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B.1 Papers, 339
B.2 Conjectures, 341
B.3 On Erdős, 342
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Preface

The probabilistic method is one of the most powerful and widely used tools applied
in combinatorics. One of the major reasons for its rapid development is the important
role of randomness in theoretical computer science and in statistical physics.

The interplay between discrete mathematics and computer science suggests an
algorithmic point of view in the study of the probabilistic method in combinatorics,
and this is the approach we tried to adopt in this book. The book thus includes a
discussion of algorithmic techniques together with a study of the classical method as
well as the modern tools applied in it. The first part of the book contains a description
of the tools applied in probabilistic arguments, including the basic techniques that
use expectation and variance, as well as the more recent applications of martingales
and correlation inequalities. The second part includes a study of various topics in
which probabilistic techniques have been successful. This part contains chapters on
discrepancy and random graphs, as well as on several areas in theoretical computer
science: Circuit Complexity, Computational Geometry, Graph Property Testing and,
Derandomization of randomized algorithms. Scattered between the chapters are gems
described under the heading “The Probabilistic Lens.” These are elegant proofs that
are not necessarily related to the chapters after which they appear and can usually be
read separately.

The basic probabilistic method can be described as follows: In order to prove the
existence of a combinatorial structure with certain properties, we construct an appro-
priate probability space and show that a randomly chosen element in this space has the
desired properties with positive probability. This method was initiated by Paul Erdős,
who contributed so much to its development over a 50-year period that it seems appro-
priate to call it “The Erdős Method.” His contribution can be measured not only by
his numerous deep results in the subject but also by the many intriguing problems
and conjectures posed by him that stimulated a big portion of the research in the area.

It seems impossible to write an encyclopedic book on the probabilistic method; too
many recent interesting results apply probabilistic arguments, and we do not even try
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to mention all of them. Our emphasis is on methodology, and we thus try to describe
the ideas, and not always to give the best possible results if these are too technical
to allow a clear presentation. Many of the results are asymptotic, and we use the
standard asymptotic notation: for two functions f and g, we write f = O(g) if f ≤ cg
for all sufficiently large values of the variables of the two functions, where c is an
absolute positive constant. We write f = Ω(g) if g = O(f ) and f = Θ(g) if f = O(g)
and f = Ω(g). If the limit of the ratio f∕g tends to zero as the variables of the functions
tend to infinity we write f = o(g). Finally, f ∼ g denotes that f = (1 + o(1))g; that is,
f∕g tends to 1 when the variables tend to infinity. Each chapter ends with a list of
exercises. The more difficult ones are marked by (∗). The exercises enable readers to
check their understanding of the material and also provide the possibility of using the
book as a textbook.

This is the fourth edition of the book; it contains several improved results and
covers various additional topics that developed extensively during the last few years.
A breakthrough approach to the Local Lemma is described in Chapter 5. A new
algorithmic approach to the “six standard deviations” result in discrepancy theory
is presented in Chapter 12. A novel proof for the study of Property B, based on a
random greedy coloring, appears in Chapter 3. In all the above cases, the algorith-
mic proofs provide essentially new arguments for the existence of the desired objects.
A new, short section on graph limits has been added to Chapter 9. A technique for
counting independent sets in graphs and its application in a graph coloring problem
is described in Chapter 1. Further additions include a new Probabilistic Lens, several
additional exercises, and a new appendix with hints to selected exercises.

As in the previous editions, it is a special pleasure to thank our wives, Nurit and
Mary Ann. Their patience, understanding, and encouragement have been key ingre-
dients in the success of this enterprise.

