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Preface

Nothing puzzles me more than time and space; and yet nothing
troubles me less . . . .

These words, by the English essayist Charles Lamb in his 1810 letter to Thomas
Manning, provide a concise summary of this book. Of course, he was not
thinking of Statistics, nor Science, nor Statistical Science, rather the more
ephemeral notion of space and time. But here, in the physical world, there
are scientific questions to resolve and predictions to make, and understanding
the effects of dependencies across time and space is a crucial part. Those
dependencies are in there somewhere, and we too are puzzled by them.

Up until the mid-twentieth century, Statistics’ response to this puzzle was
often to ignore the complicated structure, or to find clever ways to remove it.
Interestingly, Charles Lamb seemed to be in tune with this, as he finished his
sentence by saying, “as I never think about them.” As Statistics has progressed
through the twentieth century and moved into the twenty-first, spatial and
temporal statistical methodology has been incorporated more and more into
the scientific models of our world and indeed of our universe. As technology
has improved, Statistics has been given a Rosetta Stone to begin to unlock
Science’s mysteries, from the molecular to the global to the cosmological.

In the beginning, there were data. Then, there were theories, formed from
data, and those theories rose and fell according their agreement with new data.
Data are central, and they should be cared for accordingly. To do good Science,
databases should be fully documented and algorithms (“black boxes”) involved
in creating them should be in the public domain.

However, data alone do not tell us all that much about our world. When we
look at data, how do we know if what we are seeing is “signal” as opposed
to “noise”? How do we compare two sources of data—what is the basis of a
comparison?

Similarly, theories (or models) by themselves are not often the best descrip-
tions of the real world. What can be said about processes on scales at which

xv
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there were no observations? What about uncertainties in parameters, or
forcings, or interactions with other processes? Indeed, the key is the proper
blending of such models and the data. Sometimes this might be done
informally, for example, by taking a simulated field, simulated from a
mathematical (say) model, and visually comparing it to a field of actual data.
From the visual comparison, a deficiency in the model might be obvious,
which might lead to a parameter adjustment, or even a new parameter. Then
a new simulation might be implemented and a new visual comparison made,
and so forth. This is one way to combine data and model, but it is not a very
efficient way to deal with either. Indeed, the power of Statistical Science is
that it provides several frameworks in which to combine data and model, in
optimal ways, for the purpose of scientific inference. It might seem strange
that there is not just one framework in which to carry out inferences, but
even Statistics has its tribes. However, the element that is common to all is
an attempt to partition variability and to quantify uncertainty.

In this book, we take the firm stand that the best paradigm (to date) in which
to partition variability and quantify uncertainty is the hierarchical statistical
model. Such a model explicitly acknowledges uncertainty in the data, different
from that in the process and parameters, and then it accommodates the uncer-
tainty in the process (and finally in parameters, if necessary). We have used
color in key places in our exposition, to distinguish between the parts of the
hierarchical model concerned with data (green), with processes (blue) and with
parameters (purple).

Hierarchical thinking (i.e., hierarchical modeling) is intimately tied to con-
ditional thinking (i.e., modeling with conditional probabilities). Indeed, it is
our perspective that conditional thinking is the aforementioned Rosetta Stone:
It allows us to separately partition the effects of measurement error and scales
of variability below the resolution of our data, conditioned on the process at
possibly some other scale. Similarly, conditional thinking allows us to model
a spatio-temporal process as it actually evolves through time, as opposed to
just accounting for its marginal dependencies. Equally important, it allows us
to use spatio-temporal dependencies in errors and/or parameters as a proxy
for unknown and unknowable processes. Its impact goes even deeper, in that
it allows parameters themselves to be dependent on other processes or other
sources of data. Finally, it makes clear that if some components of variability
are not interesting for a particular question, then the end result should not look
like the data. Any unwanted components (e.g., measurement error) are filtered
out: What you see (data) is not always what you want to get (process).

