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Preface

“Those who study complex adaptive systems are beginning to find some general
principles that underlie all such systems, and seeking out those principles requires
discussions and collaboration among specialists in a great many fields.”

M. Gell-Mann1)

Modern science and engineering deal with problems that involve wide ranges of
spatial and temporal scales. Moreover, data-intensive sciences such as Systems
Biology and Systems Neuroscience, besides dealing with complex physical, chemi-
cal, and biological phenomena, need to handle enormous amounts of high-dimen-
sional data produced by modern high-throughput experimental technologies. All
this creates a critical need for modeling sophisticated, natural/artificial systems and
analyzing modern high-dimensional data across multiple scales ranging from
molecules to macroscales. However, traditional mathematical approaches to mod-
eling/analyzing complex phenomena/data are often limited because of the multi-
scale nature of the problems. At the same time, it is well known that biological
systems solve computationally demanding problems with many scales and process
multiscale information deftly. Indeed, in order to resolve a broad range of spatial/
temporal scales present in input signals, perception systems perform sophisticated
multiscale encoding, analysis, and decoding in real time. A second example is
related to data dimension reduction (which is intimately connected with feature
extraction, recognition and learning). In fact, the input signals to all mammalian
perception systems, despite their coming from low-dimensional Euclidian space,
are transformed internally into extremely high-dimensional representations. This
counterintuitive drastic increase in complexity is followed by a concealed, effortless
and perpetual nonlinear dimension reduction, that is, converting the complex
representations back into low-dimensional signals to be, ultimately, executed by
the motor system. Another example comes from Systems Biology where embryonic
development is, in fact, an immense information processing task in which DNA
sequence data generate and direct the system level spatial deployment of specific
cellular functions [2]. These examples indicate that the theoretical understanding of
biological computational mechanisms and their experimental implementation can

1) Cited in Ref. [1].
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greatly enhance our ability to develop efficient artificial information processing
systems. An important advance in the engineering of biological computing systems
has recently been achieved and the first network of artificial neurons made from
DNA was created, suggesting that DNA strand displacement cascades could endow
biochemical systems with the capability of recognizing patterns [3]. Pattern
recognition and multiresolution are quintessential for information processing,
which, in turn, is closely connected with learning and adaptivity.
Complex biological systems capable of adaptive behavior and effective informa-

tion processing are often governed by mechanisms operating simultaneously on
multiple spatial and temporal scales. Thus, in order to analyze the machinery that
underlies biological information processing and computations in general, this book
focuses on modeling multiscale phenomena in Synthetic/Systems Biology and
Systems Neuroscience, as well as on mathematical approaches to multiresolution
analysis. Because of the inherently interdisciplinary nature of this task, the editor of
this book invited experts (theoreticians and experimentalists) in bioengineering,
chemistry, cardiology, neuroscience, computer science, and applied mathematics, to
provide their perspectives (“seeking out those principles requires . . . collaboration
among specialists in a great many fields.”). The contributions to this book may
broadly be categorized as belonging to mathematical methods, Systems Biology, and
Systems Neuroscience. Multiscale analysis is the major integrating theme of this
book, as indicated by its title. The subtitle does not call for bridging the scales all the
way from genes to behavior, but rather stresses the unifying perspective provided by
the concepts referred to in the title. The contributions emphasize the importance of
taking into account the interplay betweenmultiscale structure andmultiscale dynamics.
One of our goals is to attract the attention of scientists working in Systems Biology
and Systems Neuroscience by demonstrating that some of the seemingly unrelated
problems from these disciplines may be modeled using virtually identical powerful
mathematical methods from the inclusive paradigms emphasized here. Each
chapter provides a window into the current state of the art in the areas of research
discussed. This book is thus intended for advanced researchers interested in recent
developments in these areas. It is believed that the interdisciplinary perspective
adopted here will be beneficial for all the above-mentioned disciplines. The roads
between different sciences, “while often the quickest shortcut to another part of our
own science, are not visible from the viewpoint of one science alone” [4].
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1
Introduction: Multiscale Analysis –Modeling, Data, Networks,
and Nonlinear Dynamics
Misha (Meyer) Z. Pesenson

“ . . . the twin difficulties of scale and complexity.”
P. Anderson [1]

“ . . . I spelled out a moral for the general structure of scientific knowledge:
that scale changes in a wide variety of instances can lead to qualitative change
in the nature of phenomenon.”

