PhotoSynthesis A New Approach to the Molecular, Cellular, and Organismal Levels

Edited by Suleyman Allakhverdiev

Photosynthesis

New Approaches to the Molecular, Cellular, and Organismal Levels

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener(martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Photosynthesis

New Approaches to the Molecular, Cellular, and Organismal Levels

Edited by

Suleyman I. Allakhverdiev

Copyright © 2016 by Scrivener Publishing LLC. All rights reserved.

Co-published by John Wiley & Sons, Inc. Hoboken, New Jersey, and Scrivener Publishing LLC, Salem, Massachusetts. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

For more information about Scrivener products please visit www.scrivenerpublishing.com.

Cover design by Kris Hackerott

Library of Congress Cataloging-in-Publication Data:

ISBN 978-1-119-08370-2

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Abstract

This book is written by Russian and international authors in the field of photosynthesis research. It is dedicated to investigations of the problems of photosynthesis at different levels of organization: molecular, cellular and organismal. The book describes the multiple roles of various reactive oxygen species in photosynthetic organisms. Further, we have presented here a discussion of the structure and function of water oxidation complex (WOC) of PS II, and a possible role of Mn-bicarbonate complex in WOC. Other important topics in this book are: the structural and functional organization of the pigment-protein complexes, the structure and regulation of chloroplast ATP-synthase, the participation of molecular hydrogen in microalgae metabolism, the current concepts on the evolution and the development of photosynthetic carbon metabolism, and the adaptive changes of photosynthesis at increased CO₂ concentrations, as well as the photosynthetic machinery response to low temperature stress. The material available in this book is a unique report on the state of this trend in modern science. This book will be helpful not only for biophysicists, biochemists and experts in plant physiology, but also for a wider group of biologists; in addition, it is expected to be used in ongoing and future research work in the field. Lastly, and most importantly, it will serve to educate undergraduate, graduate and post-graduate students around the world.

Contents

Pr	eface			xiii
Lis	st of C	ontribu	itors	xvii
1	The Multiple Roles of Various Reactive Oxygen Species (ROS) in Photosynthetic Organisms Franz-Josef Schmitt, Vladimir D. Kreslavski, Sergey K. Zharmukhamedov, Thomas Friedrich, Gernot Renger, Dmitry A. Los, Vladimir V. Kuznetsov,			1
	Suleyman I. Allakhverdiev			
	1.1 1.2 1.3	Introd Gener Non-p	uction ation, Decay and Deleterious Action of ROS hotochemical Ouenching in Plants and	2 7
		Cvano	bacteria	15
	1.4	Monit	oring of ROS	19
		1.4.1	Exogenous ROS Sensors	20
		1.4.2	Genetically Encoded ROS Sensors	25
		1.4.3	Chromophore-Assisted Laser	28
	15	Signal	ing Role of ROS	30
	1.0	1.5.1	Signaling by Superoxide and Hydrogen Peroxide in Cyanobacteria	37
		1.5.2	Signaling by ${}^{1}\!\Delta_{g}O_{2}$ and Hydrogen Peroxide in Eukaryotic Cells and Plants	41
1.6 L		Light-	Light-Induced ROS and Cell Redox Control	
		and In	teraction with the Nuclear Gene Expression	45
	1.7 Second Messengers and Signaling Molecules in		d Messengers and Signaling Molecules in	
		H,O, S	Signaling Chains and (Nonlinear) Networking	49
	1.8	Conclu	uding Remarks and Future Perspectives	55
	Ack	nowledg	gments	56

	Abb	reviations	57
	Refe	rences	58
~	D1 (
2	Photo	boxidation of Mn-bicarbonate Complexes by	
	React in the	Evolutionary Origin of the Water Origing	
	Com	e Evolutionary Origin of the water-Oxidizing	85
	Vasi	h V Tarantway Andrey A Khorohrykh	05
	Vusi	ty V. Terentyev, Anurey A. Khoroorykn, cheslav V. Klimov	
	2 1	Introduction	86
	2.1	Appearance of Photosynthesis	87
	2.2	Classification of Photosynthetic Bacteria	88
	2.4	Mechanism of Light Energy Transformation	00
	2.1	during Photosynthesis	90
	2.5	The Water-oxidizing Complex of Photosystem II	92
	2.6	Localization and Function of Bicarbonate in	
		Photosystem II	95
	2.7	Composition and Electrochemical Properties	
		of Mn ²⁺ -bicarbonate Complexes	100
	2.8	A Possible Role of Mn ²⁺ -bicarbonate Complexes	
		for the Origin and Evolution of the Inorganic Core	
		of the Water-oxidizing Complex of Photosystem II	104
	2.9	Investigation of Redox Interaction Between Mn ²⁺	
		and Type II Reaction Centers of Anoxygenic	
		Photosynthetic Bacteria in the Presence of Bicarbonate	107
	2.10	Influence of the Redox Potential of the P ⁺ /P Pair	
		and Steric Accessibility of P ⁺ on Electron Donation	
		from Mn ²⁺ to Type II Reaction Centers from	
		Anoxygenic Photosynthetic Bacteria in the	
		Presence of Bicarbonate	113
	2.11	Conclusions	121
	Ackı	nowledgments	122
	Abb	reviations	122
	Refe	rences	123
3	Hydr	ogen Metabolism in Microalgae	133
	Ana	toly A. Tsygankov, Azat Abdullatypov	
	3.1	Introduction	133
	3.2	Physiology of Hydrogen Metabolism	134
	3.3	Hydrogenases	136
	3.4	Ferredoxin	139