Critically, in the presence of data, conditional thinking allows sensible
trade-offs to be made between data availability, process complexity, and com-
putational complexity. Combined with the ever-expanding computational tools
of the twenty-first century, the hierarchical statistical framework provides the
structure to tackle important questions in Energy, Climate, Environment, Food,
Finance, and so on. This will be a century of massive (spatio-temporal) datasets
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collected to answer Society’s dominant questions. In this book, we are partic-
ularly interested in inference for Climate and the Environment, where pro-
cesses at small spatio-temporal scales influence those at larger scales, and vice
versa. The questions to be resolved are fundamental to sustaining our planet,
they involve complex spatio-temporal phenomena, and they are inherently
statistical.

Our lives are spent marching through a space–time continuum, but space
is different from time. We can (and often do) visit the same place over and
over but always at different, ordered time points. We can go north, south, east,
and west, up and down, but only ever forward from the past to the present
and into the future. Any study of a spatio-temporal phenomenon needs to
respect this difference. In this book, we have proposed spatio-temporal statis-
tical methodologies that align with the underlying science, and we have found
that hierarchical thinking is a natural way to achieve this alignment.

In the pages that follow, we have deliberately tried to build a bridge between
the twentieth and twenty-first centuries in our presentation of spatio-temporal
statistics. There are strong and powerful traditions that have developed in the
last few decades and, even if they are not hierarchical, they provide the tools
and motivation that can be used in hierarchical thinking. In some cases, hierar-
chical approaches that may be appealing in principle may be out of our reach
in terms of timely implementation.

The official ftp site associated with the book can be found at:

ftp://ftp.wiley.com/public/sci_tech_med/spatio_temporal_data

In addition to posting errata, we will post supplemental material that we hope
will be helpful to the reader.

As mentioned above, we have questions to resolve and predictions to make,
so let’s get started . . . .

Noel Cressie
Christopher K. Wikle

Columbus, Ohio
Columbia, Missouri
December 2010
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C H A P T E R 1

Space–Time: The Next Frontier

This book is about the statistical analysis of data . . . spatio-temporal data. By
this we mean data to which labels have been added showing where and when
they were collected. Good science protocol calls for data records to include
place and time of collection. Causation is the “holy grail” of Science, and
hence to infer cause–effect relationships (i.e., “why”) it is essential to keep
track of “when”; a cause always precedes an effect. Keeping track of “where”
recognizes the importance of knowing the “lay of the land”; and, quite simply,
there would be no History without Geography.

We believe that in order to answer the “why” question, Science should
address the “where” and “when” questions. To do that, spatio-temporal datasets
are needed. However, spatial datasets that do not have a temporal dimension
can occur in many areas of Science, from Archeology to Zoology. The spatial
data may be from a “snapshot” in time (e.g., liver-cancer rates in U.S. counties
in 2009), or they may be taken from a process that is not evolving in time (e.g.,
an iron-ore body in the Pilbara region of Australia). Sometimes, the temporal
component has simply been discarded, and the same may have happened to
the spatial component as well. Also, temporal datasets that do not have a
spatial dimension are not unusual, for analogous reasons. For example, two time
series, one of monthly mean carbon dioxide measurements from the Mauna Loa
Observatory, Hawaii, and the other of monthly surface temperatures averaged
across the globe, do not have a spatial dimension (for different reasons).

Spatio-Temporal Data
Spatio-temporal data were essential to the nomadic tribes of early civilization,
who used them to return to seasonal hunting grounds. On a grander scale,
datasets on location, weather, geology, plants, animals, and indigenous people
were collected by early explorers seeking to map new lands and enrich their
kings and queens. The conquistadors of Mesoamerica certainly did this for
Spain.

