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Preface

Stochastic structural dynamics is concerned with the studies of dynamics of

structures and structural systems that are subjected to complex excitations treated

as random processes. In engineering practice, many structures and structural

systems cannot be dealt with analytically and therefore the versatile numerical

analysis techniques, the finite element methods (FEM) are employed.

The parallel developments of the FEM in the 1950's and the engineering

applications of stochastic processes in the 1940's provided a combined numerical

analysis tool for the studies of dynamics of structures and structural systems

under random loadings. In the open literature, there are books on statistical

dynamics of structures and books on structural dynamics with chapter(s) dealing

with random response analysis. However, a systematic treatment of stochastic

structural dynamics applying the FEM seems to be lacking. The present book is

believed to be the first relatively in-depth and systematic treatment on the subject.

It is aimed at advanced and specialist level. It is suitable for classes taken by

master degree level post-graduate students and specialists.

The present book has seven chapters and ten appendices. Chapter 1

introduces the displacement based FEM, element equations of motion for

temporally and spatially stochastic systems, hybrid stress based element equations

of motion, incremental variational principle and mixed formulation based

nonlinear element matrices, constitutive relations and updating of configurations

and stresses.

Chapter 2 is concerned with the spectral analysis and response statistics of

linear structural systems. It includes evolutionary spectral analysis, evolutionary

spectra of engineering structures, modal analysis and time-dependent response

statistics, and response statistics of engineering structures.

Direct integration methods for linear structural systems are presented in

Chapter 3. The stochastic central difference method with time co-ordinate

transformation and its application, extended stochastic central difference method



xiv

for narrow-band excitations, stochastic Newmark family of algorithms, and their

applications to plate structures are presented in this chapter.

Modal analysis and response statistics of quasi-linear structural systems are

covered in Chapter 4. Modal analysis of temporally stochastic quasi-linear

systems and the bi-modal approach are included. Response analysis of plate

structures by the Melosh-Zienkiewicz-Cheung bending plate element, and the

high precision triangular plate element are presented.

Chapter 5 is concerned with the application of the direct integration methods

for response statistics of quasi-linear structural systems. Recursive covariance

matrices of displacements of cantilever pipes containing turbulent fluids and

subjected to modulated white noise as well as narrow-band random excitations

are derived in this chapter.

Direct integration methods for temporally stochastic nonlinear structural

systems subjected to stationary and nonstationary random excitations are

presented in Chapter 6. A brief introduction of the statistical linearization

techniques is included. Symplectic members of the deterministic and stochastic

versions of the Newmark family of algorithms are identified. The stochastic

central difference method with time co-ordinate transformation and adaptive time

schemes are introduced and applied to the computation of large responses of plate

and shell structures. 

Chapter 7 is concerned with presentation of the direct integration methods

for temporally and spatially stochastic nonlinear structural systems. The

stochastic FEM or probabilistic FEM is introduced. The stochastic central

difference method for temporally and spatially stochastic structural systems

subjected to stationary and nonstationary random excitations are developed.

Application of the method to spatially homogeneous and non-homogeneous shell

structures are made.

Finally, a word of symbols is in order. Mathematically, random variables and

random processes are different. But without ambiguity the same symbols for

random variables and processes are applied in the present book, unless it is stated

otherwise.
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1
Introduction

The parallel developments of the finite element methods (FEM) in the

1950's [1, 2] and the engineering applications of the stochastic processes in the

1940's [3, 4] provided a combined numerical analysis tool for the studies of

dynamics of structures and structural systems under random loadings. There are

books on statistical dynamics of structures [5, 6] and books on structural

dynamics with chapter(s) dealing with random response analysis [7, 8]. In

addition, there are various monographs and lecture notes on the subject.

However, a systematic treatment of the stochastic structural dynamics applying

the FEM seems to be lacking. The present book is believed to be the first

relatively in-depth and systematic treatment on the subject that applies the FEM

to the field of stochastic structural dynamics.

Before the introduction to the concept and theory of stochastic quantities

and their applications with the FEM in subsequent chapters, the two FEM

employed in the investigations presented in the present book are outlined in this

chapter. Specifically, Section 1.1 is concerned with the derivation of the

temporally stochastic element equation of motion applying the displacement

formulation.  The consistent element stiffness and mass matrices of two beam

elements, each having two nodes are derived. One beam element is uniform  and

the other is tapered. The corresponding temporally and spatially stochastic

element equation of motion is derived in Section 1.2. The element equations of

motion based on the mixed formulation is introduced in Section 1.3. Consistent

element matrices for a beam of uniform cross-sectional area are obtained. This

beam element has two nodes, each of which has two dof. This beam element is

applied to show that stiffness matrices derived from the displacement and mixed

formulations are identical. The incremental variational principle and element

matrices based on the mixed formulation for nonlinear structures are presented
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(1.1)

in Section 1.4. Section 1.5 deals with constitutive relations and updating of

configurations and stresses. Closing remarks for this chapter is provided in

Section 1.6.