	3.5	Nutrient Deprivation	140	
	3.6	Physiological Significance of Light-Dependent		
		Hydrogen Production	146	
	3.7	Practical Importance of Hydrogen Photoproduction	147	
	3.8	Towards Practical Application of Microalgal		
		Hydrogen Production	151	
		3.8.1 Hydrogenase Modifications	151	
		3.8.2 Elimination of Routes Competitive to		
		H, production	152	
		3.8.3 The Role of Transmembrane Gradient		
		of the Potential	153	
	3.9	Conclusion	154	
	Ack	nowledgements	154	
	Abb	reviations	154	
	Refe	erences	155	
4	The S	Structure and Regulation of Chloroplast ATP Synthase	163	
	Ales	cander N. Malyan		
	4.1	Introduction	163	
	4.2	The Structure and Functional Basics of		
		Chloroplast ATP Synthase	164	
	4.3	The Thiol-Dependent Mechanism of Chloroplast		
		ATP Synthase Regulation	166	
	4.4	The Nucleotide-Dependent Mechanism of		
		Chloroplast ATP Synthase Regulation	167	
	4.5	The Properties and the Role of Chloroplast ATPase		
		Noncatalytic Sites	168	
	4.6	Conclusion	173	
	Abb	reviations	173	
	Refe	erences	173	
5	Struc	tural and Functional Organization of the		
	Pigm	ent-Protein Complexes of the Photosystems in		
	Muta	int Cells of Green Algae and Higher Plants	179	
	Vla	dimir G. Ladvein		
	5.1	Introduction	180	
	5.2	The Mutants as Model Objects	182	
		5.2.1 Effects of Mutagenic Agents	182	
		5.2.2 Obtaining Mutants	182	
	5.3	The Chlorophyll-Protein Complexes	185	
	2.0	5.3.1 Pigment Content of Individual Complexes	185	
			100	

6

	5.3.2	Identification of Chlorophyll-Protein	
		Complexes	188
	5.3.3	Polypeptide Composition of Individual	
		Complexes	188
5.4	Spectr	al Properties of Native Chlorophyll-Protein	
	Comp	lexes	189
	5.4.1	Spectral Forms of Chlorophyll in Native	
		Complexes	189
	5.4.2	Fluorescence Spectra of the Chlorophyll in Native	
		Complexes	190
5.5	Functi	ional Organization of the Photosystems	195
	5.5.1	Photosynthetic Activity	195
	5.5.2	The Value of Photosynthetic Unit	197
	5.5.3	The Number of the Reaction Centers of	
		Photosystems	197
5.6	Struct	ural Localization of the Photosystem in Chloroplast	
	Thylak	coids	201
	5.6.1	Spatial Localization of the Photosystem in	
		Thylakoid Membranes	201
	5.6.2	Localization of Carotenoids in Pigment-Protein	
		Complexes of the Photosystems	210
5.7	Molec	ular Organization of the Complexes of	
	Photo	system I and II	213
	5.7.1	Structure of the Complex of Photosystem I	213
	5.7.2	Structure of the Complex of Photosystem II	217
	5.7.3	The Core Complex of Photosystem II	220
Abbı	reviatio	ns	222
Refe	rences		222
	_		
Photo	osynthe	etic Carbon Metabolism: Strategy of	
Adap	tation	over Evolutionary History	233
Irina R. Fomina, Karl Y. Biel			
6.1	Introd	uction	234
6.2	Photo	synthesis in Prokaryotes	235
	6.2.1	What Was the First Autotroph on Our Planet?	235
	6.2.2	Green Non-Sulfur Bacteria, Green Sulfur	
		Bacteria, Heliobacteria: from the Archaic	
		Way of Carbon Reduction to the	
		Arnon-Buchanan Cycle	240

	6.2.3	Purple Bacteria: The Emergence of the Reductive	
		Pentose Phosphate Cycle – Biochemical	
		"Add-ons" to the Arnon-Buchanan Cycle	245
	6.2.4	Cyanobacteria: The Reductive Pentose	
		Phosphate Cycle Becomes the Main Path	
		of Carbon in Photosynthesis	247
	6.2.5	The Main Stages of Development of	
		Photosynthetic Carbon Metabolism in Prokaryotes	249
6.3	Photo	synthesis in Eukaryotes	250
	6.3.1	C_3 plants: Photosynthesis via the Reductive	
		Pentose Phosphate or Benson-Bassham-	
		Calvin cycle	250
	6.3.2	C ₄ plants: Cooperative Photosynthesis	254
	6.3.3	CAM-plants: Crassulacean Acid Metabolism	259
	6.3.4	C_4 -CAM plants: Cooperation of the	
		Second Order	262
6.4	About	Compartmentalization and Cooperation	
	betwee	en the Reduction and Oxidation Reactions in	
	Photo	synthetic Cells	264
6.5	Exam	ples of Physiological Adaptation of Photosynthetic	
	Carbo	on Metabolism to Environmental Factors at the	
	Cellul	ar, Tissue, and Organism Levels	266
	6.5.1	Cooperative Relationship of Phototrophic	
		Endosymbionts and Heterotrophic Host Cells	
		with Carbon Assimilation	266
	6.5.2	The Protective Role of Leaf Tissues in	
		Illuminated Plants	283
6.6	Gener	al Conclusion	293
Ack	Acknowledgements		
Abb	reviatio	ns	297
Refe	rences		298
Adap	tive Ch	anges of Photosynthetic Apparatus to	
High	er CO ₂	Concentration	327
Ana	toly A.	Kosobryukhov	
7.1	Introd	luction	327
7.2	Highe	r Concentration of CO, and Its Effect on	
	the Pla	ants: History of the Question	328
7.3	Influe	nce of the Higher CO, Concentration	
	on the	e Growth and Productivity of the Plants	329
7.4	Photo	synthesis at Short-Term Increase of CO ₂	
	Conce	entration	331

