


Topics in Geometry, Coding Theory and Cryptography



Algebra and Applications

Volume 6

Managing Editor:

Alain Verschoren
RUCA, Belgium

Series Editors:

Christoph Schweigert
Hamburg University, Germany

Ieke Moerdijk
Utrecht University, The Netherlands

John Greenlees
Sheffield University, UK

Mina Teicher
Bar-llan University, Israel 

Eric Friedlander
Northwestern University, USA

Idun Reiten
Norwegian University of Science and Technology, Norway

Algebra and Applications aims to publish well written and carefully refereed
monographs with up-to-date information about progress in all fields of algebra, its
classical impact on commutative and noncommutative algebraic and differential
geometry, K-theory and algebraic topology, as well as applications in related
domains, such as number theory, homotopy and (co)homology theory, physics and
discrete mathematics.
Particular emphasis will be put on state-of-the-art topics such as rings of differential
operators, Lie algebras and super-algebras, group rings and algebras, C*algebras,
Kac-Moody theory, arithmetic algebraic geometry, Hopf algebras and quantum
groups, as well as their applications.  In addition, Algebra and Applications will also
publish monographs dedicated to computational aspects of these topics as well as
algebraic and geometric methods in computer science.



Topics in Geometry, Coding
Theory and Cryptography

Edited by

Arnaldo Garcia
Instituto de Matematica Pura e Aplicada (IMPA), 

Rio de Janeiro, Brazil

and

Henning Stichtenoth
University of Duisburg-Essen, Germany and 

Sabanci University, Istanbul, Turkey



A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10  1-4020-5333-9 (HB)
ISBN-13  978-1-4020-5333-7 (HB)
ISBN-10                              (e-book)

Published by Springer,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

All Rights Reserved

No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording

or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered

and executed on a computer system, for exclusive use by the purchaser of the work.

 1-4020-5334-4 
ISBN-13   978-1 - 4  0   2  0  -  5  3  3  4  -              (e-book)4

© 2007 Springer



Contents

Foreword vii

1.
1

1 Introduction 1

2 Towers and Codes 5

3 Genus and Splitting Rate of a Tower 16

4 Explicit Tame Towers 24

5 Explicit Wild Towers 31

6 Miscellaneous Results 47

References 55

2. Function Fields over Finite Fields and Their Applications
59

1 Introduction 59

2 Applications to Combinatorial Cryptography 60

3 Applications to Stream Ciphers and Linear Complexity 89

References 99

3. Artin-Schreier Extensions and Their Applications
by C. Guneri and F. Ozbudak 105

1 Introduction 105

2 Artin-Schreier Extensions 107

3 Cyclic Codes and Their Weights 111

4 Trace Codes 120

5 Maximal Function Fields 126

References 130

v

¨ ¨

by A. Garcia and H. Stichtenoth
Explicit Towers of Function Fields over Finite Fields

to Cryptography by H. Niederreiter, H. Wang and C. Xing



vi Contents

4. Pseudorandom Sequences by A. Topuzoglu and A. Winterhof 135

1 Introduction 135

2 Linear Complexity and Linear Complexity Profile 137

3 Autocorrelation and Related Distribution Measures for Binary
Sequences 154

4 Discrepancy and Uniform Distribution 157

References 162

5. Group Structure of Elliptic Curves over Finite Fields and
Applications by R. Murty and I. Shparlinski 167

1 Introduction 167

2 Group Structure 171

3 Applications to Cryptography 180

References 187

195Algebraic Function Fields

About the Authors 199

Appendix:

˘



Foreword

The theory of algebraic function fields has a long history. Its origins are in
number theory, and there are close interrelations with other branches of pure
mathematics such as algebraic geometry or compact Riemann surfaces. In fact,
the study of algebraic function fields is essentially equivalent to the study of
algebraic curves. These relations have been well-known for a long time.

