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Abstract
This book is written by Russian and international authors in
the field of photosynthesis research. It is dedicated to
investigations of the problems of photosynthesis at different
levels of organization: molecular, cellular and organismal.
The book describes the multiple roles of various reactive
oxygen species in photosynthetic organisms. Further, we
have presented here a discussion of the structure and
function of water oxidation complex (WOC) of PS II, and a
possible role of Mn-bicarbonate complex in WOC. Other
important topics in this book are: the structural and
functional organization of the pigment-protein complexes,
the structure and regulation of chloroplast ATP-synthase, the
participation of molecular hydrogen in microalgae
metabolism, the current concepts on the evolution and the
development of photosynthetic carbon metabolism, and the
adaptive changes of photosynthesis at increased CO2
concentrations, as well as the photosynthetic machinery
response to low temperature stress. The material available
in this book is a unique report on the state of this trend in
modern science. This book will be helpful not only for
biophysicists, biochemists and experts in plant physiology,
but also for a wider group of biologists; in addition, it is
expected to be used in ongoing and future research work in
the field. Lastly, and most importantly, it will serve to
educate undergraduate, graduate and post-graduate
students around the world.



Preface

Existence of life on the Earth is supported by photosynthetic
organisms which provide production of organic substances
and oxygen evolution. In general, photosynthesis includes
primary light reactions and secondary dark reactions. Light
reactions begin with absorption of photons by light
harvesting photosynthetic pigments, resulting in the
formation of their singlet exited states. This process is
followed by excitation energy transfer from one pigment
molecule to the other. Then, charge separation occurs in the
photosynthetic reaction centers. Excited electrons are
transferred via the photosynthetic electron transport chain
(ETC), providing production of the reducing power in the
form of reduced nicotinamide adenine dinucleotide
phosphate (NADPH). In anoxygenic phototrophs, external
hydrogen compounds are a source of the electrons, and the
light is absorbed in a single photosystem. The ETC of
oxygenic photosynthetics contains two photochemical
systems – PS II (water-plastoquinone oxido-reductase) and
PS I (plastocyanin-ferredoxin oxido-reductase) – which
transfer electrons from water to NADP, using one more
complex, the cytochrome-b6f-complex. The source of
electrons in this case is water molecules which are
decomposed by water-oxidizing complex (WOC) of the PS II.
Oxygen as a “waste” product of photosynthetic water
cleavage led to the present-day aerobic atmosphere. From
the very first moment the interaction with oxygen generated
a new condition for the existing organisms starting an
evolutionary adaptation process to this new oxydizing
environment. Reactive oxygen species (ROS) became a
powerful selector and generated a new hierarchy of life
forms from the broad range of genetic mutations
represented in the biosphere. During the electron transfer



from water to NADP, protons are transferred from the
stroma side (the positive (p) side) to the lumen side (the
negative (n) side), and when this proton gradient is
dissipated through the ATP-synthase, ATP is produced.

The next stage includes biochemical processes of fixation
and reduction of CO2 in photosynthetic carbon metabolism
with using NADPH, and ATP. To date, the known metabolic
pathways of carbon in photosynthesis can be classified into
the 3-hydroxypropionat bicycle; the reductive citrate cycle,
i.e., the Arnon-Buchanan cycle; C3 or the reductive pentose
phosphate cycle, i.e., the Benson-Bassham-Calvin cycle; C4
or cooperative photosynthesis; Crassulacean acid
metabolism (CAM); C3/C4 photosynthesis; and C4-CAM
photosynthesis. Some of them, for example the 3-
hydroxypropionat bicycle and the Arnon-Buchanan cycle,
are specific to anoxygenic phototrophs, others, such as C4,
CAM, and so on, have been in the evolution of higher plants.
The most important way of carbon in photosynthesis – the
Benson-Bassham-Calvin cycle – is widespread in
phototrophic organisms of different taxa. Eventually, fixation
and reduction of CO2 during photosynthesis leads to the
formation of sugars and other organic compounds.

The present book has 8 chapters written mainly by the
researchers of the Institute of Basic Biological Problems of
the Russian Academy of Sciences (formerly the Institute of
Photosynthesis). The each chapter describes photosynthesis
at different levels of organization: molecular, cellular, and
organismic. Among discussed problems in this book are: the
structural and functional organization of the pigment-protein
complexes; the evolutionary origin of the water-oxidizing
complex of PS II; the hydrogen photoproduction coupled
with photosynthesis; the structure and regulation of
chloroplast ATP synthase; the formation, decay and
signaling of reactive oxygen species in oxygen-evolving



photosynthetic organisms during exposure to oxidative
stress; the strategy of adaptation of photosynthetic carbon
metabolism; the adaptive changes of photosynthesis under
enhanced CO2 concentration, and the photosynthetic
machinery response to low temperature stress.

