

MARINE CONSERVATION

Science, Policy, and Management

**G. Carleton Ray
Jerry McCormick-Ray**

Illustrations by Robert L. Smith, Jr.

WILEY Blackwell

Table of Contents

[Frontispiece](#)

[Title page](#)

[Copyright page](#)

[Dedication](#)

[Contributors](#)

[Preface](#)

[About the Companion Website](#)

[CHAPTER 1: In Pursuit of Marine Conservation](#)

[1.1 The Emergence of Modern Marine Conservation](#)

[1.2 Defining “Marine Conservation”](#)

[1.3 Marine Conservation's Scope](#)

[1.4 Adapting Marine Conservation to the 21st Century](#)

[CHAPTER 2: Marine Conservation Issues](#)

[2.1 Igniting Marine Conservation Concern](#)

[2.2 Primary Issues: Loss of Marine Biodiversity](#)

[2.3 Secondary Issues: Human Activities](#)

2.4 Tertiary Issues: Emergent and Unintended Consequences

2.5 The Challenge for the 21st Century

CHAPTER 3: Marine Conservation Mechanisms

3.1 The Toolkit

3.2 Biological Conservation

3.3 Spatially Explicit Conservation

3.4 Governance: Policy, Strategy, Tactics

3.5 Policy Instruments for Marine Conservation

3.6 Management Concepts

3.7 Agents for Conservation

3.8 Conclusion

CHAPTER 4: Marine Systems: The Base for Conservation

4.1 A Systems Approach

4.2 Dynamic Planetary Forces

4.3 Major Ocean Structures and Conditions

4.4 Planetary Cycles

4.5 Major Planetary Interfaces

4.6 The Dynamic Coastal Realm

4.7 The Coastal Realm: An Ecosystem of Global Importance

4.8 The Ecosystem Concept

4.9 Ecosystem Base for Conservation

CHAPTER 5: Natural History of Marine Organisms

- 5.1 What Is Natural History?
- 5.2 Darwinian Evolution
- 5.3 Diversity of Marine Life
- 5.4 Life History
- 5.5 Biological Associations
- 5.6 Biogeographic Patterns in Space and Time
- 5.7 Biotic Functional Diversity
- 5.8 “Seascape” as an Organizing Principle
- 5.9 Natural History: The Basis for Conservation

CHAPTER 6: Chesapeake Bay: Estuarine Restoration with an Environmental Debt

- 6.1 The Great Shellfish Bay
- 6.2 Ecological Linkages to Natural Wealth
- 6.3 Eastern Oyster: Quintessential Estuarine Species
- 6.4 From Resource Abundance to Ecosystem Change
- 6.5 Bay Restoration: Chartering a Course
- 6.6 People Shall Judge

CHAPTER 7: Bering Sea Seals and Walruses: Responses to Environmental Change

- 7.1 A Short History of Dramatic Change
- 7.2 Biophysical Setting

[7.3 Marine Mammals of the Southeastern Bering Sea](#)

[7.4 Ice-Dependent Pinnipeds of the Northern Bering Sea](#)

[7.5 Do Large Marine Mammals Matter?](#)

[7.6 The Conflict Arena](#)

[7.7 Cultural Factors: Subsistence Hunting, Traditional Knowledge, and Community Well-Being](#)

[7.8 Are Beringian Pinnipeds and the Bering Sea Ecosystem at Risk?](#)

CHAPTER 8: The Bahamas: Conservation for a Tropical Island Nation

[8.1 A Nation of Islands](#)

[8.2 Biophysical and Social Setting](#)

[8.3 Conservation Issues](#)

[8.4 Governance for Sustainability](#)

[8.5 Island System at a Crossroads](#)

CHAPTER 9: The Isles of Scilly: Sustaining Biodiversity

[9.1 Setting the Scene](#)

[9.2 Physical and Biogeographic Setting](#)

[9.3 Measuring and Measures of Biodiversity](#)

[9.4 Sustaining Biodiversity from Possible Threats](#)

[9.5 Conservation Legislation, Mechanisms, and Voluntary Actions](#)

[9.6 The Conservation Status of Scilly](#)