Around 1980 V. D. Goppa came up with a brilliant idea of constructing error-
correcting codes by means of algebraic function fields over finite fields. These
codes are now known as geometric Goppa codes or algebraic geometry codes
(AG codes). The key point of Goppa’s construction is that one gets information
about the code parameters (length, dimension, minimum distance of the code)
in terms of geometric and arithmetic data of the function field (number of ratio-
nal places, genus). Goppa’s method can be seen as a “simple” generalization
of the construction of Reed-Solomon codes: one just replaces the evaluation of
polynomials in one variable at elements of a finite field (which is used for the
definition of Reed-Solomon codes) by evaluating functions of a function field
at some of its rational places. A basic role is then played by the Riemann-Roch
theorem.

Soon after Goppa’s discovery, M. A. Tsfasman, S. G. Vladut and T. Zink
constructed families of AG codes of increasing length whose asymptotic pa-
rameters are better than those of all previously known infinite sequences of
codes and which beat the Gilbert-Varshamov bound - a bound which is well-
known in coding theory and which is a classical measure for the performance
of long codes. The proof of the Tsfasman-Vladut-Zink result uses two main
tools: Goppa’s construction of AG codes and the existence of curves or func-
tion fields (more specifically: classical or Drinfeld modular curves) over a finite
field having large genus and many rational places.

vii



viii Foreword

Cyclic codes have a natural representation as trace codes, and one can asso-
ciate with each codeword of a trace code an Artin-Schreier function field. Prop-
erties of this function field (specifically the number of rational places) reflect
properties of the corresponding cyclic code (namely the weights of codewords
and subcodes). In this way one gets another link between codes and function
fields which is entirely different from Goppa’s.

In 1985, N. Koblitz invented cryptosystems which are based on elliptic curves
(or elliptic function fields) over a finite field. These cryptosystems are very pow-
erful and attracted much attention; they created a new and very lively area of
research (elliptic curve cryptography) and brought together researchers from
pure mathematics (number theory, arithmetic geometry) and applied mathemat-
ics and engineering (cryptography). Similar as in the case of coding theory, this
interaction proved fruitful for both sides, posing new problems and leading to
many interesting practical and theoretical results.

The above-mentioned applications of function fields in constructing good
long codes (due to Goppa and to Tsfasman-Vladut-Zink) and in constructing
powerful cryptosystems via elliptic or hyperelliptic curves are now well-known.
However, most mathematicians and engineers are not so familiar with many
other, entirely different applications of function fields. To mention some of
them: dense sphere packings in high-dimensional spaces; sequences with low
discrepancy; multiplication algorithms in finite fields; the construction of non-
linear codes whose asymptotic parameters are even better than the Tsfasman-
Vladut-Zink bound; the construction of good hash families. In all these cases
the use of function fields leads to better results than those of classical approaches.

In this book we present five survey articles on some of these new devel-
opments. Most of the material is directly related to the interactions between
function fields and their various applications; in particular the structure and the
number of rational places of function fields are always of great significance.
When choosing the topics, we also tried to focus on material which has not
yet been presented in books or review articles. So, for instance, we did not in-
clude chapters about elliptic curve cryptography or about AG codes. There are
numerous interconnections between the individual articles. Wherever applica-
tions are pointed out, a special effort has been made to present some background
concerning their use. For the convenience of the reader, we have included an
appendix which summarizes the basic definitions and results from the theory
of algebraic function fields.



Foreword ix

We give now a brief summary of the five chapters. More detailed descrip-
tions are given in the introduction of each chapter.

Chapter 1. Towers of Algebraic Function Fields over Finite Fields, by Ar-
naldo Garcia and Henning Stichtenoth. In this chapter, the authors give a com-
prehensive survey of their work on explicit towers of algebraic function fields
having many rational places. This concept provides a more elementary and ex-
plicit approach than class field towers and towers from modular curves. Towers
with many rational places play a crucial role in many “asymptotic” construc-
tions, such as error-correcting codes (Tsfasman-Vladut-Zink), low-discrepancy
sequences (Niederreiter-Xing), and other applications of function fields in cryp-
tography (see Chapter 2). Several examples of asymptotically good recursive
towers are presented in detail. The proofs for the behaviour of the genus in
wild towers are considerably simplified, compared to the proofs in the original
papers.