P. Anderson [2]

“ . . . to find a really appropriate name for that stratification or layering
of the structures involved which we are all tempted to describe as ‘hierar-
chies’. . . . We need a conception of tiers of networks with the highest tier as
complex as the lower ones.”

F. Hayek [3]

The human brain is the archetype of a natural complex adaptive system. It is
composed of impenetrable “jungles” of neurons, which interact both within and
acrossmultiple spatial and temporal scales (see, for example, recent books: [4–13]). In
SystemsBiology the situation is similarly complicated andbiological systems, besides
being characterized by a large number of components and their interactions,
demonstrate a very complex organization at multiple spatial scales [14,15]. As a
result, thefields of SystemsNeuroscience and SystemsBiology deal with phenomena
of intricate complexity that are governed by various mechanisms integrated across
many levels of detail. In addition, high-throughput experimental technologies and
powerful simulation/analysis tools generate new types of heterogeneous data with a
density and depth previously unimaginable. All this creates a critical need for
modeling sophisticated, natural/artificial systems and analyzing modern high-
dimensional data from multiple levels ranging from molecules! synapses!neu-
rons!networks (and ideally, all theway to behavior). The attempts tomodel/analyze
such complex phenomena/data are hindered by the fact that traditionalmathematical
approaches are often limited because of the multiscale nature of the problems.

Multiscale Analysis and Nonlinear Dynamics: From Genes to the Brain,
First Edition. Edited by Misha (Meyer) Z. Pesenson.
� 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.

j1



This book concentrates on the investigation of multiscale problems in Systems
Biology and Systems Neuroscience, and on mathematical approaches to multi-
resolution analysis (MRA). Systems Biology analyzes how hierarchical, multiscale
molecular structures control the dynamic linkages between different genes and their
products and give rise to the emergent properties and functions of a unified
organism [14,15]. Similarly, the goal of Systems Neuroscience is to unravel how
neurons and the intricate structure of neural networks shape information flow,
perceptual grouping, multiscale processing, the emergent functions of neural
circuits, and ultimately – cognition and behavior [13]. Despite these obvious parallels
between Systems Biology and Systems Neuroscience, there is, surprisingly little
interaction among the corresponding research communities [16]. It is unfortunate,
since these two fields can learn quite a bit from each other regarding the use of
physical, mathematical/computational modeling, data processing, and so on. In
addition, identifying methods common to both, Systems Biology and Systems
Neuroscience, may, in turn, drive the development of systematic mathematical
approaches to modeling complex phenomena/data. To promote stronger interaction
between these fields and to aid their “coming together,” as Kandel1) phrased it, the
editor of this book invited contributions from experts representing a highly inter-
disciplinary group of scientists in computer science, applied mathematics, bioen-
gineering, chemistry, cardiology, and neuroscience. The chapters in this book may
broadly be categorized as belonging to mathematical methods, Systems Biology, and
Systems Neuroscience. One of the goals of this book is to attract the attention of
scientists working in these supposedly distinct fields, by demonstrating that some of
the seemingly unrelated problems in Systems Biology and Systems Neuroscience
may be modeled using virtually identical powerful methods from the inclusive
paradigms articulated here. There are three main paradigms, which are the unifying
threads of this book – multiscale analysis, networks, and nonlinear dynamics.
Multiscale analysis is the major integrating theme of the book, as indicated by its
title. The subtitle does not call for bridging the scales all the way from genes to
behavior, but rather stresses the unifying perspective provided by the concepts
referred to in the title, and especially by multiscaling. Multiscaling, in essence the
consideration of problems on many spatial and temporal scales, is one of the major
recent developments in solid-state physics, fluid mechanics, and applied mathe-
matics (some examples are briefly discussed later in this introduction). This book
emphasizes the importance of taking into account the interplay between multiscale
structure and multiscale dynamics. It is network theory that provides a general
framework for the integration of multiscaling and collective dynamics.
In neuroscience, multiscale network interactions may account for much of the

brain’s complex behavior. The importance of multiple time/space scales and their
interaction was emphasized by Hebb, Hayek, and Luria [18–20], and has been
stressed by a number of authors over the past few years [5–12,21–25]. Nunez focuses
on the importance of nested modular hierarchy in brain tissue and quotes

