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PREFACE
This book is inspired by The Structure of Proof: With Logic
and Set Theory published by Prentice Hall in 2002. My
motivation for that text was to use symbolic logic as a
means by which to learn how to write proofs. The purpose
of this book is to present mathematical logic and set theory
to prepare the reader for more advanced courses that deal
with these subjects either directly or indirectly. It does this
by starting with propositional logic and first-order logic
with sections dedicated to the connection of logic to proof-
writing. Building on this, set theory is developed using first-
order formulas. Set operations, subsets, equality, and
families of sets are covered followed by relations and
functions. The axioms of set theory are introduced next,
and then sets of numbers are constructed. Finite numbers,
such as the natural numbers and the integers, are defined
first. All of these numbers are actually sets constructed so
that they resemble the numbers that are their namesakes.
Then, the infinite ordinal and cardinal numbers appear. The
last chapter of the book is an introduction to model theory,
which includes applications to abstract algebra and the
proofs of the completeness and compactness theorems. The
text concludes with a note on Gödel’s incompleteness
theorems.

MICHAEL L. O’LEARY

Glen Ellyn, Illinois
July 2015
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CHAPTER 1
PROPOSITIONAL LOGIC

1.1 SYMBOLIC LOGIC
Let us define mathematics as the study of number and
space. Although representations can be found in the
physical world, the subject of mathematics is not physical.
Instead, mathematical objects are abstract, such as
equations in algebra or points and lines in geometry. They
are found only as ideas in minds. These ideas sometimes
lead to the discovery of other ideas that do not manifest
themselves in the physical world as when studying various
magnitudes of infinity, while others lead to the creation of
tangible objects, such as bridges or computers.
Let us define logic as the study of arguments. In other
words, logic attempts to codify what counts as legitimate
means by which to draw conclusions from given
information. There are many variations of logic, but they all
can be classified into one of two types. There is inductive
logic in which if the argument is good, the conclusion will
probably follow from the hypotheses. This is because
inductive logic rests on evidence and observation, so there
can never be complete certainty whether the conclusions
reached do indeed describe the universe. An example of an
inductive argument is:

A red sky in the morning means that a storm is coming.
We see a red sky this morning.
Therefore, there will be a storm today.

Whether this is a trust-worthy argument or not rests on the
strength of the predictive abilities of a red sky, and we



know about that by past observations. Thus, the argument
is inductive. The other type is deductive logic. Here the
methods yield conclusions with complete certainty,
provided, of course, that no errors in reasoning were made.
An example of a deductive argument is:

All geometers are mathematicians.
Euclid is a geometer.
Therefore, Euclid is a mathematician.

Whether Euclid refers to the author of the Elements or is
Mr. Euclid from down the street is irrelevant. The argument
works because the third sentence must follow from the first
two.
As anyone who has solved an equation or written a proof
can attest, deductive logic is the realm of the
mathematician. This is not to say that there are not other
aspects to the discovery of mathematical results, such as
drawing conclusions from diagrams or patterns, using
computational software, or simply making a lucky guess,
but it is to say that to accept a mathematical statement
requires the production of a deductive proof of that
statement. For example, in elementary algebra, we know
that given

we can conclude

and then

As each of the steps is legal, it is certain that the
conclusion of x = 3 follows. In geometry, we can write a



two-column proof that shows that

is guaranteed to follow from

The study of these types of arguments, those that are
deductive and mathematical in content, is called
mathematical logic.



Propositions
To study arguments, one must first study sentences
because they are the main parts of arguments. However,
not just any type of sentence will do. Consider

The purpose of this sentence is to affirm that things
called squares also belong to the category of things
called rectangles. In this case, the assertion made by the
sentence is correct. Also, consider,

This sentence denies that things called circles have the
property of being round. This denial is incorrect. If a
sentence asserts or denies accurately, the sentence is
true, but if it asserts or denies inaccurately, the
sentence is false. These are the only truth values that
a sentence can have, and if a sentence has one, it does
not have the other. As arguments intend to draw true
conclusions from presumably true given sentences, we
limit the sentences that we study to only those with a
truth value. This leads us to our first definition.