7

8

7.5	Adaptive Changes of Photosynthetic Apparatus	
	at Long-Term Effect of the Higher CO ₂ Concentration	332
7.6	The Role of Carbohydrate Metabolism in Regulation	
	of the Photosynthetic Apparatus Activity at	
	Increased CO ₂ Concentration	334
7.7	Soluble Sugars in Leaves and Other Plant Organs	337
7.8	Dependence of Photosynthetic Rate on	
	Environmental Factors and its Regulation	338
Abb	reviations	344
Refe	erences	344
Phot	osynthetic Machinery Response to	
Low	Temperature Stress	355
Evg	enia F. Markovskaya, Anatoly A. Kosobryukhov,	
Vla	dimir D. Kreslavski	
8.1	Mechanisms of Plant Adaptation to Low Temperature	355
8.2	Role of Reactive Oxygen Species	357
8.3	Plant Cell Membranes and Their Role in Response	
	to Low Temperature	358
8.4	Hormonal Response to the Temperature	362
8.5	Phytochrome as a Receptor of Low Temperature	362
8.6	Carbohydrate Function under Low Temperature	364
8.7	Protein Changes	365
8.8	Cold Stress and Photoinhibition	367
8.9	Molecular Mechanisms of Plants' Response to Low	
	Temperatures	368
8.10	Concluding Remarks and Future Perspectives	370
Ack	nowledgments	370
Refe	rences	370
_		

Index

383

Preface

Existence of life on the Earth is supported by photosynthetic organisms which provide production of organic substances and oxygen evolution. In general, photosynthesis includes primary light reactions and secondary dark reactions. Light reactions begin with absorption of photons by light harvesting photosynthetic pigments, resulting in the formation of their singlet exited states. This process is followed by excitation energy transfer from one pigment molecule to the other. Then, charge separation occurs in the photosynthetic reaction centers. Excited electrons are transferred via the photosynthetic electron transport chain (ETC), providing production of the reducing power in the form of reduced nicotinamide adenine dinucleotide phosphate (NADPH). In anoxygenic phototrophs, external hydrogen compounds are a source of the electrons, and the light is absorbed in a single photosystem. The ETC of oxygenic photosynthetics contains two photochemical systems - PS II (water-plastoquinone oxido-reductase) and PS I (plastocyanin-ferredoxin oxido-reductase) - which transfer electrons from water to NADP, using one more complex, the cytochrome-b6f-complex. The source of electrons in this case is water molecules which are decomposed by water-oxidizing complex (WOC) of the PS II. Oxygen as a "waste" product of photosynthetic water cleavage led to the presentday aerobic atmosphere. From the very first moment the interaction with oxygen generated a new condition for the existing organisms starting an evolutionary adaptation process to this new oxydizing environment. Reactive oxygen species (ROS) became a powerful selector and generated a new hierarchy of life forms from the broad range of genetic mutations represented in the biosphere. During the electron transfer from water to NADP, protons are transferred from the stroma side (the positive (p) side) to the lumen side (the negative (n) side), and when this proton gradient is dissipated through the ATP-synthase, ATP is produced.

The next stage includes biochemical processes of fixation and reduction of CO₂ in photosynthetic carbon metabolism with using NADPH, and ATP. To date, the known metabolic pathways of carbon in photosynthesis can be classified into the 3-hydroxypropionat bicycle; the reductive citrate cycle, i.e., the Arnon-Buchanan cycle; C₃ or the reductive pentose phosphate cycle, i.e., the Benson-Bassham-Calvin cycle; C₄ or cooperative photosynthesis; Crassulacean acid metabolism (CAM); C₃/C₄ photosynthesis; and C₄-CAM photosynthesis. Some of them, for example the 3-hydroxypropionat bicycle and the Arnon-Buchanan cycle, are specific to anoxygenic phototrophs, others, such as C₄, CAM, and so on, have been in the

evolution of higher plants. The most important way of carbon in photosynthesis – the Benson-Bassham-Calvin cycle – is widespread in phototrophic organisms of different taxa. Eventually, fixation and reduction of CO_2 during photosynthesis leads to the formation of sugars and other organic compounds.

The present book has 8 chapters written mainly by the researchers of the Institute of Basic Biological Problems of the Russian Academy of Sciences (formerly the Institute of Photosynthesis). The each chapter describes photosynthesis at different levels of organization: molecular, cellular, and organismic. Among discussed problems in this book are: the structural and functional organization of the pigment-protein complexes; the evolutionary origin of the water-oxidizing complex of PS II; the hydrogen photoproduction coupled with photosynthesis; the structure and regulation of chloroplast ATP synthase; the formation, decay and signaling of reactive oxygen species in oxygen-evolving photosynthetic organisms during exposure to oxidative stress; the strategy of adaptation of photosynthetic carbon metabolism; the adaptive changes of photosynthesis under enhanced CO_2 concentration, and the photosynthetic machinery response to low temperature stress.

The material presented here reflects, mainly, the research interests and views of the authors. We do not claim to have produced all-inclusive views of the entire field. The book is intended for a broad range of researchers and students, and all who are interested in learning the most important global process on our planet – the process of photosynthesis.

We should like to believe that this book will stimulate future researchers of photosynthesis, leading to progress in our understanding of the mechanisms of photosynthesis and in its practical use in biotechnology and human life.

We express our sincere appreciation to the 17 authors for their outstanding contribution to this book. We are extremely grateful to Academician of the Russian Academy of Sciences (RAS) V.A. Shuvalov, Academician of the Azerbaijan National Academy of Sciences J.A. Aliyev, Corresponding Member of RAS A.B. Rubin, Corresponding Member of RAS VI.V. Kuznetsov, and Professors D.A. Los, A.M. Nosov, V.Z. Paschenko, T.E. Krendeleva, A.N. Tikhonov, V.V. Klimov, A.A. Tsygankov, Dr. I.R. Fomina, and J. Karakeyan for their permanent help and fruitful advices.