1) I think that the history of science is the history of unification of knowledge, disciplines
coming together [17].
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V. Mountcastle: “the brain is a complex of widely and reciprocally interconnected
systems and the dynamic interplay of neural activity within and between these
systems is the very essence of brain function.” [8]. Mountcastle also explicitly
referred to the emergent behavior of the brain: “The properties of microcircuit
operations are emergent, for they cannot be predicted from what is known of the
action of single neurons.” [26]. The hierarchy of neural networks figures in the
global neuronal workspace model of consciousness that is based on dynamic links
between specialized processing modules (dynamically formed networks) [27–31].
This model includes long-range cortico-cortical axons (densely distributed in pre-
frontal, parieto-temporal, and cingulate cortices) that integrate sub networks into a
single large system, and suggests that highly distributed synchronized activity
provides neural correlates of conscious states of the brain. Anothermodel of memory
and consciousness, the multiregional retroactivation framework, also rejects a single
anatomical site for the integration ofmemory andmotor processes, and involves time-
locked neuronal ensembles located inmultiple and separate regions [32,33]. Based on
simultaneous electrophysiological and fMRImeasurements in non-human primates,
Logothetis [34] states that “the concurrent study of components and networks” is
needed and “simultaneous studies of microcircuits, of local and long-range inter-
connectivity between small assemblies, and of the synergistic activity of larger
neuronal populations are essential.” Another experimental illustration of the signifi-
cance of dynamics andmultiple scales comes fromawork of Salazar et al. [35], who, by
using simultaneous recordings of neural activity from various areas, demonstrated
that short-term memories are represented by patterns of synchronization, widely
distributed throughout the frontoparietal network (I’d like to thank Lester Ingber for
bringing this work tomy attention). Overall, there ismounting experimental evidence
that sensory neurons change their responses, as well as the structure of neuronal
correlations, adaptively. In Systems Biology it is also being increasingly recognized
that various bionetworks are interrelated and influence each other dynamically. To
sumup,modeling inSystemsNeuroscience andSystems/SyntheticBiologymust take
into account a largenumberof components, theirnonlinear dynamic interactions, and
multiscale, dynamically changing hierarchical interconnections.
These factors may lead to an emergent, self-organized (in contrast to centrally

controlled), adaptive behavior that is often encountered in Systems Neuroscience
and Systems Biology. Indeed, in the context of neural networks, it was shown some
30 years ago that new properties may emerge as a result of the collective dynamic
interaction of a large number of components [36]. Hopfield’s network consisted of
simple equivalent components, and the network had little structure. Nonetheless, new
collective properties spontaneously emerged. This had been anticipated by Anderson:
“We expect to encounter fascinating and, I believe, very fundamental questions at each
stage in fitting together less complicated pieces into the more complicated system and
understanding the basically new types of behavior which can result” [1]. As Aristotle put
it, “In the case of all things which have several parts and in which the whole is not, as it
were, a mere heap, but the totality is something besides the parts, there is a cause of
unity.” [37]. Interactions among multiple scales also may give rise to new phenomena.
Let us consider just a few classical examples. The first one dates back to 1869, when
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Maxwell solved the problem of anomalous dispersion of a monochromatic electro-
magnetic wave of the frequency v interacting with the transmitting media whose
electrons have the intrinsic frequency v0 [38–40]. In essence, this theory links the
macroscopically observed refraction and absorption to themicroscopic oscillations of
electrons. Another example concerns spatial scales and comes from nonlinear waves
in elastic media with microstructure [41]. Microstructure induces the spatial disper-
sion that, together with nonlinearity, gives rise to a striking new type of nonlinear
waves – solitons, described by the macroscopic Korteweg–de Vries (KdV) equation.
These examples indicate that both collective behavior and the effect ofmultiple scales
may separately lead to changes in the nature of a system. Therefore, the integration of
multiscaling and collective dynamics (iMCD), the paradigm advocated here, takes
into account the convoluted interplay between these two factors, thus providing a
broad, inclusive way of describing emergence and adaptivity of complex systems.
Besides furnishing a theoretical perspective, modeling based on iMCD will also