Noga Alon
Joel H. Spencer

Tel Aviv and New York, 2015
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PART I

METHODS





1
The Basic Method

What you need is that your brain is open.
–Paul Erdős

1.1 THE PROBABILISTIC METHOD

The probabilistic method is a powerful tool for tackling many problems in discrete
mathematics. Roughly speaking, the method works as follows: trying to prove that
a structure with certain desired properties exists, one defines an appropriate prob-
ability space of structures and then shows that the desired properties hold in these
structures with positive probability. The method is best illustrated by examples. Here
is a simple one. The Ramsey number R(k,𝓁) is the smallest integer n such that in
any two-coloring of the edges of a complete graph on n vertices Kn by red and blue,
either there is a red Kk (i.e., a complete subgraph on k vertices all of whose edges are
colored red) or there is a blue K𝓁 . Ramsey (1929) showed that R(k,𝓁) is finite for any
two integers k and 𝓁. Let us obtain a lower bound for the diagonal Ramsey numbers
R(k, k).

Proposition 1.1.1 If
(

n
k

)
⋅ 2

1−
(

k
2

)
< 1, then R(k, k) > n. Thus R(k, k) > ⌊2k∕2⌋ for

all k ≥ 3.

Proof. Consider a random two-coloring of the edges of Kn obtained by coloring each
edge independently either red or blue, where each color is equally likely. For any

The Probabilistic Method, Fourth Edition. Noga Alon and Joel H. Spencer.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.



4 THE BASIC METHOD

fixed set R of k vertices, let AR be the event that the induced subgraph of Kn on R
is monochromatic (i.e., that either all its edges are red or they are all blue). Clearly,

Pr [AR] = 2
1−
(

k
2

)
. Since there are

(
n
k

)
possible choices for R, the probability that at

least one of the events AR occurs is at most
(

n
k

)
2

1−
(

k
2

)
< 1. Thus, with positive prob-

ability, no event AR occurs and there is a two-coloring of Kn without a monochromatic
Kk; that is, R(k, k) > n. Note that if k ≥ 3 and we take n = ⌊2k∕2⌋, then

(n
k

)
2

1−
(

k
2

)
<

21+ k
2

k!
⋅

nk

2k2∕2
< 1

and hence R(k, k) > ⌊2k∕2⌋ for all k ≥ 3. ◾

This simple example demonstrates the essence of the probabilistic method.
To prove the existence of a good coloring, we do not present one explicitly, but
rather show, in a nonconstructive way, that it exists. This example appeared in a
paper of P. Erdős from 1947. Although Szele had applied the probabilistic method
to another combinatorial problem, mentioned in Chapter 2, already in 1943, Erdős
was certainly the first to understand the full power of this method and apply it
successfully over the years to numerous problems. One can, of course, claim that the
probability is not essential in the proof given above. An equally simple proof can be
described by counting; we just check that the total number of two-colorings of Kn is
larger than the number of those containing a monochromatic Kk.

Moreover, since the vast majority of the probability spaces considered in the study
of combinatorial problems are finite, this claim applies to most of the applications of
the probabilistic method in discrete mathematics. Theoretically, this is indeed the
case. However, in practice the probability is essential. It would be hopeless to replace
the applications of many of the tools appearing in this book, including, for example,
the second moment method, the Lovász Local Lemma and the concentration via
martingales by counting arguments, even when these are applied to finite probability
spaces.

The probabilistic method has an interesting algorithmic aspect. Consider,
for example, the proof of Proposition 1.1.1, which shows that there is an edge
two-coloring of Kn without a monochromatic K2log2n. Can we actually find such a
coloring? This question, as asked, may sound ridiculous; the total number of possible
colorings is finite, so we can try them all until we find the desired one. However,

such a procedure may require 2

(
n
2

)
steps; an amount of time that is exponential

in the size
[
=
(

n
2

)]
of the problem. Algorithms whose running time is more than

polynomial in the size of the problem are usually considered impractical. The class
of problems that can be solved in polynomial time, usually denoted by P (see, e.g.,
Aho, Hopcroft and Ullman (1974)), is, in a sense, the class of all solvable problems.
In this sense, the exhaustive search approach suggested above for finding a good
coloring of Kn is not acceptable, and this is the reason for our remark that the proof
of Proposition 1.1.1 is nonconstructive; it does not supply a constructive, efficient,
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and deterministic way of producing a coloring with the desired properties. However,
a closer look at the proof shows that, in fact, it can be used to produce, effectively,
a coloring that is very likely to be good. This is because, for large k, if n = ⌊2k∕2⌋,
then (n

k

)
⋅ 2

1−
(

k
2

)
<

21+ k
2

k!