The material presented here reflects, mainly, the research
interests and views of the authors. We do not claim to have
produced all-inclusive views of the entire field. The book is
intended for a broad range of researchers and students, and
all who are interested in learning the most important global
process on our planet – the process of photosynthesis.

We should like to believe that this book will stimulate
future researchers of photosynthesis, leading to progress in
our understanding of the mechanisms of photosynthesis and
in its practical use in biotechnology and human life.

We express our sincere appreciation to the 17 authors for
their outstanding contribution to this book. We are
extremely grateful to Academician of the Russian Academy
of Sciences (RAS) V.A. Shuvalov, Academician of the
Azerbaijan National Academy of Sciences J.A. Aliyev,
Corresponding Member of RAS A.B. Rubin, Corresponding
Member of RAS Vl.V. Kuznetsov, and Professors D.A. Los,
A.M. Nosov, V.Z. Paschenko, T.E. Krendeleva, A.N. Tikhonov,
V.V. Klimov, A.A. Tsygankov, Dr. I.R. Fomina, and J. Karakeyan
for their permanent help and fruitful advices.

We express our deepest gratitude to Russian Science
Foundation (  14-04-00039) for their financial support.
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Chapter 1
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Abstract
This chapter provides an overview on recent developments
and current knowledge about monitoring, generation and
the functional role of reactive oxygen species (ROS) – H2O2,
HO2•, HO•, OH− 1,O2 and O2−• – in both oxidative
degradation and signal transduction in photosynthetic
organisms including a summary of important mechanisms of
nonphotochemical quenching in plants. We further describe
microscopic techniques for ROS detection and controlled
generation. Reaction schemes elucidating formation, decay
and signaling of ROS in cyanobacteria as well as from
chloroplasts to the nuclear genome in eukaryotes during
exposure of oxygen-evolving photosynthetic organisms to
oxidative stress are discussed that target the rapidly
growing field of regulatory effects of ROS on nuclear gene
expression.

Keywords: photosynthesis, plant cells, reactive oxygen
species, ROS, oxidative stress, signaling systems,
chloroplast, cyanobacteria, nonphotochemical quenching,
chromophore-activated laser inactivation, sensors

1.1 Introduction
About 3 billion years ago the atmosphere started to
transform from a reducing to an oxidizing environment as
evolution developed oxygenic photosynthesis as key
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mechanism to efficiently generate free energy from solar
radiation (Buick, 1992; Des Marais, 2000; Xiong and Bauer,
2002; Renger, 2008; Rutherford et al., 2012; Schmitt et al.,
2014a). Entropy generation due to the absorption of solar
radiation on the surface of the Earth was retarded by the
generation of photosynthesis, and eventually a huge
amount of photosynthetic and other organisms with rising
complexity developed at the interface of the transformation
of low entropic solar radiation to heat. The subsequent
release of oxygen as a “waste” product of photosynthetic
water cleavage led to the present-day aerobic atmosphere
(Kasting and Siefert, 2002; Lane, 2002; Bekker et al., 2004),
thus opening the road for a much more efficient exploitation
of the Gibbs free energy through the aerobic respiration of
heterotrophic organisms (for thermodynamic considerations,
see (Nicholls and Ferguson, 2013; Renger, 1983).

From the very first moment this interaction with oxygen
generated a new condition for the existing organisms
starting an evolutionary adaptation process to this new
oxydizing environment. Reactive oxygen species (ROS)
became a powerful selector and generated a new hierarchy
of life forms from the broad range of genetic mutations
represented in the biosphere. We assume that this process
accelerated the development of higher, mainly
heterotrophic organisms in the sea and especially on the
land mass remarkably.

The efficient generation of biomass and the highly
selective impact of ROS lead to a broad range of options for
complex organisms to be developed in the oxydizing
environment. The direct, mostly deleterious impact of ROS
on the biosphere is thereby just a minor facet in the broad
spectrum of consequences. Important and more complex
side effects are for example given by the fact that the
molecular oxygen led to generation of the stratospheric
ozone layer, which is the indispensable protective shield



against deleterious UV-B radiation (Worrest and Caldwell,
1986). ROS led to new complex constraints for evolution
that drove the biosphere into new directions – by direct
oxidative pressure and by long-range effects due to
environmental changes caused by the atmosphere and the
biosphere themselves as energy source for all heterotrophic
organisms.