We express our deepest gratitude to Russian Science Foundation (\mathbb{N} 14-04-00039) for their financial support.

Suleyman I. Allakhverdiev Institute of Plant Physiology, Russian Academy of Sciences; Institute of Basic Biological Problems, Russian Academy of Sciences; Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University; Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea (e-mail: suleyman.allakhverdiev@gmail.com) **Suleyman I. Allakhverdiev** is the head of Controlled Photobiosynthesis Laboratory at the Institute of Plant Physiology of the Russian Academy of Sciences (RAS), Moscow; Chief Research Scientist at the Institute of Basic Biological Problems RAS, Pushchino, Moscow Region; Professor at M.V. Lomonosov Moscow State University, Moscow, Russia; and Invited-Adjunct Professor at the Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea. He is originally from Chaykend (Karagoyunly/Dilichanderesi), Armenia, and

he had graduated with a B.S./M.S., in physics from the Department of Physics, Azerbaijan State University, Baku. He obtained his Dr. Sci. degree (highest/top degree in science) in plant physiology and photobiochemistry from the Institute of Plant Physiology RAS (2002, Moscow), and Ph.D. in physics and mathematics (biophysics), from the Institute of Biophysics USSR (1984, Pushchino). His Ph.D. advisors was Academician Alexander A. Krasnovsky and Dr. Sci. Vyacheslav V. Klimov. He worked for many years (1990-2007) as visiting scientist at the National Institute for Basic Biology (with Prof. Norio Murata), Okazaki, Japan, and in the Department de Chimie-Biologie, Université du Quebec à Trois Rivières (with Prof. Robert Carpentier), Quebec, Canada (1988-1990). He has been the guest editor of many (above 25) special issues in international peer-reviewed journals, as well as, currently a member of the Editorial Board of more than 15 international journals. Besides being editor-in-chief of SOAJ NanoPhotoBioSciences, associate editor of the International Journal of Hydrogen Energy, section editor of the BBA Bioenergetics, he also acts as a referee for major international journals and grant proposals. He has authored (or co-authored) more than 350 papers. He has organized several international conferences on photosynthesis. His research interests include the structure and function of photosystem II, water-oxidizing complex, artificial photosynthesis, hydrogen photoproduction, catalytic conversion of solar energy, plant under environmental stresses, and photoreceptor signaling.

List of Contributors

Azat Abdullatypov, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia

Suleyman I. Allakhverdiev, Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia; Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia; and Invited-Adjunct Professor at the Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Republic of Korea

Karl Y. Biel, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia; and Biosphere Systems International Foundation, Tucson, Arizona, USA

Irina R. Fomina, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia; and Biosphere Systems International Foundation, Tucson, Arizona, USA

Thomas Friedrich, Technical University Berlin, Institute of Chemistry, Max-Volmer-Laboratory of Biophysical Chemistry, Berlin, Germany

Andrey A. Khorobrykh, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia

Vyacheslav V. Klimov, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia

Anatoly A. Kosobryukhov, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia

Vladimir D. Kreslavski, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia; and Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia

Vladimir V. Kuznetsov, Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia

Vladimir G. Ladygin, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia

Dmitry A. Los, Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia

Alexander N. Malyan, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia

Evgenia F. Markovskaya, Petrozavodsk State University, Department of Ecology and Biology, Petrozavodsk, Russia

Gernot Renger, Technical University Berlin, Institute of Chemistry, Max-Volmer-Laboratory of Biophysical Chemistry, Berlin, Germany

Franz-Josef Schmitt, Technical University Berlin, Institute of Chemistry, Max-Volmer-Laboratory of Biophysical Chemistry, Berlin, Germany

Vasily V. Terentyev, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia

Anatoly A. Tsygankov, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia

Sergey K. Zharmukhamedov, Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia

The Multiple Roles of Various Reactive Oxygen Species (ROS) in Photosynthetic Organisms¹

Franz-Josef Schmitt¹, Vladimir D. Kreslavski^{2,3}, Sergey K. Zharmukhamedov³, Thomas Friedrich¹, Gernot Renger¹, Dmitry A. Los², Vladimir V. Kuznetsov², Suleyman I. Allakhverdiev^{2,3,4,5,*}

 ¹Technical University Berlin, Institute of Chemistry, Max-Volmer-Laboratory of Biophysical Chemistry, Straße des 17. Juni 135, D-10623 Berlin, Germany
²Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
³Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region 142290, Russia
⁴Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119991, Russia
⁵Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 711-873, Republic of Korea

Abstract

This chapter provides an overview on recent developments and current knowledge about monitoring, generation and the functional role of reactive oxygen species (ROS) – H_2O_2 , HO_2 , $HO_$

¹ This chapter was published as a review in Biochim. Biophys. Acta (Schmitt F.J., Renger G., Friedrich T., Kreslavski V.D., Zharmukhamedov S.K., Los D.A., Kuznetsov Vl.V., Allakhverdiev S.I. Reactive oxygen species: Re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim. Biophys. Acta, 2014, 1837: 835-848); A modified and edited form of this review is reprinted here, in the form of a chapter, with the permission of Elsevier.

^{*}Corresponding author: suleyman.allakhverdiev@gmail.com

S. I. Allakhverdiev (ed), Photosynthesis : New Approaches to the Molecular, Cellular, and Organismal Levels, (1–84) 2016 © Scrivener Publishing LLC

signal transduction in photosynthetic organisms including a summary of important mechanisms of nonphotochemical quenching in plants. We further describe microscopic techniques for ROS detection and controlled generation. Reaction schemes elucidating formation, decay and signaling of ROS in cyanobacteria as well as from chloroplasts to the nuclear genome in eukaryotes during exposure of oxygen-evolving photosynthetic organisms to oxidative stress are discussed that target the rapidly growing field of regulatory effects of ROS on nuclear gene expression.

