn,

provided by some external SaaS! In this case, a key

function of the PaaS is provided via a low-level SaaS.

Cloud Infrastructure Deployment Models

In addition to the functionality provided by a cloud, there

are several different deployment models for clouds. Public

clouds are the ones familiar to most developers. These

cloud services are made available to the general public for

a fee. The fee is generally on a usage basis, enabling

organizations to utilize their operating budgets rather than

their capital budgets. The customers have no need to

maintain or operate the hardware or cloud infrastructure,

leaving that responsibility completely to the cloud operator.

Amazon Web Services (AWS) is currently the largest public

cloud and dominates the industry. Microsoft and VMware



also operate public clouds, and a number of service

providers do as well. Rackspace, in particular, provides an

OpenStack-based public cloud, and is one of the primary

contributors to the OpenStack project.

Private clouds, on the other hand, are internal to an

organization. They represent the evolution of the

traditional corporate data center. Only internal customers

within the enterprise, and perhaps close partners, use

private clouds. The corporate IT department or a

contractor will purchase, setup, and maintain the hardware

and software for the cloud. The cloud infrastructure may

use chargeback to distribute costs among the business

units, but the cloud itself is still dedicated to the single

enterprise.

Organizations may operate private clouds for a number of

reasons. The cost of a private cloud, if well run, may be less

than utilizing the public clouds. Additionally, many

industries have security or regulatory reasons that disallow

the use of a public cloud for many workloads. These

organizations are required to run those workloads in a

private cloud. See Figure 1.2 for a look at the structure of

public, private, and hybrid clouds.



Figure 1.2

Hybrid clouds combine both private and public clouds. The

goal with hybrid clouds is to keep general operating costs

low by using the private cloud for most of the workloads,

but to enable spillover into the public cloud when

necessary. The spillover could happen due to capacity

reasons—perhaps during the holiday season your private

cloud doesn’t have enough capacity—or for disaster



recovery. This model avoids the capacity constraints of a

private cloud while still keeping costs under control.

WHY SHOULD I CARE?

As an application developer or architect, you may wonder—

why does all of this matter to me? All of this discussion

covered so far focuses on the reason a business may want

to move to the cloud. But why should that affect the

application developer? The answer lies in a couple of

different areas: the effect on the development process, and

the effect on your application architecture.

Cloud services enable much more efficient processes for

managing development, test, and production environments.

These updated processes and methods represent the

“DevOps” mentality—applying standard software

development practices, such as source code version

control, to the operational aspects of the application. This

means capturing all of the configuration and deployment

information in scripts and templates, and controlling their

changes just as you would application code.

Scripts and templates can be built that produce a complete

application environment. These can be used to

automatically deploy not only the application, but also

infrastructure required for the application, including virtual

machines, networking, firewalls, load balancers, domain

name services—you name it, and someone is working on

making it available “as-a-Service.” By automating the

creation and destruction of these environments, you can

ensure consistency between development, test, and

production environments. For complex applications with

many different services running on different machines, this

can be a dramatic time saver.



OpenStack, and “as-a-Service” thinking in particular, will

also end up changing the software and deployment

architectures of your application. By relegating the

common and routine functions to the cloud infrastructure,

you free your time and thought to focus on the most

important thing—your application’s functionality. For

example, a traditional application that allows large file

uploads will need to designate temporary and permanent

storage locations for those files, and manage the storage

resources to ensure that the disk doesn’t fill. The system

administrator or deployer will need to devise a strategy to

backup that data or replicate it to other data centers. But

with the right cloud platform, you can simply delegate that

function to the infrastructure, and get all of the benefits

without devoting special effort.

Designing your application to work with the cloud services

also dramatically simplifies scaling the application. The

scalability of the individual services becomes the

responsibility of the cloud operator, not the application

developer or administrator. As long as the application

makes effective use of those services, it will scale as

needed with little to no work from the developers

themselves.

Being able to utilize “as-a-Service” functions is one way

your design will shift. Another is to plan for horizontal

scaling rather than vertical scaling. That is, scaling by

adding more machines (horizontally) rather than creating

bigger machines (vertically). With most applications today,

it is easiest to scale by getting a bigger, faster machine.

This locks you into planning for peak capacity of each

application individually. For each application you need to

provision the largest machine you may need at peak load.