CHAPTER 10: Gwaii Haanas: From Conflict to Cooperative Management

10.1 Nation-to-Nation Pursuit of Land-Sea Conservation

10.2 Natural Heritage

10.3 Cultural and Commercial Heritage

10.4 Integrating Land-Sea Conservation

10.5 Crucible for Ecosystem-Based Management

CHAPTER 11: South Africa: Coastal-Marine Conservation and Resource Management in a Dynamic Socio-Political Environment

11.1 A Challenge for Governance

11.2 South Africa's Coastal Realm: Physical, Biotic, and Human Setting

11.3 Major Conservation Issues of South African Coasts

11.4 Coastal Resource Management: Past and Present

11.5 In Pursuit of the Kogelberg Biosphere Reserve

11.6 The Future of Coastal Management in South Africa

CHAPTER 12: Species-Driven Conservation of Patagonian Seascapes

12.1 Darwin's Patagonia

12.2 A Conservation Dilemma

12.3 Oceanographic and Biogeographic Settings

[12.4 Conservation Setting: The Status of a Non-Pristine Ocean](#)

[12.5 Seascape Species: A First Approach to Setting Conservation Priorities](#)

[12.6 From Seascape Spaces to Important Foraging Areas](#)

[12.7 The Concept of “Large Ocean Reserves”](#)

[12.8 A First Step Towards a Patagonian Sea LOR: Candidate Areas for Conservation](#)

[12.9 Making Slow Progress](#)

[CHAPTER 13: From Being to Becoming: A Future Vision](#)

[13.1 The New Normal](#)

[13.2 From Being ...](#)

[13.3 ... To Becoming](#)

[13.4 Emerging Concepts for Marine Conservation](#)

[13.5 Look to the Future](#)

[Species Index](#)

[Subject Index](#)

The land-sea coastal realm from the tropics to polar regions, where the majority of marine conservation issues lie. See Chapters 2 and 4 for physical and biological/ecological characterization. Illustration © Robert L. Smith, Jr.

Cover image: created in Photoshop by Robert L. Smith, Jr., from separate pictures of the walrus and the ice floe, Bering Sea. Photographs © Ray & McCormick-Ray.

MARINE CONSERVATION

SCIENCE, POLICY, AND MANAGEMENT

G. Carleton Ray and Jerry McCormick-Ray

Department of Environmental Sciences
University of Virginia
Charlottesville, Virginia, USA

Illustrations by Robert L. Smith, Jr.

WILEY Blackwell

This edition first published 2014 © 2014 by G. Carleton Ray
and Jerry McCormick-Ray

Registered office: John Wiley & Sons, Ltd, The Atrium,
Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial offices: 9600 Garsington Road, Oxford, OX4 2DQ,
UK

The Atrium, Southern Gate, Chichester, West Sussex, PO19
8SQ, UK

111 River Street, Hoboken, NJ 07030-5774, USA

For details of our global editorial offices, for customer
services and for information about how to apply for
permission to reuse the copyright material in this book
please see our website at www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this
work has been asserted in accordance with the UK
Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, except as permitted
by the UK Copyright, Designs and Patents Act 1988, without
the prior permission of the publisher.

Designations used by companies to distinguish their
products are often claimed as trademarks. All brand names
and product names used in this book are trade names,
service marks, trademarks or registered trademarks of their
respective owners. The publisher is not associated with any
product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher
and author(s) have used their best efforts in preparing this
book, they make no representations or warranties with
respect to the accuracy or completeness of the contents of

this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Ray, G. Carleton.

Marine conservation : science, policy, and management / G. Carleton Ray and Jerry McCormick-Ray.

pages cm

Includes bibliographical references and index.

ISBN 978-1-118-71444-7 (cloth) - ISBN 978-1-4051-9347-4 (pbk.) 1. Marine resources conservation-Textbooks. I. McCormick-Ray, Jerry. II. Title.

GC1018.R39 2014

333.91'6416-dc23

2013014734

A catalogue record for this book is available from the British Library.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

To Sally Lyons Brown for her vision and support, and to
Raymond F. Dasmann and F. Herbert Bormann who continue
to inspire us.