1.1 Displacement Formulation Based Finite Element Method

Without loss of generality and for an illustration, the displacement

formulation based element equations of motion for temporally stochastic linear

systems are presented in this section. These equations are similar in form to

those under deterministic excitations. It is included in Sub-section 1.1.1 while

application of the technique for the derivation of element matrices of a two-node

beam element of uniform cross-section is given in Sub-section 1.1.2. The tapered

beam element is presented in Sub-section 1.1.3.

1.1.1 Derivation of element equations of motion

The Rayleigh-Ritz (RR) method approximates the displacement by a linear set

of admissible functions that satisfy the geometric boundary conditions and are

p times differentiable over the domain, where p is the number of boundary

conditions that the displacement must satisfy at every point of the boundary of

the domain. The admissible functions required by the RR method are

constructed employing the finite element displacement method with the

following steps: 

(a) idealization of the structure by choosing a set of imaginary reference

or node points such that on joining these node points by  means  of imaginary

lines a series of finite elements is formed;

(b)  assigning a given number of dof, such as displacement, slope,

curvature, and so on, to every node point; and 

(c) constructing a set of functions such that every one corresponding to a

unit value of one dof, with the others being set to zero. 

Having constructed  the admissible functions the element matrices are then

determined. For simplicity, the damping matrix of the element will be

disregarded. Thus, in the following the definition of consistent element mass

and stiffness matrices in terms of deformation patterns usually referred to as

shape functions is given.

Assuming the displacement  u(x,t)  or simply  u  at the point  x (for

example, in the three-dimensional case it represents the local co-ordinates  r, s

and t  at the point) within the  e'th  element is expressed in matrix form as
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(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

where  N(x)  or simply  N  is a matrix of element shape functions, and  q(t)  or

q  a matrix of nodal dof with reference to the local axes, also known as vector

of nodal displacements or generalized displacements.

The matrix of strain components  �  thus takes the form

where  B  is a differential of the shape function matrix N.

The matrix of stress components  �  is given by

where  D  is the elastic matrix.

Substituting Eq. (1.2) into (1.3) gives

In order to derive the element equations of motion for a conservative system,

the Hamilton's principle can be applied

where  T  and  (U + W)  are the kinetic and potential energies, respectively.

It may be appropriate to note that for a non-conservative system or system

with non-holonomic boundary conditions the modified Hamilton’s principle [9]

or the virtual power principle [10, 11] may be applied. Non-holonomic systems

are those with constraint equations containing velocities which cannot be

integrated to relations in co-ordinates or displacements only. An example of a

non-holonomic system is the bicycle moving down an inclined plane in which

enforcing no slipping at the contact point gives rise to non-holonomic constraint

equations. Another example is a disk rolling on a horizontal plane.  In this case

enforcing no slipping at the contact point also give rise to non-holonomic

constraint equations.

The kinetic energy density of the element is defined as

where  �  is the density of the material,  dV  is the incremental volume, and the

over-dot denotes the differentiation with respect to time t.

By making use of Eq. (1.6), the kinetic energy of the element becomes
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(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

The strain energy density for a linear elastic body is defined as 

The potential energy for a linearly elastic body can be expressed as the sum of

internal work, the strain energy due to internal stress, and work done by the

body forces and surface tractions. Thus,

where  S  now is the surface of the body on which surface tractions  Y�  are

prescribed. The last two integrals on the right-hand side (rhs) of  Eq. (1.9)

represent the work done by the external random forces, the body forces  Q�   and

surface tractions  Y�.  In the last equation the over-bar of a letter designates the

quantity is specified.

Applying Eq. (1.8), the total potential of the element from Eq. (1.9)

becomes

Substituting Eqs. (1.7) and (1.10) into (1.5), the functional of a linearly elastic

element,

On substituting Eqs. (1.1) through (1.3) into the last equation and using the

matrix relation (XY)  = Y X , the Lagrangian becomes
T T T
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(1.13)

(1.14)

(1.15)

Applying Hamilton's principle, it leads to

Integrating the first term inside the brackets on the left-hand side (lhs) of Eq.

(1.13) by parts with respect to time  t  results

According to Hamilton's principle, the tentative displacement configuration

1 2must satisfy given conditions at times  t   and  t , that is, 

Hence, the first term on the rhs of Eq. (1.14) vanishes.

Substituting Eq. (1.14) into (1.13) and rearranging, it becomes

As the variations of the nodal displacements �q are arbitrary, the expressions

inside the parentheses must be equal to zero in order that Eq. (1.15) is satisfied.

Therefore, the equation of motion for the e'th element in matrix form is
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(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

where the element mass and stiffness matrices are defined, respectively as

and the element random load matrix

Applying the generalized co-ordinate form of displacement model the

displacement can be expressed as

where � is a matrix of function of variables x and � is the vector of generalized

co-ordinates, also known as generalized displacement amplitudes. The

coefficient matrix may be determined by introducing the nodal co-ordinates

successively into Eq. (1.17) such that the vector  u  and matrix � become the

nodal displacement vector q and coefficient matrix C, respectively. That is, 

Hence, the generalized displacement amplitude vector 

where C  is the inverse of the coefficient matrix also known as the
-1

transformation matrix and is independent of the variables x.