Keywords: photosynthesis, plant cells, reactive oxygen species, ROS, oxidative stress, signaling systems, chloroplast, cyanobacteria, nonphotochemical quenching, chromophore-activated laser inactivation, sensors

1.1 Introduction

About 3 billion years ago the atmosphere started to transform from a reducing to an oxidizing environment as evolution developed oxygenic photosynthesis as key mechanism to efficiently generate free energy from solar radiation (Buick, 1992; Des Marais, 2000; Xiong and Bauer, 2002; Renger, 2008; Rutherford *et al.*, 2012; Schmitt *et al.*, 2014a). Entropy generation due to the absorption of solar radiation on the surface of the Earth was retarded by the generation of photosynthesis, and eventually a huge amount of photosynthetic and other organisms with rising complexity developed at the interface of the transformation of low entropic solar radiation to heat. The subsequent release of oxygen as a "waste" product of photosynthetic water cleavage led to the present-day aerobic atmosphere (Kasting and Siefert, 2002; Lane, 2002; Bekker *et al.*, 2004), thus opening the road for a much more efficient exploitation of the Gibbs free energy through the aerobic respiration of heterotrophic organisms (for thermo-dynamic considerations, see (Nicholls and Ferguson, 2013; Renger, 1983).

From the very first moment this interaction with oxygen generated a new condition for the existing organisms starting an evolutionary adaptation process to this new oxydizing environment. Reactive oxygen species (ROS) became a powerful selector and generated a new hierarchy of life forms from the broad range of genetic mutations represented in the biosphere. We assume that this process accelerated the development of higher, mainly heterotrophic organisms in the sea and especially on the land mass remarkably.

The efficient generation of biomass and the highly selective impact of ROS lead to a broad range of options for complex organisms to be developed in the oxydizing environment. The direct, mostly deleterious impact of ROS on the biosphere is thereby just a minor facet in the broad spectrum of consequences. Important and more complex side effects are for example given by the fact that the molecular oxygen led to generation of the stratospheric ozone layer, which is the indispensable protective shield against deleterious UV-B radiation (Worrest and Caldwell, 1986). ROS led to new complex constraints for evolution that drove the biosphere into new directions – by direct oxidative pressure and by long-range effects due to environmental changes caused by the atmosphere and the biosphere themselves as energy source for all heterotrophic organisms.

For organisms that had developed before the transformation of the atmosphere the pathway of redox chemistry between water and O_2 by oxygenic photosynthesis was harmful, due to the deleterious effects of ROS. O_2 destroys the sensitive constituents (proteins, lipids) of living matter. As a consequence, the vast majority of these species was driven into extinction, while only a minority could survive by finding anaerobic ecological niches. All organisms developed suitable defense strategies, in particular the cyanobacteria, which were the first photosynthetic cells evolving oxygen (Zamaraev and Parmon, 1980).

The ground state of the most molecules including biological materials (proteins, lipids, carbohydrates) has a closed electron shell with singlet spin configuration. These spin state properties are of paramount importance, because the transition state of the two electron oxidation of a molecule in the singlet state by ${}^{3}\Sigma_{g}O_{2}$ is "spin-forbidden" and, therefore, the reaction is very slow. This also accounts for the back reaction from the singlet to the triplet state.

In contrast to this majority of singlet ground state molecules the electronic configuration of the O₂ molecule in its ground state is characterized by a triplet spin multiplicity described by the term symbol ${}^{3}\Sigma_{g}^{-}O_{2}$. This situation drastically changes by two types of reactions which transform ${}^{3}\Sigma_{g}^{-}O_{2}$ into highly reactive oxygen species (ROS): i) Electronic excitation leads to population of two forms of singlet O₂ characterized by the term symbols ${}^{1}\Delta_{g}$ and ${}^{1}\Sigma_{g}^{+}$. The ${}^{1}\Sigma_{g}^{+}$ state with slightly higher energy rapidly relaxes into ${}^{1}\Delta_{g}O_{2}$ so that only the latter species is of physiological relevance (type I). ii) Chemical reduction of ${}^{3}\Sigma_{g}O_{2}$ (or ${}^{1}\Delta_{g}O_{2}$) by radicals with non-integer spin state (often doublet state) leads to formation of O₂⁻, which quickly reacts to HO₂⁻ and is subsequently transferred to H₂O₂ and HO⁻ (*vide infra*) (type II). In plants, the electronic excitation of ${}^{3}\Sigma_{g}O_{2}$ occurs due to close contact to chlorophyll triplets that are produced during the photoexcitation cycle (Schmitt *et al.*, 2014a) (see Figure 1.1, Figure 1.2). Singlet oxygen is

Figure 1.1 Production of ROS by interaction of oxygen with chlorophyll triplet states (type I) to ${}^{1}O_{2}$ or chemical reduction of oxygen to O_{2}^{-} (type II)

Figure 1.2 Scheme of ROS formation and water redox chemistry (water-water cycle, for details, see text)

predominantly formed via the reaction sensitized by interaction between a chlorophyll triplet (³Chl) and ground state triplet ${}^{3}\Sigma_{g}^{-}O_{2}$:

$${}^{3}\mathrm{Chl} + {}^{3}\Sigma_{g}^{-}\mathrm{O}_{2} \rightarrow {}^{1}\mathrm{Chl} + {}^{1}\Delta_{g}\mathrm{O}_{2}$$
(1)

³Chl can be populated either via intersystem crossing (ISC) of antenna Chls or via radical pair recombination in the reaction centers (RCs) of photosystem II (PS II) (for reviews, see Renger, 2008; Vass and Aro, 2008; Rutherford *et al.*, 2012; Schmitt *et al.*, 2014a). Alternatively, ¹ $\Delta_{g}O_{2}$ can also be formed in a controlled fashion by chemical reactions, which play an essential role in programmed cell death upon pathogenic infections (e.g. by viruses).