Contributors

Mark A. Albins
Marine Fish Laboratory
Auburn University
Fairhope, Alabama, USA

Alan B. Bolten
Department of Biology
Archie Carr Center for Sea Turtle Research
University of Florida
Gainesville, Florida, USA

Karen A. Bjorndal
Department of Biology
Archie Carr Center for Sea Turtle Research
University of Florida
Gainesville, Florida, USA

Robert L. Brownell, Jr.
NOAA Southwest Fisheries Center
Pacific Grove, California, USA

Claudio Campagna
Wildlife Conservation Society
Buenos Aires, Argentina

Randolph M. Chambers
Department of Environmental Science and Policy
College of William and Mary
Williamsburg, Virginia, USA

Mark R. Christie
Department of Zoology
Oregon State University
Corvallis, Oregon, USA

Philip J. Clapham
National Marine Mammal Laboratory
National Oceanic and Atmospheric Administration
Seattle, Washington, USA

Barry Clark
Zoology Department
University of Cape Town
South Africa

Paul K. Dayton
Scripps Institution of Oceanography
University of California, San Diego
San Diego, California, USA

Hon. Earl D. Deveaux
[Retired, Minister of the Environment, The Bahamas]
Nassau, Bahamas

Robert J. Diaz
Department of Biological Sciences
Virginia Institute of Marine Sciences
College of William and Mary
Gloucester Point, Virginia, USA

David B. Eggleston
Department of Marine, Earth and Atmospheric Sciences

*North Carolina State University
Raleigh, North Carolina, USA*

R. Michael Erwin
*[Retired, Department of Environmental Sciences,
University of Virginia]
Weaverville, North Carolina, USA*

James A. Estes
*Center for Ocean Health
University of California, Santa Cruz
Santa Cruz, California, USA*

Valeria Falabella
*Wildlife Conservation Society
Buenos Aires, Argentina*

Michael Garstang
*[Retired, Department of Environmental Sciences,
University of Virginia]
Charlottesville, Virginia, USA*

J. Frederick Grassle
*Institute of Marine and Coastal Sciences
Rutgers University
New Brunswick, New Jersey, USA*

Allan Heydorn
*[Retired CEO, World Wildlife Fund, South Africa]
Stellenbosch, South Africa*

Mark A. Hixon
University of Hawai'i at Manoa

Honolulu, Hawai'i, USA

Edward D. Houde

Center for Environmental Science

University of Maryland

Solomons, Maryland, USA

Gary L. Hufford

[Retired National Weather Service]

National Oceanic and Atmospheric Administration

Eagle River, Alaska, USA

Brian J. Huntley

[Retired Director, Kirstenbosch National Botanical Garden]

Capetown, South Africa

Yulia V. Ivashchenko

National Marine Mammal Laboratory

National Oceanic and Atmospheric Administration

Seattle, Washington, USA

Steven Kohl

Department of the Interior

Fish and Wildlife Service

Washington, D.C., USA

Igor Krupnik

Arctic Studies Center

National Museum of Natural History

Smithsonian Institution

Washington, D.C., USA

Craig A. Layman

*Department of Applied Ecology
School of Agriculture
North Carolina State University
Raleigh, North Carolina, USA*

Romuald N. Lipcius
*Department of Fisheries Science
Virginia Institute of Marine Science
College of William and Mary
Gloucester Point, Virginia, USA*

Thomas R. Loughlin
*[Retired, NOAA National Marine Mammal Laboratory]
Redmond, Washington, USA*

John C. Ogden
*Florida Institute of Oceanography
St. Petersburg, Florida, USA*

James E. Perry
*Department of Coastal and Ocean Policy
Virginia Institute of Marine Science
College of William and Mary
Gloucester Point, Virginia, USA*

Eleanor Phillips
*The Nature Conservancy
Northern Caribbean Office
Nassau, The Bahamas*

James H. Pipkin
*[Retired, U.S. Department of State Special Negotiator for
Pacific Salmon (1994 to 2001); U.S. federal Commissioner*

on the bilateral Pacific Salmon Commission (1999 to 2002); Counselor to the U.S. Secretary of the Interior (1993 to 1998); and Director of the Interior Department's Office of Policy Analysis (1998 to 2001)]

Bethesda, Maryland, USA

Robert Prescott-Allen

*[Retired, International Union for Conservation of Nature and Natural Resources, author of *The Wellbeing of Nations*, co-author of *Blueprint for Survival*, *World Conservation Strategy*, and *Caring for the Earth: a Strategy for Sustainable Living*]*