Chapter 2. Function Fields over Finite Fields and Their Applications to
Cryptography, by Harald Niederreiter, Huaxiong Wang and Chaoping Xing.
This survey article focuses on several recent, less well-known applications of
function fields – specifically, function fields with many rational places – in cryp-
tography and combinatorics. Many of these applications are due to the authors.
Among the topics are constructions of authentication codes, frameproof codes,
perfect hash families, cover-free families and pseudorandom sequences of high
linear complexity.

Chapter 3. Artin-Schreier Extensions and Their Applications, by Cem Güneri
and Ferruh Özbudak. Extensions of function fields of Artin-Schreier type pro-
vide many examples of function fields having many rational places; this makes
them very interesting for coding theory. In this chapter, several other appli-
cations of Artin-Schreier extensions are discussed, among them to the famous
Weil bound for character sums, to weights of trace codes and to generalizations
of cyclic codes.

Chapter 4. Pseudorandom Sequences, by Alev Topuzoğlu and Arne Winter-
hof. Various constructions of pseudorandom sequences are based on function
fields, see Chapters 2 and 5. Therefore, some background material on the the-
ory of pseudorandom sequences is presented in Chapter 4. In particular, the
important concept of linear complexity and some related measures for the per-
formance of pseudorandom sequences are discussed in this chapter.

Chapter 5. Group Structure of Elliptic Curves over Finite Fields and Ap-
plications, by Ram Murty and Igor Shparlinski. Motivated by applications of



x Foreword

elliptic curves to cryptography, the structure of the group of Fq-rational points
of an elliptic curve has attracted much attention. In particular it is an important
feature for cryptographic applications if this group is cyclic or if it contains a
large cyclic subgroup. The authors give a survey of recent results on this topic.
Techniques from many branches of number theory and algebraic geometry are
used in this chapter.

Each chapter begins with a detailed introduction, giving an overview of its
contents and also giving some applications and motivation. It is clear that we do
not want to present all proofs here. However, whenever possible, some typical
proofs are provided. Our aim is to stimulate further research on some promising
topics at the border line between pure and applied mathematics; therefore each
chapter contains also an extensive list of references of recent research papers.

Some of the authors (A. Garcia, H. Niederreiter, I. Shparlinski, H. Stichtenoth,
A. Winterhof and C. Xing) visited Sabancı University in Istanbul (Turkey) dur-
ing the years 2002-2005, where they presented part of the material of this
volume. It is our pleasure to thank our hosts at Sabancı University for their
support and hospitality.

January 2006

Arnaldo Garcia, Henning Stichtenoth



Chapter 1

EXPLICIT TOWERS OF FUNCTION FIELDS
OVER FINITE FIELDS

Arnaldo Garcia and Henning Stichtenoth

1. Introduction
The purpose of this review article is to serve as an introduction and at the same

time, as an invitation to the theory of towers of function fields over finite fields.
More specifically, we treat here the case of explicit towers; i.e., towers where
the function fields are given by explicit equations. The asymptotic behaviour of
the genus and of the number of rational places in towers are important features
for applications to coding theory and to cryptography (cf. Chapter 2).

The interest in solutions of algebraic equations over finite fields has a long
history in mathematics, especially when the equations define a one-dimensional
object (a curve or, equivalently, a function field). The major result of this
theory is the Hasse-Weil theorem which gives in particular an upper bound for
the number of rational points in terms of the genus of the curve and of the
cardinality of the finite field.