be important for how Systems Biology and Systems Neuroscience collect exper-
imental data. In neuroscience, for example, it will soon be possible to record from
thousands of neurons, but for studies of a particular phenomenon, it is important
to know from which (and from how many) neurons the spikes should be recorded
(see, for example, Refs [35,42,43]).
Moreover, the iMCD paradigm, being comprehensive, will help to grasp and

interpret this flood of experimental/ simulated data. Indeed, one primarily detects
what he/she is looking for (“The decisive point is not observation but expectation” as
Popper put it [44]), and evenwhen there is somethingunforeseenandamodelproves to
be inadequate, it is the comprehensiveness of the modeling that helps one to spot the
unanticipated.2) In addition to providing useful technical tools, multiscaling is in fact a
way of thinking. For example, let us take a look at the so-called model equations.
The KdV equation mentioned above is just one example of such equations which
describe a large number of physical, chemical, technical, and biological phenomena.
These equations include the nonlinear Schr€odinger equation, the sine–Gordon
equation, the Ginzburg–Landau equation, and so on [39,45,46]. Their derivation,
which utilizes multiple space/time scales essential to a phenomenon, has led to
advances in the understanding of diverse phenomena and also to the establishment of
new, rich branches of research in physics and applied mathematics. In other words,
multiscaling is not only a mathematical language common to various disciplines, but,
more importantly, a way of thinking.
Even thoughmultiscale analysis is probably the oldest among the above-mentioned

unifying concepts of the book, it is less universally recognized as a powerful,
indispensable framework for describing complex natural phenomena (“ . . . linking
models at different scales . . . is as old as modern science itself” – see examples in
Ref. [40]). The main manifestations of multiscaling pertinent to this book are multi-
scale modeling (physical, chemical, biological, etc.), multiresolution analysis of high-
dimensional information/data, and multiscale nonlinear dynamics on networks.

2) “In preparing for a battle, I have always found that plans are useless, but planning is
indispensable.” D. D. Eisenhower.
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Inwhat follows, I briefly discuss themandhow they are exemplified in this book. Since
these embodiments ofmultiscaling are interconnected, the discussion inevitably goes
back and forth between them. Each section starts with a short account of the section’s
main topic and ends with a description of pertinent chapters of the book.

1.1
Multiscale Modeling

Multiscale modeling/analysis has become a large part of modern applied mathe-
matics. But what is multiscale analysis to begin with? It is, in fact, an overarching
concept of treating problems on multiple scales. It has developed into a large
spectrum of techniques that have different meanings and flavors depending on
whether they belong to physical modeling, asymptotic methods, numerical simula-
tions, information theory, or applied harmonic analysis. Under various disguises,
multiscale analysis enters virtually every scientific/engineering endeavor. Indeed, in
analyzing a phenomenon, practically all fields rely on mathematical modeling in
order to characterize the mechanisms involved, to make predictions, to guide new
experiments, and to aid the design in technology. The iterative model building
process consists of the following three major stages, each of which depends greatly
on a particular incarnation of multiscale analysis:

1) Domain(s)-specific modeling (physical, chemical, biological, and so on, or a
combination of these)
- data collecting and analyzing,
- mathematical formulation, equations (not always possible).

2) Analysis
- asymptotic study, computational simulations,
- quantifying uncertainty.

3) Model verification
- data generating and analyzing.

These stages are not completely independent of each other. Moreover, they are not
strictly sequential and the pursuit of the comprehensive model may require their
simultaneous combined efforts. It is interesting to note that such a non-sequential
modeling procedure, in fact, provides a paradigmatic account of knowledge genera-
tion in general and parallels the cognition process where the knowledge-dependent
brain does not follow the traditional information processing input–output scheme,
but rather continuously generates internal variations, anticipating and testing the
outside world with reference to its own representation of the world [19,29,31–33].
The first thing one notices from the stages 1–3 above is that modeling starts and

ends with data analysis. In fact, the intermediate stages also implicitly depend on
data processing. Nowadays, there is usually more data available than can be
processed by using traditional data analysis tools (this situation is briefly discussed in
Section 1.2), and even fields with well-established data archives, such as genomics,
are facing new and mounting challenges in data management and exploration.
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Let us start by considering in a nutshell howmultiscale analysis manifests itself in
the various stages of modeling.