( n
2k∕2

)k
≤

21+ k
2

k!
≪ 1.

Hence, a random coloring of Kn is very likely not to contain a monochromatic K2 log n.
This means that if, for some reason, we must present a two-coloring of the edges of
K1024 without a monochromatic K20, we can simply produce a random two-coloring

by flipping a fair coin
(

1024
2

)
times. We can then deliver the resulting coloring safely;

the probability that it contains a monochromatic K20 is less than 211∕20!, probably
much smaller than our chances of making a mistake in any rigorous proof that a
certain coloring is good! Therefore, in some cases the probabilistic, nonconstructive
method does supply effective probabilistic algorithms. Moreover, these algorithms
can sometimes be converted into deterministic ones. This topic is discussed in some
detail in Chapter 16.

The probabilistic method is a powerful tool in combinatorics and graph theory. It is
also extremely useful in number theory and in combinatorial geometry. More recently,
it has been applied in the development of efficient algorithmic techniques and in the
study of various computational problems. In the rest of this chapter, we present several
simple examples that demonstrate some of the broad spectrum of topics in which
this method is helpful. More complicated examples, involving various more delicate
probabilistic arguments, appear in the rest of the book.

1.2 GRAPH THEORY

A tournament on a set V of n players is an orientation T = (V ,E) of the edges of the
complete graph on the set of vertices V . Thus for every two distinct elements x and
y of V , either (x, y) or (y, x) is in E, but not both. The name “tournament” is natural,
since one can think of the set V as a set of players in which each pair participates in
a single match, where (x, y) is in the tournament iff x beats y. We say that T has the
property Sk if, for every set of k Players, there is one that beats them all. For example,
a directed triangle T3 = (V ,E), where V = {1, 2, 3} and E = {(1, 2), (2, 3), (3, 1)},
has S1. Is it true that for every finite k there is a tournament T (on more than k vertices)
with the property Sk? As shown by Erdős (1963b), this problem, raised by Schütte,
can be solved almost trivially by applying probabilistic arguments. Moreover, these
arguments even supply a rather sharp estimate for the minimum possible number of
vertices in such a tournament. The basic (and natural) idea is that, if n is sufficiently
large as a function of k, then a random tournament on the set V = {1,… , n} of n
players is very likely to have the property Sk. By a random tournament we mean here
a tournament T on V obtained by choosing, for each 1 ≤ i < j ≤ n, independently,
either the edge (i, j) or the edge (j, i), where each of these two choices is equally
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likely. Observe that in this manner, all the 2

(
n
2

)
possible tournaments on V are equally

likely; that is, the probability space considered is symmetric. It is worth noting that
we often use in applications symmetric probability spaces. In these cases, we shall
sometimes refer to an element of the space as a random element, without describing
explicitly the probability distribution . Thus, for example, in the proof of Proposi-
tion 1.1.1 random two-colorings of Kn were considered; that is, all possible colorings
were equally likely. Similarly, in the proof of the next simple result we study random
tournaments on V .

Theorem 1.2.1 If
(

n
k

)
(1 − 2−k)n−k

< 1, then there is a tournament on n vertices that
has the property Sk.