DEFINITION 1.1.1
A sentence that is either true or false is called a
proposition.
Not all sentences are propositions, however. Questions,
exclamations, commands, or self-contradictory
sentences like the following examples can neither be
asserted nor be denied.

∙ Is mathematics logic?
∙ Hey there!
∙ Do not panic.
∙ This sentence is false.

Sometimes it is unclear whether a sentence identifies a
proposition. This can be due to factors such as
imprecision or poor sentence structure. Another
example is the sentence

Is this true or false? It is impossible to know because,
unlike the other words of the sentence, the meaning of
the word it is not determined. In this sentence, the word
it is acting like a variable as in x + 2 = 5. As the value of
x is undetermined, the sentence x+2 = 5 is neither true
nor false. However, if x represents a particular value, we
could make a determination. For example, if x = 3, the
sentence is true, and if x = 10, the sentence is false.
Likewise, if it refers to a particular object, then it is a
triangle would identify a proposition.
There are two types of propositions. An atom is a
proposition that is not comprised of other propositions.



Examples include

and

A proposition that is not an atom but is constructed
using other propositions is called a compound
proposition. There are five types.

∙ A negation of a given proposition is a proposition
that denies the truth of the given proposition. For
example, the negation of 3 + 8 = 5 is 3 + 8 ≠ 5. In
this case, we say that 3 + 8 = 5 has been negated.
Negating the proposition the sine function is periodic
yields the sine function is not periodic.
∙ A conjunction is a proposition formed by
combining two propositions (called conjuncts) with
the word and. For example,

is a conjunction with the base angles of an isosceles
triangle are congruent and a square has no right
angles as conjuncts.

∙ A disjunction is a proposition formed by combining
two propositions (called disjuncts) with the word or.
The sentence

is a disjunction.



1.1

∙ An implication is a proposition that claims a given
proposition (called the antecedent) entails another
proposition (called the consequent). Implications are
also known as conditional propositions. For
example,

is a conditional proposition. Its antecedent is rectangles
have four sides, and its consequent is squares have four
sides. This implication can also be written as

and

A conditional proposition can also be written using the
words sufficient and necessary. The word sufficient
means “adequate” or “enough,” and necessary means
“needed” or “required.” Thus, the sentence

translates (1.1). In other words, the fact that rectangles
have four sides is enough for us to know that squares
have four sides. Likewise,

is another translation of the implication because it
means that squares must have four sides because
rectangle have four sides. Summing up, the antecedent



is sufficient for the consequent, and the consequent is
necessary for the antecedent.

∙ A biconditional proposition is the conjunction of
two implications formed by exchanging their
antecedents and consequents. For example,

To remove the redundancy in this sentence, notice
that the first conditional can be written as

and the second conditional can be written as

resulting in the biconditional being written as

or the equivalent

Propositional Forms
As a typical human language has many ways to express the
same thought, it is beneficial to study propositions by
translating them into a notation that has a very limited
collection of symbols yet is still able to express the basic
logic of the propositions. Once this is done, rules that
determine the truth values of propositions using the new



notation can be developed. Any such system designed to
concisely study human reasoning is called a symbolic
logic. Mathematical logic is an example of symbolic logic.
Let p be a finite sequence of characters from a given
collection of symbols. Call the collection an alphabet. Call
p a string over the alphabet. The alphabet chosen so that p
can represent a mathematical proposition is called the
proposition alphabet and consists of the following
symbols.

∙ Propositional variables: Uppercase English letters, P
, Q, R,  , or uppercase English letters with subscripts,
Pn, Qn, Rn,  , where n = 0, 1, 2, 

∙ Connectives: , ∧, ∨, →, ↔
∙ Grouping symbols: (, ), [, ].

