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Preface

Catalytic technologies play a critical role in the economic development of both
the chemicals industry and modern society, underpinning 90% of chemical man-
ufacturing processes and contributing to over 20% of all industrial products.
Sustainable chemistry is defined as the design and implementation of chemical
products and processes that reduce or eliminate the use or generation of haz-
ardous substances, while employing renewable resources in an atom and energy
efficient fashion. In accordance with the 12 Principles of Green Chemistry, first
advanced by Anastas and Warner, catalysis is a key tool with which to develop
sustainable chemistries. New catalytic routes to the manufacture of fine, speciality
and pharmaceutical chemicals offer sustainable solutions with minimal environ-
mental impact. In a post-petroleum era, catalysis researchers will need to rise
to the challenge of synthesising chemical intermediates and advanced functional
materials and fuels from non-petroleum based feedstocks. Success will require
an interdisciplinary approach, uniting physical, inorganic, organic and materials
chemistry with biotechnology, reaction and process engineering.

To a large extent, the catalytic transformation of individual atoms and molecules
into potent drug therapies, advanced fuels, and efficient fertilisers has (to date)
depended upon an equal combination of brilliant science and serendipity. This
reflects the complex, interdependent interactions between reactants, products,
their surrounding environment, and of course the catalyst itself, which in principle
should remain unchanged over thousands of reaction cycles. However, recent
advances in chemical synthesis, nanotechnology and spectroscopy now offer an
unprecedented opportunity to sculpt the atomic structure of solid catalysts and to
peer inside their microscopic workings. Our knowledge of the mechanism by which
heterogeneous catalysts operate has traditionally been obtained by comparing
freshly prepared materials with their spent counterparts isolated post-reaction.
While this approach has undoubtedly aided catalyst development, the importance of
adsorbate-induced restructuring in modulating surface reactivity, a concept Gabor
Somorjai termed the ‘flexible surface’, is now widely accepted. Step-changing
discoveries require intelligent catalyst design, informed by quantitative insight into
catalyst behaviour under reaction conditions via complementary operando studies of
the surface, bulk and atomistic properties of catalysts in action. This book focuses
on the development of heterogeneous catalysts for application in clean chemical
synthesis, and explores how modern spectroscopic techniques can be employed
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to aid the design of catalysts (particularly) for use in liquid phase reactions.
Examples of catalytic applications to industrially important chemistries including
selective oxidation and hydrogenation, solid acid and base catalysed processes, and
photocatalytic depollution, while other chapters illustrate the importance of process
intensification and use of renewable resources in enhancing the sustainability of
chemical processes.

The development of new catalytic processes requires consideration of uncon-
ventional reactor technologies which afford improvements in product separation,
overall energy efficiency and operational safety. An understanding of the physic-
ochemical properties and behaviour of diverse solid catalysts and associated
factors influencing catalyst selection for specific chemical transformations, catalyst
compatibility with different reactor designs, and mechanistic insight accessible
through time-resolved in-situ spectroscopic tools, will aid industrial and academic
researchers in addition to undergraduate students taking courses in sustainable
or green chemistry. We hope this text will serve as a central resource for cat-
alytic scientists and engineers across the clean technology community, providing
information on next-generation catalyst formulations, process operation, and on-
line monitoring. Newcomers to the field of heterogeneous catalysis, particularly
undergraduate and postgraduate students, will also be exposed to the fundamental
physical principles underpinning an array of spectroscopic methods, and synthetic
strategies adopted to prepare high performance nanocrystalline and nanoporous
catalysts and to valorise bio-derived, multi-functional feedstocks through atom- and
energy economical processes.

This book would not have been possible without the collective work of a number
of scientists and engineers spanning catalysis, materials, spectroscopy, process
intensification and green chemistry. We would like to express our gratitude to all
the contributors, whose time, efforts, and expertise have helped to deliver what
we hope will become a valuable scientific resource for beginners and experienced
practitioners of clean and sustainable chemistry. We are also grateful to Drs. Elke
Maase and Lesley Belfit at Wiley-VCH for their support and useful advice in
preparing this book.
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José Iglesias
Universidad Rey Juan Carlos
Department of Chemical and
Energy Technology
ESCET C/Tulipán s/n
28933 Móstoles
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1

1
Introduction to Clean Technology and Catalysis
James H. Clark

1.1
Green Chemistry and Clean Technology

Traditional chemical manufacturing is resource demanding and wasteful, and
often involves the use of hazardous substances. Resources are used throughout
the production and including the treatment of waste streams and emissions
(Figure 1.1).