Proof. Consider a random tournament on the set V = {1,… , n}. For every fixed sub-
set K of size k of V , let AK be the event that there is no vertex that beats all the
members of K. Clearly, Pr[AK] = (1 − 2−k)n−k. This is because, for each fixed vertex
𝑣 ∈ V − K, the probability that 𝑣 does not beat all the members of K is 1 − 2−k, and all
these n − k events corresponding to the various possible choices of 𝑣 are independent.
It follows that

Pr
⎡⎢⎢⎣ ∨

K⊂V|K|=k

AK

⎤⎥⎥⎦ ≤
∑
K⊂V|K|=k

Pr[AK] =
(n

k

)
(1 − 2−k)n−k

< 1.

Therefore, with positive probability, no event AK occurs; that is, there is a tournament
on n vertices that has the property Sk. ◾

Let f (k) denote the minimum possible number of vertices of a tournament that

has the property Sk. Since
(

n
k

)
<

(
en
k

)k
and (1 − 2−k)n−k

< e−(n−k)∕2k
, Theorem

1.2.1 implies that f (k) ≤ k2 ⋅ 2k ⋅ (ln 2)(1 + o(1)). It is not too difficult to check that
f (1) = 3 and f (2) = 7. As proved by Szekeres (cf. Moon (1968)), f (k) ≥ c1 ⋅ k ⋅ 2k.

Can one find an explicit construction of tournaments with at most ck
2 vertices

having property Sk? Such a construction is known but is not trivial; it is described
in Chapter 9.

A dominating set of an undirected graph G = (V ,E) is a set U ⊆ V such that every
vertex 𝑣 ∈ V − U has at least one neighbor in U.

Theorem 1.2.2 Let G = (V ,E) be a graph on n vertices, with minimum degree 𝛿 > 1.

Then G has a dominating set of at most n
1 + ln (𝛿 + 1)

𝛿 + 1
vertices.

Proof. Let p ∈ [0, 1] be, for the moment, arbitrary. Let us pick, randomly and inde-
pendently, each vertex of V with probability p. Let X be the (random) set of all vertices
picked and let Y = YX be the random set of all vertices in V − X that do not have any
neighbor in X. The expected value of |X| is clearly np. For each fixed vertex 𝑣 ∈ V ,
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Pr[𝑣 ∈ Y] = Pr[𝑣 and its neighbors are not in X] ≤ (1 − p)𝛿+1. Since the expected
value of a sum of random variables is the sum of their expectations (even if they
are not independent) and since the random variable |Y| can be written as a sum of n
indicator random variables 𝜒

𝑣
(𝑣 ∈ V), where 𝜒

𝑣
= 1 if 𝑣 ∈ Y and 𝜒

𝑣
= 0 otherwise,

we conclude that the expected value of |X| + |Y| is at most np + n(1 − p)𝛿+1. Conse-
quently, there is at least one choice of X ⊆ V such that |X| + |YX| ≤ np + n(1 − p)𝛿+1.
The set U = X ∪ YX is clearly a dominating set of G whose cardinality is at most
this size.

The above argument works for any p ∈ [0, 1]. To optimize the result we use
elementary calculus. For convenience, we bound 1 − p ≤ e−p (this holds for all
nonnegative p and is a fairly close bound when p is small) to give the simpler bound

|U| ≤ np + ne−p(𝛿+1) .

Take the derivative of the right-hand side with respect to p and set it equal to zero.
The right-hand side is minimized at

p = ln (𝛿 + 1)
𝛿 + 1

.

Formally, we set p equal to this value in the first line of the proof. We now have

|U| ≤ n
1 + ln (𝛿 + 1)