Statistics for Spatio-Temporal Data, by Noel Cressie and Christopher K. Wikle
Copyright © 2011 John Wiley & Sons, Inc.
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The indigenous people also made their own maps of the Spanish conquest,
in the form of a lienzo. A lienzo represents a type of historical cartography, a
painting on panels of cloth that uses stylized symbols to tell the history of a
geographical region. The Lienzo de Quauhquechollan is made up of 15 joined
pieces of cotton cloth and is a map that tells the story, from 1527 to 1530, of the
Spanish conquest of the region now known as Guatemala. It has been restored
digitally in a major project by Exploraciones sobre la Historia at the Univer-
sidad Francisco Marroquı́n (UFM) in Guatemala City (see Figure 1.1). This
story of the Spanish conquest in Guatemala is an illustration of complex spatio-
temporal interactions. Reading the lienzo and understanding its correspondence
with the geography of the region required deciphering; see Asselbergs (2008)
for a complete description. The original lienzo dates from about 1530 and
represents a spatio-temporal dataset that is almost 500 years old!

In a sense, we are all analyzers of spatial and temporal data. As we plan our
futures (economically, socially, academically, etc.), we must take into account
the present and seek guidance from the past. As we look at a map to plan a trip,
we are letting its spatial abstraction guide us to our destination. The philosopher
Ludwig Wittgenstein compared language to a city that has evolved over time
(Wittgenstein, 1958): “Our language can be seen as an ancient city: A maze of
little streets and squares, of old and new houses, and of houses with additions
from various periods; and this surrounded by a multitude of new burroughs
with straight and regular streets and uniform houses!”

Graphs of data indexed by time (time series) and remote-sensing images
made up of radiances indexed by pixel location (spatial data) show variability
at a glance. For example, Figure 1.2 shows the Missouri River gage-height lev-
els during the 10-year period, 1988–1997, at Hermann, MO. Figure 1.3 shows
two remotely sensed images of the river taken in September 1992, before a
major flood event, and in September 1993, after the highest crest ever recorded
at Hermann (36.97 ft on July 31, 1993). The top panel of Figure 1.3 shows
the town of Gasconade in the middle of the scene, situated in the “V” where
the Gasconade River joins the Missouri River; Gasconade is at mile 104.4
and eight miles downstream is the river town of Hermann, visible at the very
bottom of the scenes. Notice the intensive agriculture in the river’s flood plain
in September 1992. The bottom panel of Figure 1.3 shows the same region,
one year later, after the severe flooding in the summer of 1993. The inundation
of Gasconade, the floodplain, and the environs of Hermann is stunning. There
is a multiscale process behind all of this that involves where, when, and
how much precipitation occurred upstream, the morphology of the watershed,
microphysical soil properties that determine run-off, the U.S. Army Corps of
Engineers’ construction of levees upstream, and so on. However, by looking
only in the spatial dimension, or only in the temporal dimension, we miss the
dynamical evolution of the flood event as it progressed downstream. Spatio-
temporal data on this portion of the Missouri River, which shows how the river
got from “before” to “after,” would be best illustrated with a movie, showing
a temporal sequence of spatial images before, during, and after the flood.
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Figure 1.2 Time-series levels of gage height at Hermann, MO (mile 96.5 on the Missouri River)
from January 1, 1988 through December 31, 1997. Flood stage is given by the horizontal dashed
line. The highest recorded gage height in the 10-year period was 36.97 ft on July 31, 1993.

There is an important statistical characteristic of spatio-temporal data that
is very common, namely that nearby (in space and time) observations tend to
be more alike than those far apart. However, in the case of “competition,” the
opposite may happen (e.g., under big trees only small trees can grow), but
the general conclusion is nevertheless that spatio-temporal data should not be
modeled as being statistically independent. [Tobler (1970) called this notion
“the first law of Geography.”] Even if spatio-temporal trends are used to
capture the dependence at large scales, there is typically a cascade of smaller
spatio-temporal scales for which a statistical model is needed to capture the
dependence. Consequently, an assumption that spatio-temporal data follow
the “independent and identically distributed” (iid ) statistical paradigm should
typically be avoided. Paradigms that incorporate dependence are needed: The
time series models in Chapter 3 and the spatial process models in Chapter 4
give those paradigms for temporal data and spatial data , respectively.
From Chapter 5 onwards, we are concerned directly with Statistics for
spatio-temporal data .