Victoria, British Columbia, Canada

Brandon J. Puckett

*Department of Marine, Earth and Atmospheric Sciences
North Carolina State University
Raleigh, North Carolina, USA*

Sam Ridgway

[Retired, U.S. Navy Marine Mammal Program, and Professor of Comparative Pathology, Veterinary Medical Center, University of California, San Diego]

San Diego, California, USA

Rutger Rosenberg

*Kristineberg Marine Research Station
University of Gothenburg
Sweden*

Brian R. Silliman

*Division of Marine Science and Conservation Nicholas School of the Environment
Duke University*

Durham, North Carolina, USA

N. A. Sloan

*Gwaii Haanas National Park Reserve, National Marine Conservation Area Reserve, and Haida Heritage Site
Haida Gwaii, British Columbia, Canada*

Paul Snelgrove

*Ocean Sciences Centre and Biology Department
Memorial University of Newfoundland
St. John's, Newfoundland, Canada*

Amber J. Soja

*NASA National Institute of Aerospace
Hampton, Virginia, USA*

William T. Stockhausen

*Alaska Fisheries Science Center
National Marine Fisheries Service, NOAA
Seattle, Washington, USA*

Lori A. Sutter

*Virginia Institute of Marine Science
College of William and Mary
Gloucester Point, Virginia, USA*

Richard M. Warwick

*Plymouth Marine Laboratory
Plymouth, Devon, UK*

Kirk O. Winemiller

*Texas A&M University
Department of Wildlife and Fisheries Sciences*

College Station, Texas, USA

Victoria Zavattieri
Wildlife Conservation Society
Buenos Aires, Argentina

Preface

We are at a time in history when science allows us better to understand our global environment, and when human societies are beginning to recognize the urgency of marine conservation and the need for sustainable use of marine resources. As John A. Moore (1993) has put it: “We have reached a point in history when biological knowledge is the *sine qua non* for a viable human future ... A critical subset of society will have to understand the nature of life, the interaction of living creatures with their environment, and the strengths and limitations of the data and procedures of science itself. The acquisition of biological knowledge, so long a luxury except for those concerned with agriculture and the health sciences, has now become a necessity for all.”

During the past century, humans have acquired the ability to intrude, exploit, and better understand the last, previously unexplored portion of Earth—the contiguous global oceans. The rates and magnitude of change brought on by the Marine Revolution (Ray, 1970) followed 5-10,000 years of the Agricultural Revolution and two centuries of the Industrial Revolution, with dangers of repeating errors of the past. Observation of the quickening pace of change and the way that humans behave and manage themselves, and increasing knowledge of the way marine ecosystems function have made apparent major ecosystem instabilities and management incongruences. Approaches deemed feasible when marine conservation was emerging only a half-century ago no longer fulfill needs of the 21st century. That the world has become “hot, flat, and crowded” (Friedman, 2008) makes clear the need for new marine conservation approaches.

Our previous book, *Coastal-Marine Conservation: Science and Policy* (Blackwell Science, 2004) called attention to the fundamental role natural history and ecosystem-based science play in conservation policy and management planning. That is, conservation must be informed by the natural histories of organisms *together with* the hierarchy of scale-related linkages and ecosystem processes. This book continues that focus on a whole-systems approach to marine conservation, taking account of major advances in marine ecosystem understanding to guide marine conservation practice. Our objective is to expose students and other readers to the broad range of overlapping issues ([Chapter 2](#)) in the context of present conservation mechanisms that have been devised to achieve marine conservation goals ([Chapter 3](#)). Achieving these goals depends on understanding basic marine ecosystem science ([Chapter 4](#)) and the natural histories of marine organisms ([Chapter 5](#)), that is, how organisms make a living in dynamic and often stressful environments. In that process, we call attention to emergent and unexpected properties that are changing coastal and marine systems—climate change, ocean acidification, dead zones, and loss of biodiversity—that challenge the resilience of coast-ocean systems, hence also governance and human well-being. We present seven “real-world” case studies that exemplify coastal and marine conservation in action, each presenting a central issue or issues in the context of its biogeographic and social setting. Each combines theoretical (“pure”) and applied science, and each concludes with challenges to governance that are not yet fully resolved.