𝛿 + 1
, as claimed. ◾

Three simple but important ideas are incorporated in the last proof. The first is
the linearity of expectation; many applications of this simple, yet powerful principle
appear in Chapter 2. The second is perhaps more subtle and is an example of the
“alteration” principle that is discussed in Chapter 3. The random choice did not supply
the required dominating set U immediately; it only supplied the set X, which has to
be altered a little (by adding to it the set YX) to provide the required dominating set.
The third involves the optimal choice of p. One often wants to make a random choice
but is not certain what probability p should be used. The idea is to carry out the proof
with p as a parameter giving a result that is a function of p. At the end, that p is
selected which gives the optimal result. Here, there is yet a fourth idea that might be
called asymptotic calculus. We want the asymptotics of min np + n(1 − p)𝛿+1, where
p ranges over [0, 1]. The actual minimum p = 1 − (𝛿 + 1)−1∕𝛿 is difficult to deal with,
and in many similar cases precise minima are impossible to find in a closed form.
Rather, we give away a little bit, bounding 1 − p ≤ e−p, yielding a clean bound. A
good part of the art of the probabilistic method lies in finding suboptimal but clean
bounds. Did we give away too much in this case? The answer depends on the emphasis
for the original question. For 𝛿 = 3, our rough bound gives |U| ≤ 0.596n, while the
more precise calculation gives |U| ≤ 0.496n, perhaps a substantial difference. For 𝛿
large, both methods give asymptotically n ln 𝛿∕𝛿.

It can easily be deduced from the results in Alon (1990b) that the bound in
Theorem 1.2.2 is nearly optimal. A non-probabilistic, algorithmic proof of this
theorem can be obtained by choosing the vertices for the dominating set one by
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one, when in each step a vertex that covers the maximum number of yet-uncovered
vertices is picked. Indeed, for each vertex 𝑣, denote by C(𝑣) the set consisting of 𝑣
together with all its neighbors. Suppose that during the process of picking vertices
the number of vertices u that do not lie in the union of the sets C(𝑣) of the vertices
chosen so far is r. By the assumption, the sum of the cardinalities of the sets C(u)
over all such uncovered vertices u is at least r(𝛿 + 1), and, hence by averaging, there
is a vertex 𝑣 that belongs to at least r(𝛿 + 1)∕n such sets C(u). Adding this 𝑣 to the
set of chosen vertices, we observe that the number of uncovered vertices is now at
most r(1 − (𝛿 + 1)∕n). It follows that in each iteration of the above procedure the
number of uncovered vertices decreases by a factor of 1 − (𝛿 + 1)∕n and, hence after
n ln (𝛿 + 1)∕(𝛿 + 1) steps, there will be at most n∕(𝛿 + 1) yet uncovered vertices that
can now be added to the set of chosen vertices to form a dominating set of size at
most equal to the one in the conclusion of Theorem 1.2.2.

Combining this with some ideas of Podderyugin and Matula, we can obtain a very
efficient algorithm to decide whether a given undirected graph on n vertices is, say,
n∕3 edge-connected. A cut in a graph G = (V ,E) is a partition of the set of vertices
V into two nonempty disjoint sets V = V1 ∪ V2. If 𝑣1 ∈ V1 and 𝑣2 ∈ V2, we say that
the cut separates 𝑣1 and 𝑣2. The size of the cut is the number of edges of G having
one end in V1 and the other end in V2. In fact, we sometimes identify the cut with the
set of these edges. The edge connectivity of G is the minimum size of a cut of G. The
following lemma is due to Podderyugin and Matula (independently).

Lemma 1.2.3 Let G = (V ,E) be a graph with minimum degree 𝛿, and let V = V1 ∪
V2 be a cut of size smaller than 𝛿 in G. Then every dominating set U of G has vertices
in V1 and in V2.