The Hasse-Weil theorem is equivalent to the validity of Riemann’s Hypoth-
esis for the Zeta function associated to the curve by E. Artin, in analogy with
the classical situation in Number Theory. This upper bound of Hasse-Weil is
sharp, and the curves attaining this bound are called maximal curves. Y. Ihara
was the first to notice that the Hasse-Weil bound can be improved for curves of
high genus, and he gave in particular an upper bound for the genus of maximal
curves in terms of the cardinality of the finite field.

We will use here the language of function fields; i.e., we will be closer to
Number Theory than to Algebraic Geometry. Hence the concepts we will deal
with are function fields, field extensions, traces, norms, valuations, places, ratio-
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2 Towers of Function Fields

nal places, ramification indices and inertia degrees, tame and wild ramification,
etc.

Denote by Fq the finite field of cardinality q. For a function field F over Fq

we denote by N(F ) its number of Fq-rational places and by g(F ) its genus.
The upper bound of Hasse-Weil is

N(F ) ≤ 1 + q + 2
√
q · g(F ),

and Ihara showed that if the equality holds above then 2g(F ) ≤ q(q − 1).
The following real number

A(q) := lim sup
g(F )→∞

N(F )/g(F ),

where F runs over all function fields over the field Fq, was introduced by Ihara.
It is of fundamental importance for the theory of function fields over a finite
field, since it gives information about how many rational places a function field
F/Fq of large genus can have.

In order to investigate the quantity A(q), it is natural to study towers of
function fields over Fq; i.e., one considers sequences F = (F0, F1, F2, . . .)
of function fields Fi over Fq with F0 ⊆ F1 ⊆ F2 ⊆ . . . with the property
g(Fi) →∞. It can be seen easily that the limit of the tower

λ(F) := lim
n→∞

N(Fn)/g(Fn)

always exists (see Section 3), and it is clear that the estimate below holds:

0 ≤ λ(F) ≤ A(q).

As follows from the Hasse-Weil bound, we have that A(q) ≤ 2
√
q. Based on

Ihara’s ideas, this bound was improved by Drinfeld-Vladut who showed that

A(q) ≤ √q − 1.

But even before this bound of Drinfeld-Vladut was obtained, Ihara (and indepen-
dently Tsfasman-Vladut-Zink) proved that if q is a square thenA(q) ≥ √q−1.
We thus have the equality

A(q) =
√
q − 1, if q is a square.

The proofs given by Ihara and Tsfasman-Vladut-Zink use the fact that certain
modular curves have many rational points. However these curves are in general
not easy to describe by explicit equations. Another approach due to J.-P. Serre
uses class field theory in order to prove the existence of curves of arbitrary
high genus with sufficiently many rational points. Also this construction is not
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explicit. Our purpose here is to stimulate the investigation of explicit towers
of function fields over finite fields; i.e., the function fields of the towers should
be given explicitly by algebraic equations. The concept of explicit towers was
first introduced in 1995 in the paper [20].

These notes are organized as follows:

Section 2 contains basic concepts such as towers of function fields and their
limits; recursive towers and the corresponding pyramids; tame and wild
ramification in towers; linear codes and their parameters. In Section 2 one
also finds:

- The statement of the fundamental Hasse-Weil theorem (Theorem 2.3).

- Serre’s “explicit formulae” for bounding the number of rational places
in a function field (Proposition 2.4).

- The Drinfeld-Vladut bound (Theorem 2.5).

- The Tsfasman-Vladut-Zink theorem connecting the asymptotics of func-
tion fields with the asymptotics of linear codes (Theorem 2.7).

- Abhyankar’s lemma which is an important tool to study the behaviour
of the genus in recursive towers (Theorem 2.11).

Section 3 is devoted to the investigation of the behaviour of the genus and
of the number of rational places in towers of function fields over finite
fields. It contains the following notions: the genus and the splitting rate of a
tower; subtowers; asymptotically good and asymptotically optimal towers;
ramification locus and splitting locus of a tower. In Section 2 one also finds:

- A proof that the limit of a tower exists (Definition 3.4).