The sequences P ∨Q and P1Q1∧ ↔ ((( and the empty
string, a string with no characters, are examples of strings
over this alphabet, but only certain strings will be chosen
for our study. A string is selected because it is able to
represent a proposition. These strings will be determined
by a method called a grammar. The grammar chosen for
our present purposes is given in the next definition. It is
given recursively. That is, the definition is first given for at
least one special case, and then the definition is given for
other cases in terms of itself.



DEFINITION 1.1.2
A propositional form is a nonempty string over the
proposition alphabet such that

∙ every propositional variable is a propositional form.
∙ p is a propositional form if p is a propositional
form.
∙ (p ∧ q), (p ∨ q), (p → q), and (p ↔ q) are
propositional forms if p and q are propositional
forms.

We follow the convention that parentheses can be
replaced with brackets and outermost parenthesis or
brackets can be omitted. As with propositions, a
propositional form that consists only of a propositional
variable is an atom. Otherwise, it is compound.

The strings P , Q1, P , (P1 ∨ P2) ∧ P3, and (P → Q) ∧ (R ↔ 
P ) are examples of propositional forms. To prove that the

last string is a propositional form, proceed using Definition
1.1.2 by noting that (P → Q)∧(R ↔ P ) is the result of
combining P → Q and R ↔ P with ∧. The propositional
form P → Q is from P and Q combined with →, and R ↔ P
is from R and P combined with ↔. These and P are
propositional forms because P , Q, and R are propositional
variables. This derivation yields the following parsing
tree:



The parsing tree yields the formation sequence of the
propositional form:

The sequence is formed by listing each distinct term of the
tree starting at the bottom row and moving upwards.



EXAMPLE 1.1.3
Make the following assignments:

The symbol := indicates that an assignment has been
made. It means that the propositional form on the right
has been assigned to the lowercase letter on the left.
Using these designations, we can write new
propositional forms using p and q. The propositional
form p ∧ q is

with the formation sequence,

and q → p is

with the formation sequence

Interpreting Propositional Forms
Notice that determining whether a string is a propositional
form is independent of the meaning that we give the
symbols. However, as we do want these symbols to convey
meaning, we assume that the propositional variables



represent atoms and set this interpretation on the
connectives:

Because of this interpretation, name the compound
propositional forms as follows:



EXAMPLE 1.1.4
To see how this works, assign some propositions to some
propositional variables:

The following symbols represent the indicated
propositions:

∙ R

The absolute value function is onto.

∙ P ∨ Q

The sine function is one-to-one, or the square root
function is not one-to-one.

∙ Q → R

If the square root function is one-to-one, the absolute
function is not onto.

∙ R ↔ P

The absolute value function is not onto if and only if
the sine function is not one-to-one.

∙ P ∧ Q

The sine function is not one-to-one, and the square
root function is one-to-one.

∙ P ∧ Q



The sine function is one-to-one, and the square root
function is one-to-one.

∙ (P ∧ Q)

It is not the case that the sine function is not one-to-
one and the square root function is one-to-one.

The proposition

is translated as R ↔ (P ∧ Q) and

is translated as (R ↔ P ) ∧ Q. If the parenthesis are
removed, the resulting string is R ↔ P ∧ Q. It is simpler, but
it is not clear how it should be interpreted. To eliminate its
ambiguity, we introduce an order of connectives as in
algebra. In this way, certain strings without parentheses
can be read as propositional forms.



DEFINITION 1.1.5 [Order of Connectives]
To interpret a propositional form, read from left to right
and use the following precedence:

∙ propositional forms within parentheses or brackets
(innermost first),
∙ negations,
∙ conjunctions,
∙ disjunctions,
∙ conditionals,
∙ biconditionals.

EXAMPLE 1.1.6
To write the propositional form P ∨Q∧R with
parentheses, we begin by interpreting P . According to
the order of operations, the conjunction is next, so we
evaluate Q∧R. This is followed by the disjunction, and
we have the propositional form P ∨ (Q ∧ R).