Proof. Suppose this is false and U ⊆ V1. Choose, arbitrarily, a vertex 𝑣 ∈ V2, and
let 𝑣1, 𝑣2,… , 𝑣

𝛿
be 𝛿 of its neighbors. For each i, 1 ≤ i ≤ 𝛿, define an edge ei of the

given cut as follows: if 𝑣i ∈ V1, then ei = {𝑣, 𝑣i}, otherwise 𝑣i ∈ V2, and since U
is dominating, there is at least one vertex u ∈ U such that {u, 𝑣i} is an edge; take
such a u and put ei = {u, 𝑣i}. The 𝛿 edges e1,… , e

𝛿
are all distinct and all lie in the

given cut, contradicting the assumption that its size is less than 𝛿. This completes
the proof. ◾

Let G = (V ,E) be a graph on n vertices, and suppose we wish to decide whether
G is n∕3 edge-connected; that is, whether its edge connectivity is at least n∕3. Mat-
ula showed, by applying Lemma 1.2.3, that this can be done in time O(n3). By the
remark following the proof of Theorem 1.2.2, we can slightly improve it and get an
O(n8∕3 log n) algorithm as follows. We first check if the minimum degree 𝛿 of G is at
least n∕3. If not, G is not n∕3 edge-connected, and the algorithm ends. Otherwise, by
Theorem 1.2.2, there is a dominating set U = {u1,… , uk} of G, where k = O(log n),
and it can in fact be found in time O(n2). We now find, for each i, 2 ≤ i ≤ k, the min-
imum size si of a cut that separates u1 from ui. Each of these problems can be solved
by solving a standard network flow problem in time O(n8∕3) (see, e.g., Tarjan (1983)).
By Lemma 1.2.3, the edge connectivity of G is simply the minimum between 𝛿 and
min2≤i≤k si. The total time of the algorithm is O(n8∕3 log n), as claimed.
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1.3 COMBINATORICS

A hypergraph is a pair H = (V ,E), where V is a finite set whose elements are called
vertices, and E is a family of subsets of V , called edges. It is n-uniform if each of
its edges contains precisely n vertices. We say that H has property B, or that it is
two-colorable, if there is a two-coloring of V such that no edge is monochromatic.
Let m(n) denote the minimum possible number of edges of an n-uniform hypergraph
that does not have property B.

Proposition 1.3.1 [Erdős (1963a)] Every n-uniform hypergraph with less than
2n−1 edges has property B. Therefore m(n) ≥ 2n−1.

Proof. Let H = (V ,E) be an n-uniform hypergraph with less than 2n−1 edges. Color
V randomly by two colors. For each edge e ∈ E, let Ae be the event such that e is
monochromatic. Clearly, Pr[Ae] = 21−n. Therefore,

Pr

[
∨

e∈E
Ae

]
≤

∑
e∈E

Pr[Ae] < 1

and there is a two-coloring without monochromatic edges. ◾

In Section 3.6 we present a more delicate argument, due to Cherkashin and Kozik
(2015), which shows that

m(n) ≥ Ω
(( n

ln n

)1∕2
2n

)
.

The best known upper bound to m(n) is found by turning the probabilistic argument
“on its head.” Basically, the sets become random and each coloring defines an event.
Fix V with 𝑣 points, where we shall later optimize 𝑣. Let 𝜒 be a coloring of V with a
points in one color, b = 𝑣 − a points in the other. Let S ⊂ V be a uniformly selected
n-set. Then

Pr[S is monochromatic under 𝜒] =

(
a
n

)
+
(

b
n

)
(
𝑣

n

) .

Let us assume 𝑣 is even for convenience. As
(

y
n

)
is convex, this expression is mini-

mized when a = b. Thus

Pr[S is monochromatic under𝜒] ≥ p,

where we set

p =
2
(
𝑣∕2

n

)
(
𝑣

n

)
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for notational convenience. Now let S1,… , Sm be uniformly and independently
chosen n-sets, with m to be determined. For each coloring 𝜒 , let A

𝜒
be the event in

which none of the Si is monochromatic. By the independence of the Si

Pr[A
𝜒
] ≤ (1 − p)m.

There are 2𝑣 colorings, so

Pr

[
∨
𝜒

A
𝜒

]
≤ 2𝑣(1 − p)m .

When this quantity is less than 1, there exist S1,… , Sm so that no A
𝜒

holds; that is,
S1,… , Sm is not two-colorable and hence m(n) ≤ m.