- The limit of a subtower is at least as big as the limit of the tower (Propo-
sition 3.6).

- A sufficient condition which ensures that the genus of a tower is finite
(Theorem 3.8 and Corollary 3.9).

- A sufficient condition which ensures that a tower has finite ramification
locus (Proposition 3.10).

- A sufficient condition which ensures the existence of completely split-
ting places (Proposition 3.13).

- A sufficient condition which ensures that a polynomial f(X,Y ) does
define a recursive tower (Proposition 3.14).

In Section 4 we investigate some interesting recursive tame towers, in which
every step Fn+1/Fn is a Kummer extension. It contains the following
subsections:
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- Section 4.1: The optimal tower T1 over F4 which is given recursively
by the equation Y 3 = X3/(X2 +X + 1).

- Section 4.2: For r ≥ 2 and q = �r, the tower T2 over Fq which is
defined recursively by the equation

Y m = (X + 1)m − 1 with m = (q − 1)/(�− 1).

This tower gives a very simple proof that A(q) > 0 if q is not a prime
number.

- Section 4.3: For q = p2 and p an odd prime number, the optimal tower
T3 over Fq given recursively by the equation

Y 2 = (X2 + 1)/2X.

This tower corresponds to the modular curves X0(2n) and it reveals
some remarkable properties of Deuring’s polynomial.

We also mention in Section 4 some other interesting towers from the papers
[3, 14, 24, 33, 37].

Section 5 is devoted to recursive wild towers. Especially interesting are wild
towers where every stepFn+1/Fn is an Artin-Schreier extension, since some
of the best towers known in the literature are of this type. We present here a
simple method which allows a unified treatment of the genus behaviour of
several towers of Artin-Schreier type (Lemma 5.1). Section 5 contains the
following subsections:

- Section 5.1: The optimal tower W1 over Fq with q = �2, which is
defined recursively by the equation

Y � + Y = X�/(X�−1 + 1).

A complete proof for the optimality of the tower W1 is given and this
proof is much simpler than the original one in [21].

- Section 5.2: The optimal tower W2 over Fq with q = �2, which is
the first explicit example in the literature attaining the Drinfeld-Vladut
bound [20].

- Section 5.3: The optimal towerW3 over Fq with q = �2, which is given
recursively by the equation

(Y − 1)/Y � = (X� − 1)/X.

- Section 5.4: The towerW4 over the field with eight elements, which is
recursively given by

Y 2 + Y = X + 1 + 1/X.
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This tower was first introduced in [30], and we give here a much simpler
proof for its asymptotic behaviour.

- Section 5.5: The tower W5 over the cubic field Fq with q = �3 which
is defined recursively by the equation

Y � − Y �−1 = 1−X −X−(�−1).

The tower W5 generalizes the tower W4 of Section 5.4, and its limit
λ(W5) ≥ 2(�2 − 1)/(� + 2) gives the best known lower bound for
Ihara’s quantity A(�3).

Section 6 contains some miscellaneous results on towers, among them a
couple of conditions which easily show sometimes that a given tower is
asymptotically bad (Theorem 6.2, Theorem 6.3 and Theorem 6.6). This
section has the following subsections:

- Section 6.1: In a tower (F0, F1, F2, . . .) of function fields, the growth
of the genus g(Fn) depends on the behaviour of the different degrees of
the extensions Fn/Fn−1. This interrelation is explored in Theorem 6.1
and Theorem 6.2 where sufficient conditions are given for the tower to
have finite or infinite genus.

- Section 6.2: Skew towers are asymptotically bad. This means: if the
equation f(X,Y ) = 0 which defines a recursive tower has unequal
degrees in the variables X and Y , then the tower is asymptotically bad
(Theorem 6.3).