For organisms that had developed before the
transformation of the atmosphere the pathway of redox
chemistry between water and O2 by oxygenic
photosynthesis was harmful, due to the deleterious effects
of ROS. O2 destroys the sensitive constituents (proteins,
lipids) of living matter. As a consequence, the vast majority
of these species was driven into extinction, while only a
minority could survive by finding anaerobic ecological
niches. All organisms developed suitable defense strategies,
in particular the cyanobacteria, which were the first
photosynthetic cells evolving oxygen (Zamaraev and
Parmon, 1980).

The ground state of the most molecules including
biological materials (proteins, lipids, carbohydrates) has a
closed electron shell with singlet spin configuration. These
spin state properties are of paramount importance, because
the transition state of the two electron oxidation of a
molecule in the singlet state by 3Σ−gO2 is “spin-forbidden”
and, therefore, the reaction is very slow. This also accounts
for the back reaction from the singlet to the triplet state.

In contrast to this majority of singlet ground state
molecules the electronic configuration of the O2 molecule in
its ground state is characterized by a triplet spin multiplicity
described by the term symbol 3Σ−gO2. This situation
drastically changes by two types of reactions which
transform 3Σ−gO2 into highly reactive oxygen species



(ROS): i) Electronic excitation leads to population of two
forms of singlet O2 characterized by the term symbols 1Δg
and 1Σ+g. The 1Σ+g state with slightly higher energy
rapidly relaxes into 1ΔgO2 so that only the latter species is
of physiological relevance (type I). ii) Chemical reduction of
3Σ−gO2 (or 1ΔgO2) by radicals with non-integer spin state
(often doublet state) leads to formation of O−•2, which
quickly reacts to HO2• and is subsequently transferred to
H2O2 and HO• (vide infra) (type II). In plants, the electronic
excitation of 3Σ−gO2 occurs due to close contact to
chlorophyll triplets that are produced during the
photoexcitation cycle (Schmitt et al., 2014a) (see Figure 1.1,
Figure 1.2). Singlet oxygen is predominantly formed via the
reaction sensitized by interaction between a chlorophyll
triplet (3Chl) and ground state triplet 3Σ−gO2:
Figure 1.1 Production of ROS by interaction of oxygen with
chlorophyll triplet states (type I) to 1O2 or chemical
reduction of oxygen to O−•2 (type II)



Figure 1.2 Scheme of ROS formation and water redox
chemistry (water-water cycle, for details, see text)



(1) 
3Chl can be populated either via intersystem crossing

(ISC) of antenna Chls or via radical pair recombination in the
reaction centers (RCs) of photosystem II (PS II) (for reviews,
see Renger, 2008; Vass and Aro, 2008; Rutherford et al.,
2012; Schmitt et al., 2014a). Alternatively, 1ΔgO2 can also
be formed in a controlled fashion by chemical reactions,
which play an essential role in programmed cell death upon
pathogenic infections (e.g. by viruses).

Figure 1.2 schematically illustrates the pattern of one-
electron redox steps of oxygen forming the ROS species
HO•, H2O2 and HO•2/O−•2 in a four-step reaction sequence
with water as the final product. The sequence comprises the
water splitting, leading from water to O2 + 4H+ and the



corresponding mechanism vice versa of the ROS reaction
sequence. The production of 1Δg O2 is a mechanism next to
that.

In biological organisms, the four-step reaction sequence of
ROS is tamed and energetically tuned at transition metal
centers, which are encapsulated in specifically
functionalized protein matrices. This mode of catalysis of
the “hot water redox chemistry” avoids the formation of
ROS. In photosynthesis, the highly endergonic oxidative
water splitting (ΔG° = + 237.13 kJ/mol, see Atkins, 2014) is
catalyzed by a unique Mn4O5Ca cluster of the water-
oxidizing complex (WOC) of photosystem II and
energetically driven by the strongly oxidizing cation radical
P680+• (Klimov et al., 1978; Rappaport et al., 2002) formed
via light-induced charge separation (for review, see Renger,
2012).

Correspondingly, the highly exergonic process in the
reverse direction is catalyzed by a binuclear heme iron-
copper center of the cytochrome oxidase (COX), and the
free energy is transformed into a transmembrane
electrochemical potential difference for protons (for a
review, see Renger, 2011), which provides the driving force
for ATP synthesis (for a review, see Junge, 2008). In spite of
the highly controlled reaction sequences in photosynthetic
WOC and respiratory COX, the formation of ROS in living
cells cannot be completely avoided. The excess of ROS
under unfavorable stress conditions causes a shift in the
balance of oxidants/antioxidants towards oxidants, which
leads to the intracellular oxidative stress (Kreslavski et al.,
2012b). Formation of ROS (the production rate) as well as
decay of ROS (the decay rate) with the latter one
determining the lifetime, both bring about the concentration
distribution of the ROS pool (Kreslavski et al., 2013a). The
activity of antioxidant enzymes, superoxide dismutase