Uncertainty and the Role of Statistics
Uncertainty is everywhere; as Benjamin Franklin famously said (Sparks, 1840),
“In this world nothing can be said to be certain, except death and taxes.” Not
only is our world uncertain, our attempts to explain the world (i.e., Science)
are uncertain. And our measurements of our (uncertain) world are uncertain.
Statistics is the “Science of Uncertainty,” and it offers a coherent approach to
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Figure 1.3 Images from NASA’s Landsat Thematic Mapper. Each image shows a segment of the
Missouri River near Hermann, MO (mile 96.5, at the bottom of the scene), and Gasconade, MO
(mile 104.4, in the “V” in the middle of the scene). The river flows from west (top of the scene) to
east (bottom of the scene). Top panel: September 1992, before a major flood event. Bottom panel:
September 1993, after a record-breaking flood event in July 1993.

handling the sources of uncertainty referred to above. Indeed, in our work we
use the term Statistical Science interchangeably with Statistics (with a “capital”
S); we use statistics (with a “small” s) to refer to summaries of the data.

In most of this book, we shall express uncertainty through variability, but we
note that other measures (e.g., entropy) could also be used. Just as the physical
and biological sciences have the notions of mass balance and energy balance,
Statistical Science has a notion of variability balance. The total variability is
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modeled with variability due to measurement , variability due to using a (more-
or-less uncertain) model of how the world works, and variability due to uncer-
tainty on parameters that control the measurement and model variabilities.

Although real-world systems may in principle be partially deterministic, our
information is incomplete at each of the stages of observation, summarization,
and inference, and thus our understanding is clouded by uncertainty. Conse-
quently, by the time the inference stage is reached, the lack of certainty will
influence how much knowledge we can gain from the data. Furthermore, if
the dynamics of the system are nonlinear, the processes can exhibit chaos
(Section 3.2.4), even though the theory is based on deterministic dynamical
systems. (In Chapters 3 and 7, we show how model uncertainty in these sys-
tems naturally leads to stochastic dynamical systems that incorporate system ,
or intrinsic, noise.)

Data can hold so much potential, but they are an entropic collection of
digits or bits unless they can be organized into a database. With the abil-
ity in a database to structure, search, filter, query, visualize, and summa-
rize, the data begin to contain information . Some of this information comes
from judicious use of statistics (i.e., summaries) with a “small s.” Then, in
going from information to knowledge, Science (and, with it, Statistics with
a “capital S”) takes over. This book makes contributions at all levels of
the data–information–knowledge pyramid, but we generally stop short of the
summit where knowledge is used to determine policy. The methodology we
develop is poised to do so, and we believe that at the interface between Sci-
ence, Statistics, and Policy there is an enormous need for (spatio-temporal)
decision-making in the presence of uncertainty.

In this book, we approach the problem of “scientific understanding in the
presence of uncertainty” from a probabilistic viewpoint, which allows us to
build useful spatio-temporal statistical models and make scientific inferences
for various spatial and temporal scales. Accounting for the uncertainty enables
us to look for possible associations within and between variables in the system,
with the potential for finding mechanisms that extend, modify, or even disprove
a scientific theory.

Uncertainty and Data
Central to the observation, summarization, and inference (including prediction)
of spatio-temporal processes are data . All data come bundled with error. In
particular, along with the obvious errors associated with measuring, manipulat-
ing, and archiving, there are other errors, such as discrete spatial and temporal
sampling of an inherently continuous system. Consequently, there are always
scales of variability that are unresolvable and that will further “contaminate”
the observations. For example, in Atmospheric Science, this is considered a
form of “turbulence,” and it corresponds to the well known aliasing problem
in time series analysis (e.g., see Section 3.5.1; Chatfield, 1989, p. 126) and
the microscale component of the “nugget effect” in geostatistics [e.g., see the
introductory remarks to Chapter 4 and Cressie (1993, p. 59)].