A final synthesis chapter looks to the future, to transition coastal and marine conservation from the *being* of traditional, fragmented, protection, and management to the *becoming* of ecosystem-based approaches, intertwined in a social-ecological system, that propel marine biodiversity and

society into the future. Overall, this book is an attempt to provide a framework for thoughtful, critical thinking in order to incite innovation in the new Anthropocene Era of the 21st century.

References, scientific terms, Latin names, and units. This book provides readers with a window into a massive literature on conservation science, policy, and management as a context for understanding the present state of knowledge of marine ecosystems, their life, and their current conservation and management. The language of science is enormous and similar terms often have different, even contradictory, meanings among disciplines. We have attempted to explain these terms by defining some of them in the text. We do not include a glossary, as definitions can be accessed in science dictionaries or through search engines on the Internet. We use the International System of Units (SI units) and metric measurements (e.g., m = meters, mt = tonnes, km = kilometers, nmi = nautical miles, etc.) throughout the text.

Species are referred to by their vernacular (“common”) names (blue crab, herring, porpoise, etc.) with Latin names for proper identification. Care must be taken with vernacular names because for the great majority of species these names are not standardized (mammals, birds, and some fishes are notable exceptions). For example, “cod” is a common name for a valuable Atlantic fish of the cod family (Gadidae), but “cod” in Australia refers to groupers of the sea bass family (Serranidae), and for some species of the Southern Ocean “cod” refers to ice fishes of the family Nototheniidae; similarly, “rockfish” may refer to a number of fishes from a half dozen families of fishes; and, the “Dover sole” of the north eastern Pacific is not the highly valued Dover sole of the eastern Atlantic. Therefore, scientific names are essential for identification, and are given with

the vernacular the first time the species is mentioned in each chapter, or if far separated.

Acknowledgements and permissions. We first wish to thank the Curtis and Edith Munson Foundation and The Henry Foundation of Washington, D.C., for generous support for the writing and publication of this book in full color, as well as other donors to the University of Virginia Global Biodiversity Fund. We remain deeply grateful to the late Sally Lyons Brown and the W. L. Lyons Brown Foundation for encouragement and support of the 2004 edition, without which the writing of the present book would have been far more arduous.

We especially wish to thank all co-authors and contributors of boxes for volunteering their time and expertise and for their patience during the four-year preparation of this book; these persons are identified accompanying their contributions, and their affiliations are given under Collaborating Authors following this Preface. Acknowledgements to persons and publications who provided photographs and figures are given as those materials appear. Chapters that list no authors, and photographs acknowledged as "the authors" are ours.

We are especially indebted to persons who have influenced our thinking during past decades: Frederick B. Bang, Raymond F. Dasmann, Francis H. Fay, J. Frederick Grassle, Starker Leopold, John A. Moore, Kenneth S. Norris, John C. Ogden, Fairfield Osborn, C. Richard Robins, William E. Schevill, William A. Watkins, and Sir Peter Scott. Others have been especially helpful by providing information specific to individual chapters: David Argument, Pat Bartier, Peter Berg, Charles Birkeland, Peter Boveng, Michael Braynen, Michael Cameron, Eric Carey, Mark H. Carr, Roger Covey, Jon Day, Terri Dionne, Catlyn Epners, D. Fedje, Lynn Gape, Robert Ginsburg, E. Gladstone, Samuel H. Gruber, Bruce P. Hayden, William J. Hargis, Nick Irving, Paula Jasinski,

Victor S. Kennedy, Bjorn Kjerfve, Casuarina Lambert McKinney, Jeffrey Lape, Ian G. Macintyre, Dennis Madsen, Karen McGlathery, Pericles Maillis, John D. Milliman, Mary Morris, Roger Newell, Rick Parish, David Pollard, Cliff Robinson, Yvonne Sadovy, Rodney V. Salm, Neil E. Sealey, Kenneth Sherman, Herman H. Shugart, Richard Starke, Ann Swanson, Brent and Robin Symonette, Hillary Thorpe, Brian Walker, Douglas Wartzok, Maire Warwick, and Pat Wiberg. Mark Hixon, Mark Albins, and Mark Christie acknowledge support from the U. S. National Science Foundation for their research on reef-fish larval connectivity, as reviewed in [Chapter 5](#) (grants OCE-00-93976 and OCE-05-50709), and the lionfish invasion in [Chapter 6](#) (grants OCE-08-51162, OCE-12-33027, and a Graduate Research Fellowship). Norm Sloan (Ch. 10) also expresses thanks to those who contributed to the 2006 technical overview of Gwaii Haanas Marine: Pat Bartier, John Broadhead, Lyle Dick, Catlyn Epners, Daryl Fedje, Debby Gardiner, John Harper, Anna-Maria Husband, Greg Martin, Mary Morris, Trevor Orchard, Marlow Pellatt, Cliff Robinson, Ian Sumpter, and Ian Walker. Finally, we thank students who have taken our marine conservation courses at the University of Virginia for their often-insightful comments.