- Section 6.3: Here the concept of the dual tower of a recursive tower is
introduced; if the ramification loci of the tower and of its dual tower are
distinct, then the tower is bad (Theorem 6.6).

- Section 6.4: This subsection contains a classification result on recursive
towers defined by an Artin-Schreier equation of prime degree p of the
form

Y p + aY = ψ(X),

with a ∈ F
×
q and with a rational function ψ(X) ∈ Fq(X). If such a

tower is asymptotically good, then the function ψ(X) must have a very
specific form (Theorem 6.8).

2. Towers and Codes
Throughout this Chapter we denote by Fq the finite field with q elements and

by p = char(Fq) its characteristic. We are interested in function fields over
Fq (briefly, Fq-function fields) having many rational places with respect to the
genus. For basic concepts and facts about algebraic function fields (such as the
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definitions of function fields, places, divisors, rational places, genus, ramifica-
tion, and Riemann-Roch theorem, Hurwitz genus formula, etc.) we refer to the
Appendix or to [48]. For an Fq-function field F we always assume through-
out that Fq is the full constant field ofF ; i.e., that Fq is algebraically closed inF .

We denote by N(F ) the number of rational places and by g(F ) the genus
of an Fq-function field F , and we will be mainly interested in the behaviour
of the ratio N(F )/g(F ) for function fields of large genus. To investigate this
behaviour, Ihara [31] introduced the following quantity A(q):

A(q) = lim sup
g(F )→∞

N(F )/g(F ),

where F runs over all function fields over Fq. To deal with this quantity A(q)
one is naturally led to towers of function fields.

Definition 2.1. A tower F over Fq (or an Fq-tower) is an infinite sequence
F = (F0, F1, F2, ...) of function fields Fi/Fq such that

i) F0 � F1 � F2 � . . . � Fn � . . .;

ii) each extension Fn+1/Fn is finite and separable;

iii) the genera satisfy g(Fn) →∞ as n→∞.

For an Fq-tower F the following limit does exist (see Section 3):

λ(F) = lim
n→∞

N(Fn)/g(Fn).

It is clear from the definitions that one has

0 ≤ λ(F) ≤ A(q).

Definition 2.2. The real number λ(F) is called the limit of the Fq-tower F .
The tower F is called asymptotically good if it has a positive limit λ(F) > 0.
If λ(F) = 0 then F is said to be asymptotically bad.

It is not easy in general to construct asymptotically good towers, and it is an
even harder task to construct towers over finite fields with large limits. These
are the main concerns of this Chapter.

We start by deriving an upper bound forA(q), the so-called Drinfeld-Vladut
bound. It states that

A(q) ≤ √q − 1. (2.1)

This bound is then also an upper bound for the limit of towers; i.e., the following
inequality holds for all Fq-towers F :

λ(F) ≤ √q − 1.
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In order to prove the upper bound in (2.1) for A(q) we will need the following
theorem due to Hasse and Weil, which is the central result of the theory of
function fields over finite fields. It is equivalent to the validity of the Riemann
Hypothesis in this context, cf. [48, p.169]. Hasse [29] proved it for elliptic
function fields (i.e., for g(F ) = 1), and Weil [61] proved it in the general case.
For other proofs of the Hasse-Weil theorem we refer to [10] and [47].

We need some notation: for a function field F/Fq, let F (r) := F · Fqr be
the constant field extension of F of degree r, and let Nr(F ) := N(F (r)) be
the number of Fqr -rational places of the function field F (r) over Fqr . The
Hasse-Weil theorem can be stated in the following form:

Theorem 2.3. (Hasse-Weil) Let F be an Fq-function field of genus g(F ) = g.
Then there exist complex numbers α1, α2, . . . , α2g ∈ C with the following
properties:

i) They can be ordered in such a way that

αg+i = ᾱi for i = 1, . . . , g.

ii) The polynomial L(t) :=
∏2g

i=1(1− αit) has integer coefficients. It follows
in particular that each αi is an algebraic integer.

iii) For all r ≥ 1 we have

Nr(F ) = qr + 1−
2g∑

i=1

αr
i .

iv) The absolute value of αi is

|αi| =
√
q for i = 1, . . . , 2g.