Green chemistry focuses on resource efficiency and on the design of chemical
products and processes that are more environmentally benign. If green chemistry
is used in a process, it should be made simpler, the inputs and outputs should
be safer and more sustainable, the energy consumption should be reduced and
costs should be reduced as yields increase, and so separations become simpler
and less waste is generated [1]. Green chemistry moves the trend toward new,
clean technologies such as flow reactors and microwave reactors, as well as clean
synthesis. For instance, lower temperature, shorter reaction time, choice of an
alternative route, increased yield, or using fewer washings at workup improve the
‘‘cleanness’’ of a reaction by saving energy and process time and reducing waste [2].

At present, there is more emphasis on the use of renewable feedstocks [3] and on
the design of safer products including an increasing trend for recovering resources
or ‘‘closed-loop manufacturing.’’ Green chemistry research and application now
encompass the use of biomass as a source of organic carbon and the design
of new greener products, for example, to replace the existing products that are
unacceptable in the light of new legislation (e.g., REACH) or consumer perception.

Green chemistry can be seen as a tool by which sustainable development can be
achieved: the application of green chemistry is relevant to social, environmental,
and economic aspects.

To achieve sustainable development will require action by the international com-
munity, national governments, commercial and noncommercial organizations, and
individual action by citizens from a wide variety of disciplines. Acknowledgment of
sustainable development has been taken forward into policy by many governments
including most world powers notably in Europe [4], China [5], and the United
States [6].
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Figure 1.1 Resource demands of traditional chemical manufacturing.

1.1.1
Ideals of Green Chemistry

In Figure 1.2 and Figure 1.3, the ideals of green chemical synthetic design are
shown.

ReducingReducing

Material

Nonrenewables

Energy

Cost

Risk and hazard

Waste

Figure 1.2 Factors for reduction in syntheses.

Simple

Atom efficient

Environmentally acceptable

100% yield

Available materials

No wasted reagents

One step

Safe

The ideal
synthesis
The ideal
synthesis

Figure 1.3 The eight parts of an ideal synthesis.
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It is important to note that these green chemistry goals are most effectively dealt
with and are easier to apply if they are considered at the design stage rather than
retrospectively – green chemistry is not an end-of-pipe solution.

Chemical plants have traditionally concentrated on mechanical safety devices,
reducing the probability of accidents. However, mechanical devices are not infallible
and safety measures cannot completely prevent the accidents that are happening.
The concept of inherently safer design (ISD) was designed with the intention of
eliminating rather than preventing the hazards and led to the phrase ‘‘What you
don’t have can’t harm you’’ [7]. ISD means not holding significant inventories of
hazardous chemicals or not using them at all.

This approach would have prevented the accident at Bhopal, India in 1984, where
many thousands of people were killed or seriously injured. One of the chemicals
used in the process at the Union Carbide factory was highly water sensitive, and
when a watertight holding tank was breached, the accident occurred, releasing the
chemicals into the air, affecting the villages surrounding the factory. The chemical
is nonessential and the ISD approach would have been used an alternative, thus
eliminating the risk altogether.

Green chemistry research has led to the invention of a number of clever
processing technologies to save time and energy or reduce waste production, but
these technologies mostly exist in academia and, with very few exceptions, industry
has been slow to utilize them. Green chemical technologies include heterogeneous
catalysis (well established in some sectors but much less used in fine chemicals and
pharmaceuticals, see the subsequent text), use of supercritical fluids (as reaction
and extraction media), photochemistry, microwave chemistry, sonochemistry, and
synthetic electrochemistry. All these replacements for conventional methods and
conductive heating can lead to improved yields, reduced reaction times, and reduced
by-product formation. Engineered greener technologies also exist, including a
number of replacements for the stirred tank batch reactor, such as continuous
stirred tanks, fluidized bed reactors, microchannel reactors, and spinning disc
reactors as well as microwave reactors, all of which increase the throughput, while
decreasing the energy usage and waste. Unfortunately, despite these many new
processes, industry is reluctant to use these hardware solutions because of the often
massive financial expenditure involved in purchasing these items and the limited
number of chemistries that have been demonstrated with them to date. There is
also a reluctance to change well-established (and paid for) chemical plant so that
newer, cleaner technologies may well have more success in the developing (e.g.,
the Brazil, Russia, India, and China (BRIC)) nations, where the chemical industry
is growing and new plant is required to meet the increasing expectations of local
and increasingly affluent markets.