Figure 1.2 schematically illustrates the pattern of one-electron redox steps of oxygen forming the ROS species HO[•], H_2O_2 and HO_2^{-}/O_2^{-} in a four-step reaction sequence with water as the final product. The sequence comprises the water splitting, leading from water to $O_2 + 4H^+$ and the corresponding mechanism *vice versa* of the ROS reaction sequence. The production of ${}^{1}\Delta_{g}O_2$ is a mechanism next to that.

In biological organisms, the four-step reaction sequence of ROS is tamed and energetically tuned at transition metal centers, which are encapsulated in specifically functionalized protein matrices. This mode of catalysis of the "hot water redox chemistry" avoids the formation of ROS. In photosynthesis, the highly endergonic oxidative water splitting ($\Delta G^\circ = + 237.13 \text{ kJ/mol}$, see Atkins, 2014) is catalyzed by a unique Mn₄O₅Ca cluster of the water-oxidizing complex (WOC) of photosystem II and energetically driven by the strongly oxidizing cation radical P680⁺⁺ (Klimov *et al.*, 1978; Rappaport *et al.*, 2002) formed via light-induced charge separation (for review, see Renger, 2012).

Correspondingly, the highly exergonic process in the reverse direction is catalyzed by a binuclear heme iron-copper center of the cytochrome oxidase (COX), and the free energy is transformed into a transmembrane electrochemical potential difference for protons (for a review, see Renger, 2011), which provides the driving force for ATP synthesis (for a review, see Junge, 2008). In spite of the highly controlled reaction sequences in photosynthetic WOC and respiratory COX, the formation of ROS in living cells cannot be completely avoided. The excess of ROS under unfavorable stress conditions causes a shift in the balance of oxidants/antioxidants towards oxidants, which leads to the intracellular oxidative stress (Kreslavski et al., 2012b). Formation of ROS (the production rate) as well as decay of ROS (the decay rate) with the latter one determining the lifetime, both bring about the concentration distribution of the ROS pool (Kreslavski et al., 2013a). The activity of antioxidant enzymes, superoxide dismutase (SOD), catalase, peroxidases, and several others, as well as the content of low molecular weight antioxidants, such as ascorbic acid, glutathione,

tocopherols, carotenoids, anthocyanins, play a key role in regulation of the level of ROS and products of lipid peroxidation (LP) in cells (Apel and Hirt, 2004; Pradedova *et al.*, 2011; Kreslavski *et al.*, 2012b).

The exact mechanisms of neutralization and the distribution of ROS have not been clarified so far. Especially the involvement of organelles, cells and up to the whole organism, summarizing the complicated network of ROS signaling (see chap. 6 and 7) are still far from being completely understood (Swanson and Gilroy, 2010; Kreslavski *et al.*, 2012b, 2013a).

Photosynthetic organisms growing under variable environmental conditions are often exposed to different types of stress like harmful irradiation (UV-B or high-intensity visible light), heat, cold, high salt concentration and also infection of the organisms with pathogens (viruses, bacteria) (Gruissem *et al.*, 2012). Under these circumstances, the balance between oxidants and antioxidants within the cells is disturbed. This imbalance leads to enhanced population of ROS including singlet oxygen (${}^{1}\Delta_{g}O_{2}$), superoxide radicals (O_{2}^{-} or HO₂), hydrogen peroxide ($H_{2}O_{2}$) and hydroxyl radical (HO⁺). Other highly reactive oxygen species like atomic oxygen or ozone are either not formed or play a role only under very special physiological conditions and will not be considered here. In this sense, the term ROS is used in a restricted manner. In addition to ROS, also reactive nitrogen- and sulfur-based species play an essential role in oxidative stress (OS) developed within the cells (Fryer *et al.*, 2002; Benson, 2002). However, this interesting subject is beyond the scope of this chapter.

It is obvious that ROS exert deleterious effects. Oxidative destruction by ROS is known and has been studied for decades. However, ROS also act as important signaling molecules with regulatory functions, which have been unraveled only recently. ROS were found to play a key role in the transduction of intracellular signals and in control of gene expression and activity of antioxidant systems (Desikan *et al.*, 2001; Desikan *et al.*, 2003; Apel and Hirt, 2004; Mori and Schroeder, 2004; Galvez-Valdivieso and Mullineaux, 2010; Foyer and Shigeoka, 2011). Being implicated in reactions against pathogens, (e.g. by respiratory bursts) and by the active participation in signaling, ROS have a protective role in plants (Bolwell *et al.*, 2002; Dimitriev, 2003).

ROS contribute to acclimation and protection of plants, regulate processes of polar growth, stromatal activity, light-induced chloroplast movements, and plant responses to biotic and abiotic environmental factors (Mullineaux *et al.*, 2006; Pitzschke and Hirt, 2006; Miller *et al.*, 2007; Swanson and Gilroy, 2010; Vellosillo, 2010). In animals, recent studies have established that physiological H₂O₂ signaling is essential for stem cell proliferation, as illustrated in neural stem cell models, where it can also influence subsequent neurogenesis (Dickinson and Chang, 2011). This chapter will describe generation and decay of ROS and their monitoring in cells including novel microscopic techniques. Additionally the rapidly growing field of regulatory effects and pathways of ROS will be described although a complete description of the multitude of roles of ROS from nonphotochemical quenching (NPQ) to genetic signaling is impossible. However, this chapter provides an overview about the existing knowledge aiming to include the most important original literature and reviews. The book chapter is based on the review of (Schmitt *et al.*, 2014a); however, it is significantly broadened to cover the fields that were not mentioned in (Schmitt *et al.*, 2014a).