The elements α−1
i ∈ C are the roots of the Zeta function associated to the

function field F/Fq. From item iv) and item iii) with r = 1, one gets the
so-called Hasse-Weil bound

N(F ) ≤ q + 1 + 2
√
q · g(F ).

This bound implies immediately that A(q) ≤ 2
√
q. For the proof of the

Drinfeld-Vladut bound (2.1) we make use of Serre’s “explicit formulae”:

Proposition 2.4. (Serre) (see [49]). Let 0 �= h(X) ∈ R[X] be a polynomial
with non-negative coefficients and with h(0) = 0. Suppose that the associated
rational function H(X), which is defined as

H(X) = 1 + h(X) + h(X−1),



8 Towers of Function Fields

satisfies the condition

H(β) ≥ 0 for all β ∈ C with |β| = 1.

Then for any function field F/Fq we have

N(F ) ≤ 1 +
h(q1/2)
h(q−1/2)

+
g(F )

h(q−1/2)
.

Proof. LetF be a function field over Fq with g(F ) = g, and letα1, α2, . . . , α2g

be the associated complex numbers, ordered as in item i) of Theorem 2.3. For
simplicity we set Nr(F ) = Nr and in particular N(F ) = N1. Write

h(X) =
m∑

r=1

crX
r,

with cr ∈ R and cr ≥ 0 for all r. Then we have

Nr = 1 + qr −
g∑

i=1

(αr
i + ᾱr

i ),

by item iii) of Theorem 2.3; hence

Nr · q−r/2 = q−r/2 + qr/2 −
g∑

i=1

((αiq
−1/2)r + (ᾱiq

−1/2)r)

(2.2)

= q−r/2 + qr/2 −
g∑

i=1

(βr
i + β̄r

i ),

with βi = αiq
−1/2. By item iv) of Theorem 2.3, the complex numbers βi have

absolute value |βi| = 1, so β̄i = β−1
i . We now multiply Equation (2.2) by the

coefficient cr of h(X) and we sum up for r = 1, . . . ,m, to obtain

m∑

r=1

Nr · cr · q−r/2 = h(q−1/2) + h(q1/2) + g −
g∑

i=1

H(βi), (2.3)

as follows from the definition of the rational function H(X). We then rewrite
Equation (2.3) as follows

N1 · h(q−1/2) = h(q−1/2) + h(q1/2) + g −R,

with

R =
g∑

i=1

H(βi) +
m∑

r=1

(Nr −N1)crq−r/2.
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Since Nr ≥ N1, cr ≥ 0 and H(βi) ≥ 0, it follows that R ≥ 0 and hence

N1 · h(q−1/2) ≤ h(q−1/2) + h(q1/2) + g.

Now we can prove:

Theorem 2.5. (Drinfeld-Vladut bound) (see [12]). The following bound
holds:

A(q) ≤ √q − 1.

In particular we have for any tower F over Fq:

λ(F) ≤ √q − 1.

Proof. For each m ∈ N with m ≥ 2 we consider the polynomial hm(X) ∈
R[X] which is given by

hm(X) =
m∑

r=1

(
1− r

m

)
·Xr. (2.4)

The key point of the proof of Theorem 2.5 is the following equality

hm(X) =
X

(X − 1)2
·
(
Xm − 1
m

+ 1−X
)

, (2.5)

which we prove in Lemma 2.6 below. For the associated rational function
Hm(X) we then get

Hm(X) = 1 + hm(X) + hm(X−1)

= 1 +
X

(X − 1)2

(
Xm − 1
m

+ 1−X
)

+
X−1

(X−1 − 1)2

(
X−m − 1

m
+ 1−X−1

)

(2.6)

=
X

(X − 1)2
· X

m +X−m − 2
m

=
2− (Xm +X−m)
m(X − 1)(X−1 − 1)

.