The asymptotics provide a fairly typical example of those encountered when
employing the probabilistic method. We first use the inequality 1 − p ≤ e−p. This is
valid for all positive p, and the terms are quite close when p is small. When

m =
⌈
𝑣 ln 2

p

⌉
,

then 2𝑣(1 − p)m < 2𝑣e−pm ≤ 1 so m(n) ≤ m. Now we need to find 𝑣 to minimize 𝑣∕p.
We may interpret p as twice the probability of picking n white balls from an urn with
𝑣∕2 white and 𝑣∕2 black balls, sampling without replacement. It is tempting to esti-
mate p by 2−n+1, the probability for sampling with replacement. This approximation
would yield m ∼ 𝑣2n−1(ln 2). As 𝑣 gets smaller, however, the approximation becomes
less accurate and, as we wish to minimize m, the tradeoff becomes essential. We use
a second-order approximation

p =
2
(
𝑣∕2
n

)
(
𝑣

n

) = 21−n
n−1∏
i=0

𝑣 − 2i
𝑣 − i

∼ 21−ne−n2∕2𝑣

as long as 𝑣 ≫ n3∕2, estimating

𝑣 − 2i
𝑣 − i

= 1 − i
𝑣

+ O

(
i2

𝑣
2

)
= e−i∕𝑣+O(i2∕𝑣2).

Elementary calculus gives 𝑣 = n2∕2 for the optimal value. The evenness of 𝑣 may
require a change of at most 2, which turns out to be asymptotically negligible. This
yields the following result of Erdős (1964):

Theorem 1.3.2 m(n) < (1 + o(1))e ln 2
4

n22n.

Let  = {(Ai,Bi)}h
i=1 be a family of pairs of subsets of an arbitrary set. We call a

(k,𝓁)-system if |Ai| = k and |Bi| = 𝓁 for all 1 ≤ i ≤ h, Ai ∩ Bi = ∅ and Ai ∩ Bj ≠ ∅ for
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all distinct i, j, with 1 ≤ i, j ≤ h. Bollobás (1965) proved the following result, which
has many interesting extensions and applications:

Theorem 1.3.3 If  = {(Ai,Bi)}h
i=1 is a (k,𝓁)-system then h ≤

(
k+𝓁

k

)
.

Proof. Put X =
⋃h

i=1(Ai ∪ Bi) and consider a random order𝜋 of X. For each i, 1 ≤ i ≤
h, let Xi be the event that all the elements of Ai precede all those of Bi in this order.

Clearly, Pr[Xi] = 1∕
(

k+𝓁
k

)
. It is also easy to check that the events Xi are pairwise

disjoint. Indeed, assume this is false, and let 𝜋 be an order in which all the elements
of Ai precede those of Bi and all the elements of Aj precede those of Bj. Without loss
of generality, we may assume that the last element of Ai does not appear after the last
element of Aj. But in this case, all elements of Ai precede all those of Bj, contradicting
the fact that Ai ∩ Bj ≠ ∅. Therefore, all the events Xi are pairwise disjoint, as claimed.
It follows that

1 ≥ Pr

[
h
∨

i=1
Xi

]
=

h∑
i=1

Pr[Xi] = h
/(k + 𝓁

k

)
,

completing the proof. ◾

Theorem 1.3.3 is sharp, as shown by the family  = {(A,X ⧵ A) ∶ A ⊂ X, |A| =
k}, where X = {1, 2,… , k + 𝓁}.

1.4 COMBINATORIAL NUMBER THEORY

A subset A of an abelian group G is called sum-free if (A + A) ∩ A = ∅, that is, if there
are no a1, a2, a3 ∈ A such that a1 + a2 = a3.

Theorem 1.4.1 [Erdős (1965a)] Every set B = {b1,… , bn} of n nonzero integers
contains a sum-free subset A of size |A| > 1

3
n.