1.2
Green Chemistry Metrics

It is important to be able to quantify the change when changes are made to chem-
ical processes. This enables us to quantify the benefit from the new technology
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introduced (if there are benefits). This can aid in in-house communication (to
demonstrate the value to the workforce) as well as in external communication.
For yield improvements and selectivity increases, simple percentages are suit-
able, but this simplistic approach may not always be appropriate. For example,
if a toxic reagent is replaced by a less toxic one, the benefit may not be cap-
tured by conventional methods of measuring reaction efficiency. Equally, these
do not capture the mass efficiency of the process – a high-yielding process may
consume large amounts of auxiliaries such as solvents and reagents, as well
as those used in product separation and purification. Ideally, we also need
to find a way to include energy and water, both of them have been com-
monly used in a rather cavalier way but they are now subject to considerable
interest that they can vary depending on the location of the manufacturing
site.

Numerous metrics have been formulated over time and their suitability discussed
at great length [8–12]. The problem observed is that the more accurate and
universally applicable the metric devised, the more complex and unemployable it
becomes. A good metric must be clearly defined, simple, measurable, objective
rather than subjective, and must ultimately drive the desired behavior. Some of the
most popular metrics are

– E factor (which effectively measures the amount of product compared to the
amount of waste – the larger the E factor is, the less product-specific is the
process; the fine chemical and pharmaceutical manufacturing sectors tend to
have the highest E factors) [13];

– effective mass yield (the percentage of the mass of the desired product relative
to the mass of all nonbenign materials used in its synthesis – this includes an
attempt to recognize that ‘‘not all chemicals are equal’’ – important and very real
but very difficult to quantify);

– atom efficiency/economy (measures the efficiency in terms of all the atoms
involved and is measured as the molecular weight of the desired product divided
by the molecular weight of all of the reagents; this is especially valuable in the
design ‘‘paper chemistry’’ stage when low atom efficiency reactions can be easily
spotted and discarded);

– reaction mass efficiency (essentially the inverse of E factor).

Of course, the ultimate metric is life cycle assessment (LCA); however, this is
a demanding exercise that requires a lot of input data, making it inappropriate
for most decisions made in a process environment. However, some companies
do include LCA impacts such as greenhouse gas production in their in-house
assessment, for example, to rank solvents in terms of their greenness. It is also
essential that we adopt a ‘‘life cycle thinking’’ approach to decision making so
that we do not make matters worse when greening one stage in a manufacturing
process without appreciating the effects of that change on the full process including
further up and down the supply chain.
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1.3
Alternative Solvents

Most chemical processes involve solvents – in the reactions and in the workups
as well as in the cleaning operations [14, 15]. The environmental impact of a
chemical process cannot be properly evaluated without considering the solvent(s).
For some time there has been a drive toward replacing or at least reducing the use
of traditional volatile organic solvents such as dichloromethane, tetrahydrofuran,
and N-methylpyrollidone – commonly used solvents in, for example, catalytic
processes.

Ionic liquids, fluorous biphasic systems, and supercritical fluids have all been
studied as alternatives to conventional organic solvents. However, because of their
nature, some of these novel systems require additional hardware for utilization.
For example, some suppliers have designed advanced mixing systems to enable
polyphasic systems to be intimately mixed at the laboratory scale. There has also
been considerable rethinking of the green credentials of some of these alternative
solvents in recent years and many ionic liquids are no longer considered suitable
because of their complex syntheses, toxicity, or other unacceptable properties,
or difficulty in separation and purification. Fluorous solvents (which are based
on heavily fluorinated usually aliphatic compounds) are not considered to be
environmentally compatible (as they persist in the environment).