For any complex number β �= 1 with |β| = 1, the numbers (β−1)(β−1−1)
and 2 − (βm + β−m) are positive real numbers. Hence the hypothesis in
Proposition 2.4 is satisfied; i.e., we have Hm(β) ≥ 0 for all β ∈ C with
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|β| = 1. It follows from Proposition 2.4 that for any function field F over Fq

with genus g(F ) > 0 the following inequality holds for all m ≥ 2

N(F )
g(F )

≤ 1
hm(q−1/2)

+
1

g(F )
·
(

1 +
hm(q1/2)
hm(q−1/2)

)

. (2.7)

Using again Equation (2.5) we see that

lim
m→∞

1
hm(q−1/2)

=
√
q − 1.

Let ε > 0 be a real number and choose n = n(ε) such that

1
hn(q−1/2)

≤ √q − 1 + ε/2.

Choose g0 = g0(ε, n) such that

1
g0
·
(

1 +
hn(q1/2)
hn(q−1/2)

)

< ε/2.

Then we conclude from (2.7) with m = n = n(ε) that for all function fields
F/Fq with g(F ) ≥ g0,

N(F )
g(F )

≤ (
√
q − 1 + ε/2) + ε/2 =

√
q − 1 + ε.

We still have to prove Equation (2.5):

Lemma 2.6. For all m ≥ 2 the following identity holds:

m∑

r=1

(
1− r

m

)
·Xr =

X

(X − 1)2
·
(
Xm − 1
m

+ 1−X
)

.

Proof. We set

f(X) :=
m∑

r=1

Xr =
Xm+1 −X
X − 1

;

then we have
X · f ′(X)

m
=

m∑

r=1

r

m
·Xr,
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and therefore
m∑

r=1

(
1− r

m

)
·Xr = f(X)− X · f ′(X)

m

=
X

X − 1
· (Xm − 1)− X

m
· (X − 1)((m+ 1)Xm − 1)− (Xm+1 −X)

(X − 1)2

=
X

(X − 1)2
·
(
Xm − 1
m

+ 1−X
)

.

The interest in the quantity A(q) also arose from applications of function
fields to coding theory, cf. [48, 54]. The Tsfasman-Vladut-Zink theorem
establishes a close connection between the asymptotics of Fq-function fields
(represented by the quantityA(q)) and the asymptotics of codes over Fq. Some
connections to cryptography are discussed in Chapter 2. For further connec-
tions to other areas we refer to [2, 40, 41, 44, 50, 52, 59].

Let us briefly recall the connection to coding theory. A linear code C over
Fq of length n = n(C) is a linear subspace of F

n
q . The dimension k = k(C)

of C is its dimension as a vector space over Fq. An important parameter of a
linear code C �= {0} is its minimum distance d = d(C), which is defined by

d = min {wt(c) | c ∈ C and c �= 0},

where for a nonzero vector c = (c1, . . . , cn) ∈ F
n
q its weight wt(c) is given by

wt(c) = #{i | 1 ≤ i ≤ n and ci �= 0}.

A linear code C over Fq of length n = n(C), dimension k = k(C) and
minimum distance d = d(C) is briefly called an [n, k, d]-code, and the integers
n, k and d are called the parameters of the code. In order to compare codes
of different lengths, one also introduces relative parameters of the code C as
follows:

- the transmission rate R(C), given by R(C) = k(C)/n(C).

- the relative minimum distance δ(C), given by δ(C) = d(C)/n(C).

We then get a map ϕ : {Fq-linear codes} → [0, 1]× [0, 1] by setting

C
ϕ−→ (δ(C), R(C)).

For a real number δ ∈ [0, 1] we consider the accumulation points of the image
of the map ϕ on the vertical line X = δ. The largest second coordinate of