1.2 Generation, Decay and Deleterious Action of ROS

The interaction between chlorophyll triplets (³Chl) and triplet ground state of molecular oxygen (${}^{3}\Sigma_{g}^{-}O_{2}$): ${}^{3}Chl + {}^{3}\Sigma_{g}^{-}O_{2} \rightarrow {}^{1}Chl + {}^{1}D_{g}O_{2}$ is the predominant reaction forming singlet oxygen (${}^{1}\Delta_{g}O_{2}$) in photosynthetic organisms (see Figure 1.1). ${}^{3}Chl$ is populated either via intersystem crossing (ISC) of antenna Chls or via radical pair recombination in the reaction centers of photosystem II (PS II) (for reviews, see Renger, 2008; Rutherford *et al.*, 2012). Alternatively, ROS can also be formed by direct reduction of oxygen, most probably at PS I and by controlled chemical reactions, which play an essential role in programmed cell death upon pathogenic (e.g. viral) infections. The general water-water cycle which is mostly responsible for the subsequent formation of O_{2}^{-} or HO_{2}^{-} , $H_{2}O_{2}$ and HO⁺ is shown in Figure 1.2.

Under optimal conditions, only small amounts of ROS are generated in different cell compartments. However, exposure to stress can lead to a drastic increase of ROS production and sometimes to inhibition of cell defense systems (Desikan *et al.*, 2001; Nishimura and Dangl, 2010). As a consequence of unfavorable conditions, oxidative stress is developed due to the generation of ROS via both the sensitized ${}^{1}\Delta_{g}O_{2}$ formation and the reductive pathways leading to production of O_{2}^{-} , $H_{2}O_{2}$ and HO⁺ radicals (see Figure 1.2).

Rapid transient ROS generation can be observed and is called "oxidative burst" (Bolwell *et al.*, 2002). In this case, a high ROS content is attained within time periods from several minutes up to hours. Oxidative bursts occur during many plant cell processes, especially photosynthesis, dark respiration and photorespiration. Studies using advanced imaging techniques, e.g. a luciferase reporter gene expressed under the control of a rapid ROS response promoter in plants (Miller *et al.*, 2009), or a new H_2O_2 /redox state-GFP sensor in zebrafish (Niethammer *et al.*, 2009; see chapter 4, *"Monitoring of ROS"*), revealed that the initial ROS burst triggers a cascade of cell-to-cell communication events that result in formation of a ROS wave. This wave is able to propagate throughout different tissues, thereby carrying the signal over long distances (Mittler *et al.*, 2011). Recently, the auto-propagating nature of the ROS wave was experimentally demonstrated. Miller *et al.* (2009) showed by local application of catalase or an NADPH oxidase inhibitor that a ROS wave triggered by different stimuli can be blocked at distances of up to 5-8 cm from the site of signal origin. The signal requires the presence of the NADPH oxidase (the product of the *RbohD* gene) and spreads throughout the plant in both the upper and lower directions.

The lifetime of ${}^{1}\Delta_{g}O_{2}$ in aqueous solution is about 3.5 ms (Egorov *et al.*, 1989). On the other hand, the lifetime is significantly shortened in cells due to the high reactivity of ${}^{1}\Delta_{\sigma}O_{2}$, which rapidly attacks all relevant biomolecules (pigments, proteins, lipids, DNA), thus leading to serious deleterious effects. Values in the order of 200 ns were reported for ${}^{1}\Delta_{\alpha}O_{2}$ in cells (Gorman and Rogers, 1992) so that the species can diffuse up to 10 nm under physiological conditions (Sies and Menck, 1992), thus permitting penetration through membranes (Schmitt et al., 2014a). Distances up to 25 nm have been reported (Moan, 1990) suggesting that ${}^1\!\Delta_{_{\rm g}}{\rm O}_{_2}$ can permeate through the cell wall of E. coli. The singlet oxygen chemistry significantly depends on the environment, solvent conditions and the temperature (Ogilby and Foote, 1983). Higher values of up to 14 µs lifetime and 400 nm diffusion distance in lipid membranes suggest that ${}^{1}\Delta_{o}O_{2}$ can indeed diffuse across membranes of cell organelles and cell walls (Baier et al., 2005). But as most proteins are prominent targets (Davies, 2003) with reaction rate constants in the range of 108-109 M-1s-1 the potential of ${}^{1}\Delta_{\sigma}O_{2}$ to work directly as a messanger is rather limited (Wilkinson *et al.*, 1995). Among the canonical amino acids, only five (Tyr, His, Trp, Met and Cys) are primarily attacked by a chemical reaction with ${}^{1}\Delta_{o}O_{2}$, from which Trp is unique by additionally exhibiting a significant physical deactivation channel that leads to the ground state $^3\Sigma_g^-O_2$ in a similar way as by quenching with carotenoids. The reaction of ${}^{1}\Delta_{0}O_{2}$ with Trp primarily leads to the formation of peroxides, which are subsequently degraded into different stable products. One of these species is N-formylkynurenine (Gracanin et al., 2009). This compound exhibits optical and Raman spectroscopic characteristics that might be useful for the identification of ROS generation sites (Kasson and Barry, 2012). The reactivity of Trp in proteins was shown

to markedly depend on the local environment of the target (Jensen *et al.*, 2012). Detailed mass spectrometric studies revealed that a large number of oxidative modifications of amino acids are caused by ROS and reactive nitrogen species (Galetskiy *et al.*, 2011).