Proof. Let p = 3k + 2 be a prime that satisfies p > 2max1≤i≤n|bi|, and put C = {k +
1, k + 2,… , 2k + 1}. Observe that C is a sum-free subset of the cyclic group Zp and
that |C|

p − 1
= k + 1

3k + 1
>

1
3

.

Let us choose at random an integer x, 1 ≤ x < p, according to a uniform distribu-
tion on {1, 2,… , p− 1}, and define d1,… , dn by di ≡ xbi(mod p), 0 ≤ di < p. Triv-
ially, for every fixed i, 1 ≤ i ≤ n, as x ranges over all numbers 1, 2,… , p − 1, di ranges
over all nonzero elements of Zp, and hence Pr[di ∈ C] = |C|∕(p − 1) > 1

3
. Therefore,

the expected number of elements bi such that di ∈ C is more than n∕3. Consequently,
there is an x, 1 ≤ x < p, and a subsequence A of B of cardinality |A| > n∕3, such that
xa(mod p) ∈ C for all a ∈ A. This A is clearly sum-free, since, if a1 + a2 = a3 for
some a1, a2, a3 ∈ A, then xa1 + xa2 ≡ xa3(mod p), contradicting the fact that C is a
sum-free subset of Zp. This completes the proof. ◾
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Remark. The above proof works whenever p is a prime that does not divide any of
the numbers bi. This can be used to design an efficient deterministic algorithm for
finding a sum-free subset A of size bigger than |B|∕3 in a given set B as above. In
Alon and Kleitman (1990), it is shown that every set of n nonzero elements of an
arbitrary abelian group contains a sum-free subset of more than 2n∕7 elements, and
that the constant 2∕7 is the best possible. For quite some time it was not clear whether
or not the constant 1∕3 in Theorem 1.4.1 can be replaced by a larger constant, until
Eberhard, Green and Manners (2013) proved that the constant 1∕3 is tight. The prob-
lem of deciding whether or not every set of n nonzero integers contains a sum-free
subset of cardinality at least n∕3 +𝑤(n), where𝑤(n) tends to infinity with n, remains
open. It will be very surprising if there is no such 𝑤(n).

1.5 DISJOINT PAIRS

The probabilistic method is most striking when it is applied to prove theorems
whose statement does not seem to suggest at all the need for probability. Most of the
examples given in the previous sections are simple instances of such statements. In
this section we describe a (slightly) more complicated result, due to Alon and Frankl
(1985), which solves a conjecture of Daykin and Erdős.

Let  be a family of m distinct subsets of X = {1, 2,… , n}. Let d( ) denote the
number of disjoint pairs in  , that is

d( ) = |{{F,F′} ∶ F,F′ ∈  , F ∩ F′ = ∅}|.
Daykin and [Erdős] conjectured that, if m = 2(1∕2+𝛿)n, then for every fixed 𝛿 > 0,
d( ) = o(m2), as n tends to infinity. This result follows from the following theorem,
which is a special case of a more general result:

Theorem 1.5.1 Let  be a family of m = 2(1∕2+𝛿)n subsets of X = {1, 2,… , n}, where
𝛿 > 0. Then

d( ) < m2−𝛿2∕2 . (1.1)

Proof. Suppose (1.1) is false; pick independently t members A1,A2,… ,At of  with
repetitions at random, where t is a large positive integer, to be chosen later. We will
show that with positive probability |A1 ∪ A2 ∪ · · · ∪ At| > n∕2 and still this union is
disjoint to more than 2n∕2 distinct subsets of X. This contradiction will establish (1.1).

In fact,

Pr[|A1 ∪ A2 ∪ · · · ∪ At| ≤ n∕2]

≤

∑
S⊂X,|S|=n∕2

Pr[Ai ⊂ S, i = 1,… , t]

≤ 2n(2n∕2∕2(1∕2+𝛿)n)t = 2n(1−𝛿t)
. (1.2)