Substituting Eq. (1.19) into (1.17) one has 

Comparing Eqs. (1.1) and (1.20), one has the shape function matrix

On application of Eqs. (1.16) and (1.21), the element mass, stiffness and load

matrices can be evaluated. 

To provide a more concrete illustration of the shape function matrix and

a better understanding of the steps in the derivation of element mass and

stiffness matrices, a uniform beam element is considered in the next sub-section.
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(1.22c)

(1.22a, b)

1.1.2 Mass and stiffness matrices of uniform beam element

The uniform beam element considered in this sub-section has two nodes each

of which has two dof. The latter include nodal transverse displacement, and

rotation or angular displacement about an axis perpendicular to the plane

containing the beam and the transverse displacement. For simplicity, the theory

of Euler beam is assumed. The cross-sectional area A and second moment of

area I are constant. Let � and E be the density and modulus of elasticity of the

beam. The bending beam element is shown in Figure 1.1 where the edge

displacements and angular displacements are included. The convention adopted

in the figure is sagging being positive.

Figure 1.1    Uniform beam element with edge displacements.

Applying Eq. (1.17) so that the transverse displacement at a point inside the

beam element can be written as

i - 1 i - 1Consider the nodal values. At x = 0, w = w  and � = �w/�x = �   so that

upon application of Eq. (1.22a) one has
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(1.23a, b)

(1.23c, d)

(1.24)

(1.25)

(1.26)

i iSimilarly, at x = �, w = w  and � = �  so that upon application of Eq. (1.22a) it

leads to

Re-writing Eq. (1.23) in matrix form as in Eq. (1.18), one has

Thus, the inverse of matrix C becomes

Making use of Eqs. (1.22b) and (1.25), the shape function matrix by Eq. (1.21)

is obtained as 

in which 
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(1.27)

(1.28)

(1.29)

Substituting Eq. (1.26) into the equation for element mass matrix defined in Eq.

(1.16), one can show that 

Similarly, the element stiffness matrix is obtained as 

in which 

1.1.3 Mass and stiffness matrices of higher order taper beam element

The tapered beam element considered in this sub-section has two nodes each of

which has four dof. The latter include nodal displacement, rotation or angular

displacement, curvature, and shear dof. This is the higher order tapered beam

element first developed and presented by the author [12].

The tapered beam element of length �, shown in Figure 1.2, is assumed to

be of homogeneous and isotropic material. Its cross-sectional area and second

moment of area are, respectively given by 

1 2where c  and c  depend on the shape of the beam cross-section. For elliptic-type

closed curve cross-section, they are given by [13]
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(1.30a, b)

 (1.31a, b)

Figure 1.2    Linearly tapered beam element: (a) beam element with edge
forces; (b) tapered beam element; (c) cross-section at section S-S in (b).

1 2in which 	(.) is the gamma function, and 
  and 
  are real positive numbers

1 2which need not be integers. When 
  = 
  = 1 the cross-section is a triangle and

2 1 2in this case the factor 1/12 in c  should be replaced by 1/9. When 
  = 
  = 2

1 2the cross-section is an ellipse. As 
  and 
  each approaches infinity it is a

rectangle. 

The cross-sectional dimensions, b(x) and d(x), vary linearly along the

length of the element so that

i i 1 i i 1- - where  � = b /b  and � = d /d  are the taper ratios for the beam element.
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(1.32a)

(1.32b)

(1.33)

Substituting Eq. (1.31) into (1.29) leads to 

i 1 i 1- -A and I are respectively the cross-sectional area and second moment of

area associated with Node i - 1.

It should be noted that in applying Eq. (1.32) to hollow beams, of square

or circular cross-section, for instance, either the ratio b/d must be small or the

ratio b/d must be constant because in Eq. (1.29) for a square hollow cross-

1 2section c  = 4 and c  = (2/3)[1 + (b/d) ], and for a circular hollow cross-section
2

1 2c  =  and c  = (/8)[1 + (b/d) ]. 
2

With the cross-sectional area and second moment of area defined the

element mass and stiffness matrices can be derived accordingly. To this end let

the transverse displacement of the beam element be 

where the row and column vectors are respectively

Equation (1.33) can be identified as Eq. (1.17) in which the displacement

function u is replaced by w. Thus, the nodal displacement vector in Eq. (1.18)

for the present tapered beam element becomes 
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(1.34)

(1.35)

The corresponding coefficient matrix in Eq. (1.18) is obtained as [12]

The inverse of matrix C can be found to be [12]

With this inverse matrix and operating on Eq. (1.21) one can obtain the shape

function matrix for the present higher order tapered beam element as

where the shape functions are defined by