We also wish to thank the authors, illustrators, journals, and publishers who have given permission to use their work, as noted in captions to figures and tables.

We are grateful for the encouragement of funding organizations and agencies for which we have been granted support or have served an advisory or consultancy role, most particularly: ICSU (International Council for Science), IUCN (International Union for the Conservation of Nature and National Resources), NASA (National Aeronautics and Space Administration), National Geographic Society, National Oceanic and Atmospheric Administration, National Science Foundation, New York Aquarium (Wildlife

Conservation Society), Office of Naval Research, UNESCO, U.S. Man and the Biosphere Program, Bahamas National Trust, U.S. Marine Mammal Commission, and U.S. National Park Service.

We are indebted to Ward Cooper, Izzy Canning, Kelvin Matthews, Delia Sandford, Carys Williams, Kenneth Chow and Audrie Tan of Wiley Blackwell for their efficiency and positive encouragement, as well as Ian Sherman and his co-workers who worked with us on the 2004 edition, without whom this new edition would not have been possible. We finally wish to thank Ruth Swan, project manager for Toppan Best-set, and Mark Ackerley, freelance copyeditor, for their diligent and thorough proofing, and freelancer Elizabeth Paul for her arduous permission seeking.

G. Carleton Ray and Jerry McCormick-Ray

References

Friedman TL (2008) *Hot, Flat, and Crowded: Why We Need a Green Revolution—and How it Can Renew America*. Farrar, Straus and Giroux, New York.

Moore JA (1993) *Science as a Way of Knowing: The Foundation of Modern Biology*. Harvard University Press, Cambridge, Massachusetts.

Ray C (1970) Ecology, law, and the “marine revolution.” *Biological Conservation* 3, 7-17.

About the Companion Website

This book is accompanied by a companion website:

www.wiley.com/go/ray/marineconservation

The website includes:

- Powerpoints of all figures from the book for downloading
- PDFs of tables from the book

CHAPTER 1

In Pursuit of Marine Conservation

There is a tide in the affairs of men
Which, when taken at the flood, leads on to fortune ...
On such a full sea are we now afloat;
And we must take the current when it serves
Or lose our ventures.

William Shakespeare *Julius Caesar*

Open-ocean systems may seem not to be so disturbed at their surface, but signs of ecological disruption are apparent. The lone walrus on our cover is a metaphor for Planet Earth's fragmented habitats, disrupted ecosystems, and diminished biodiversity. As oceans change, tropical reefs die, polar regions lose sea ice, and marine life that we hardly know is increasingly becoming vulnerable to extinction. Nowhere is this change more apparent than in the land-sea coastal realm (Frontispiece), where the majority of humanity lives, ecosystems are most productive, and biodiversity is greatest.

During the rise of human civilizations, societies have inherited the economics of resource exploitation from an ocean perceived as "limitless." Fisheries, shipping, and coastal settlement as old as civilization, have increasingly expanded to force conservation into defense of species and spaces. And as the ecosystems upon which species depend have changed, scientists have become increasingly involved. Modern science, which had moved from studies in natural history to environmental modeling and statistics to

better understand marine systems, is returning to natural history, recognizing that it forms the basis for environmental and evolutionary science itself ([Box 1.1](#)). The advancing state of knowledge and the increasing need for sustainable ecosystems are forcing marine conservation science to become more proactive and to expand its scope to encompass whole regional seas. Recognition of depleted fisheries, coastal catastrophes, and consequences of natural events tied to human activities have led to new ways of thinking about how marine conservation may modify society's relentless pursuit of ocean wealth.