Supercritical solvents are difficult to manipulate because of the high pressures
and temperatures often employed. In the case of supercritical water, equipment
had to be designed, which could contain the highly corrosive liquid. Vessels for
creating supercritical solvents such as supercritical CO2 (scCO2) are now available
and are capable of fine adjustments in temperature and pressure to affect the
solvents’ properties. Very high pressure and temperatures are not required to
produce scCO2 and it is becoming an increasingly popular reaction medium as
its properties are controllable by varying the temperature and pressure or by the
use of a cosolvent [16]. The main environmental benefit of scCO2 lies in the
workup, as the product mixture is obtained free from solvent by simply returning
to atmospheric conditions. Additionally, carbon dioxide is nontoxic, nonflammable,
recyclable, and a by-product of other processes. However, there are energy and
safety concerns associated with the elevated temperatures and pressures employed
and in particular, there are high capex costs to install a plant. These must be
balanced against the benefits of its use.

scCO2 can be a good medium for catalysis, although its low polarity means
that either catalysts are heterogeneous or they have to be modified to enable
them to dissolve (e.g., by introducing solubilizing substituents on the catalyst
ligands).

Ionic liquids are molten salts and are liquid at relatively low temperatures: room-
temperature ionic liquids are the most widely studied. Their lack of vapor pressure
has been their biggest selling point but the enormous flexibility of choice of ions
enables ionic liquids to be designed as catalysts as well as solvent. In particular,
they can be powerful combined solvent–acid catalysts. The use of ionic liquids
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has been reported in various synthetic transformations such as Friedel–Crafts
reaction, Diels–Alder reaction, and metal-catalyzed asymmetric synthesis. The
problems with their use include toxicity (in some cases), cost of manufacture,
and difficulties in separation/purification (they cannot be distilled), and these have
hampered their industrial uptake, although they are certainly interesting at least
for niche applications [17, 18].

Biphasic systems can be an effective method by which catalyst, substrates,
and products can be easily separated into different liquid phases and therefore
simplifying and ‘‘greening’’ reaction workup. Fluorous biphasic solvent systems,
where the homogeneous catalyst is soluble within the fluorous phase and reactants
are soluble within an immiscible conventional solvent, have been extensively
studied. Heating leads to the two solvents becoming miscible, enabling the reaction
to occur. On completion of the reaction, when cooled, the phases return to being
immiscible with the product partitioning into the conventional solvent phase
for isolation. However, there have been serious concerns expressed over the
‘‘green’’ credentials of these heavily fluorinated molecules as they persist in the
environment and can be hazardous to operators. Phase transfer catalysts (PTCs)
have been used for many years in biphasic systems for transferring species
into a phase they would not normally be soluble in. They aid the reaction by
improving the availability of the substrates [19]. PTCs are commonly quaternary
ammonium or phosphonium compounds; they mostly do not present major
environmental concerns and continue to be popular for greening organic reactions.
Perhaps, the biggest concern is with regard to their recovery from reactions as
they are usually very soluble in both phases of the biphasic system, although
heterogeneous PTC, involving, for example, silica-supported onium compounds
have been reported.

1.4
Heterogeneous or Homogeneous

While homogeneous catalysis generally offers good activity and a homogeneous
distribution of active sites, as explained earlier, it is not without problems notably
with regard to separation and reuse. Here, heterogeneous catalysis has clear
advantages. There are in fact a number of advantages of heterogeneous catalysis
compared to homogeneous [20, 21].

– Safety – heterogeneous catalysts are often environmentally benign and safe to
handle because of the active species being bound to a support material (e.g.,
silica-supported sulfonic acid for acid catalysis compared to sulfuric acid).

– Separation and reusability – the solid catalyst can either be used in a fixed bed
configuration or simply filtered or centrifuged from a stirred tank reaction and
then, in many cases reactivated for reuse (e.g., zeolites used in petroleum refining
can be reactivated and reused for years before disposal).

– Activity – while homogeneous catalyst are commonly the most active, there are
many cases where perhaps counterintuitively, the heterogeneous analog is more