The wealth of studies on damage of the photosynthetic apparatus (PA) by ${}^{1}\Delta_{g}O_{2}$ under light stress and repair mechanisms is described in several reviews and book chapters on photoinhibition (Adir *et al.*, 2003; Allakhverdiev and Murata, 2004; Nishiyama *et al.*, 2006; Murata *et al.*, 2007; Vass and Aro, 2008; Li *et al.*, 2009, 2012; Goh *et al.*, 2012, Allahverdiyeva and Aro, 2012). Such high reactivity leads to an extensive oxidation of fundamental structures of PS II where oxygen is formed in the water-oxidizing complex. ${}^{1}\Delta_{g}O_{2}$ is directly involved in the direct damage of PS II (Mishra *et al.*, 1994; Hideg *et al.*, 2007; Triantaphylidès *et al.*, 2008, 2009; Vass and Cser, 2009), destroying predominantly the D1 protein, which plays a central role in the primary processes of charge separation and stabilization in PS II. The resulting photoinhibition of PS II (Nixon *et al.*, 2010) leads to dysfunction of D1 and high turnover rates during the so-called D1-repair cycle. D1 by far exhibits the highest turnover rate of all thylakoid proteins and underlies complex regulatory mechanisms (Loll *et al.*, 2008).

Carotenoids play a pivotal role in ³Chl suppression and quenching (Frank *et al.*, 1993; Pogson *et al.*, 2005). In addition, NPQ developed under light stress also reduces the population of ³Chl in antenna systems as well as PS II of plants (Ruban *et al.*, 1994; Härtel *et al.*, 1996; Carbonera *et al.*, 2012) (see chapter 3). The interaction between ${}^{1}\Delta_{g}O_{2}$ and singlet ground state carotenoids does not only lead to photophysical quenching, but also to oxidation of carotenoids by formation of species that can act as signal molecules for stress response (Ramel *et al.*, 2012). Likewise, lipid (hydro)peroxides generated upon oxidation of polyunsaturated fatty acids by ${}^{1}\Delta_{g}O_{2}$ can act as triggers to initiate signal pathways, and propagation of cellular damage (Galvez-Valdivieso and Mullineaux, 2010; Triantaphylides and Havaux, 2009). Detailed studies of the damage of the PA by ${}^{1}\Delta_{g}O_{2}$ are additionally found in (Allakhverdiev and Murata, 2004; Nishiyama *et al.*, 2012; Li *et al.*, 2012).

Among all ROS, the O_2^{-*}/H_2O_2 system is one of the key elements in cell signaling and other plant functions (see Figure 1.1). O_2^{-*} and H_2O_2 are assumed to initiate reaction cascades for the generation of "secondary" ROS as necessary for long-distance signaling from the chloroplasts to or between other cell organelles (Baier and Dietz, 2005; Sharma *et al.*, 2012; Bhattacharjee, 2012).

The initial step in formation of redox intermediates of the H_2O_2/O_2 system in all cells is the one-electron reduction of O_2 to O_2^- (see Figure 1.2). O_2^-

and H_2O_2 are mainly formed in chloroplasts, peroxisomes, mitochondria and cell walls (Bhattacharjee, 2012). Enzymatic sources of O_2^{-*} / H_2O_2 generation have been identified such as cell wall-bound peroxidases, aminooxidases, flavin-containing oxidases, oxalate and plasma membrane NADPH oxidases (Bolwell *et al.*, 2002; Mori and Schroeder, 2004; Svedruzic *et al.*, 2005). In particular, sources of ROS in the apoplast are oxidases bound to the cell wall, peroxidases, and polyamino oxidases (Minibayeva *et al.*, 1998, 2009b).

The major source of O_2^-/H_2O_2 production in chloroplasts is the acceptor side of photosystem I (PS I) (Asada, 1999, 2006). The exact mechanism of O_2 reduction is still a matter of discussion. It was assumed that O_2 mainly is reduced by transfer of electrons from reduced ferredoxin (Fd) to O_2 via ferredoxin-thioredoxin reductase (Gechev *et al.*, 2006) although this assumption was challenged since a long time (Asada *et al.*, 1974; Goldbeck and Radmer, 1984). New findings showed that reduced Fd was only capable of low rates of O_2 reduction in the presence of NADP⁺ with contribution to the total O_2 reduction not exceeding 10% (Kozuleva and Ivanov, 2010; Kozuleva *et al.*, 2014). NADPH oxidase (NOX) is considered to be involved into ROS production both in animal and plant cells (Sagi and Fluhr, 2001, 2006) according to the reaction NADPH + 2 $O_2 \rightarrow$ NADPH⁺ + 2 O_2^- + H⁺.

Under conditions of limited NADPH consumption due to impaired CO_2 fixation rates via the Calvin-Benson cycle in photosynthetic organisms, some components of the electron transport chain (ETC) will stay reduced and can perform ${}^{3}\Sigma_{g}O_{2}$ reduction to O_{2}^{-} . It is suggested that H_2O_2 formation takes place in the plastoquinone (PQ) pool, but with a low rate (Ivanov *et al.*, 2007), studies on mutants of *Synechocystis* sp. PCC 6803 lacking phylloquinone (*menB* mutant) show the involvement of phylloquinone in O_{2} reduction (Kozuleva *et al.*, 2014).

Recent literature suggests very short lifetimes for O_2^{\rightarrow} radicals in the μ s regime (1 μ s half-life is published in (Sharma *et al.*, 2012), while 2-4 ms are found in (Gechev *et al.*, 2006) - which is about one order of magnitude longer than that of {}^{1}\Delta_{g}O_{2} (*vide supra*). O_2^{\rightarrow} radicals are rapidly transformed into H₂O₂ via the one-electron steps of the dismutation reaction catalyzed by the membrane-bound Cu/Zn-superoxide dismutase (SOD) (see Figure 1.2) (Asada, 1999, 2006).

Three forms of SODs exist in plants containing different metal centers, such as manganese (Mn-SOD), iron (Fe-SOD), and copper-zinc (Cu/Zn-SOD) (Bowler *et al.*, 1992; Alscher *et al.*, 2002), from which Cu/Zn-SOD is the dominant form. The non-enzymatic O_2^{-1} dismutation reaction is very slow (Foyer and Noctor, 2009; Foyer and Shigeoka, 2011). Earlier literature