But with applications built for the cloud, you instead scale

by adding more machines. These machines can be smaller,

and with cloud automation, can be added, removed, or



resized as needed. This ability to scale up and down as

needed is called elastic scaling, and is one of the key

features of cloud computing.

A frequently used analogy is that traditional servers are

like “pets,” while cloud-based servers are “cattle.” This

describes a necessary shift in mentality for a traditional

application architect. The idea is that a pet is unique and

special, with its own unique name. A lot of resources are

spent to raise and nurture one, and if it is sick, it will be

nursed back to health. Cattle, on the other hand, are not

treated specially or carefully raised. They are treated en

masse—they are given numbers, not names—and a sick one

is culled to prevent any spread of disease through the herd.

The implication here is that cloud-based servers should be

disposable and easily re-deployed, and not require careful

hand configuration. That way, if there is a problem with

one, you do not spend time trying to figure it out and fix it

—you simply replace it with a new one. This is the logical

extension of the ability to scale elastically. Why take the

time to figure out what’s wrong with a machine when it’s

behaving badly? Just pull it out of the application and

replace it with a new one while you debug the problem (not

to fix that machine, but to prevent the issue in the future).

What Is OpenStack?

OpenStack bills itself as a “cloud operating system.”

Fundamentally, it solves the IaaS problem. It provides the

ability to abstract the physical compute, storage, and

networking resources into pools. Those resources can then

be divvied up among users in a secure way. Users only need

to pay for what they are using, rather than having to

provision their applications for peak load.

OpenStack is a collection of open source software projects,

backed by a non-profit organization, the OpenStack



Foundation. These projects work together to provide a

consistent API layer, while enabling the actual services to

be provided by a variety of different vendor or open source

implementations. At the core, these services include the

functionality you need to run a cloud, that is, the ability to

spin up virtual machines, the ability to allocate, manage,

and share storage among those machines, and the ability

enable these machines to communicate with one another

securely over the network.



KEEPING TRACK OF RELEASES

OpenStack has official releases every six months. In

order to make it easier to keep track of all these

releases, they are given names in alphabetical order.

Below is the name of each release, and its release date,

through the Liberty release.

Austin: October 2010

Bexar: February 2011

Cactus: April 2011

Diablo: September 2011

Essex: April 2012

Folsom: September 2012

Grizzly: April 2013

Havana: October 2013

Icehouse: April 2014

Juno: October 2014

Kilo: April 2015

Liberty: October 2015

In addition to the release name, each release is

identified by the year and release during that year—

<year>.<release>.<patch>. For example, Kilo is also

known as 2015.1, as the first release in 2015. Patch

releases for Kilo are 2015.1.1, 2015.1.2, etc. The second

major release of 2015 is Liberty, which is also known as

2015.2.



All of these services are accessible via RESTful APIs, as

well as command-line interfaces and a web-based user

interface called Horizon. Horizon is convenient for setting

up things on an ad-hoc basis, but doesn’t offer the full

capabilities of the APIs—and of course the APIs and CLI

tools can be easily scripted (see Figure 1.3).

Figure 1.3

The next table shows the major services provided by

OpenStack, along with their names. OpenStack community

members will usually refer to each service by its name, so

it’s helpful to see them all in one place and get a handle on

what each one does. In fact, there are many more services,

but these are the most common ones you will find.



Name Service Description

Horizon Dashboard A graphical user interface for

managing your cloud

Keystone Identity Authentication, authorization,

and OpenStack service

information

Nova Compute Spin up, manage, and terminate

virtual machines

Cinder Block

Storage

Disk volumes (that outlive an

instance) and snapshots of

instances

Swift Object

Storage

Shared, replicated, redundant

storage for images, files, and

other media accessible via

Hypertext Transfer Protocol

(HTTP)

Neutron Network Provide secure tenant

networking

Glance Image Provide storage and access to

VM images and snapshots

Heat Orchestration Spin up groups of machines,

networks, and other resources

via templates

Designate DNS Create domains and records in

the DNS infrastructure

Ceilometer Telemetry Monitor resources usage across

the cloud

Trove Database Provide access to private tenant

databases

Ironic Bare Metal Spin up instances on physical

hardware