1.1.1
Domain-Specific Modeling

Any model is an idealization of a phenomenon, and as such, it inevitably neglects
some details and generates an abstraction that captures what is most important for a
particular analysis. How does one know what is essential? This crucial process of
prioritizing begins by building a hierarchy of scales that underlie the phenomenon.
Indeed, it is obvious that any parameter whose magnitude depends on measure-
ment units could hardly be useful for modeling. At the same time, the significance
of various parameters is determined by theirmagnitudes. Thus, one of the first steps
should be to find scales that are intrinsic to the problem and to normalize the
parameters accordingly. In addition, this process of prioritizing scales is instru-
mental in quantifying the uncertainty of the chosen representation. It is important to
note, however, that basic dimensional analysis is not always sufficient for obtaining
the so-called scaling laws [47,48].
To consider some effects of multiple scales, let us start with a simple example of a

harmonic oscillator. In this case, there is only one intrinsic time scale – the inverse
frequency of the pendulum. As we move to a more realistic model with damping, an
additional time scale – the characteristic damping scale – appears [49,50]. The appear-
ance of just one additional scale makes the phenomenon and its computatio-
nal/mathematical treatment much more complicated. A straightforward solution is
not uniformly valid (in time) anymore, and a singularity near t¼ 0 complicates the
analysis. In fact, singular behavior can often be inferred by analyzing dimensionless
characteristic magnitudes. If one considers, for example, a limiting case when a
parameter of a problem is small, a general rule states: “A perturbation solution is
uniformly valid in the space and time coordinates unless the perturbation quantity is the
ratio of two lengths or two times” [50]. This is, in general, a very formidable complication
that was caused by having just two scales instead of one. The theory of singular
perturbations was developed in fluid mechanics (the boundary layer theory), but a
similar situation occurs in modeling biochemical reactions, where the Michaelis–
Menten kinetics results from a reduction of a singularly perturbed model. As the
simple example of an oscillator with damping demonstrates, the initial choice of the
intrinsic scales is of theutmost importance tomodeling. Sucha selection requires adeep
physical, chemical, and biological understanding of the collected data and the phe-
nomena being investigated.
The contributions to this book by Elisa Franco et al., Rapha€el Plasson et al., and

Zhilin Qu et al. belong to this category of modeling complex, multiscale phenomena
with applications to transcriptional networks, biochemical oscillators, and nonlinear
dynamics of the heart. Elisa Franco, Jongmin Kim, and Friedrich Simmel, in their
chapter “Transcriptional Oscillators,” study a class of cell-free synthetic biological
systems – “genelet circuits” – that are entirely based on in vitro gene transcription. In
these systems a reduced number of biological components –DNA and RNA strands
and a few enzymes – are used to construct artificial gene regulatory circuits that are
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roughly analogous to biologically occurring counterparts, for example, bistable
molecular switches or oscillators. Among the most attractive features of in vitro
transcription circuits is that, in principle, all of their molecular components are
known. This not only makes these systems amenable to a thorough quantitative
treatment, but also enables one to comparatively easily feedback to the experimental
realization of the systems insights gained from computational modeling.
Rapha€el Plasson and Yannick Rondelez, in their contribution, trace the historical

developments of the concept of out-of-equilibrium networks of chemical reactions,
from small molecules systems to biology, to generalized experimental chemistries.
They focus on the building of out-of-equilibrium chemical systems and review the
discoveries and theoretical advances that eventually allowed the dynamical descrip-
tion of molecular assemblies. They also describe the world of biological reaction
networks and provide examples of natural implementation of such chemical
circuits. Their survey highlights some of the most recent schemes for the rational
molecular programming of complex out-of-equilibrium behaviors, and also gives a
further incentive for the study of complex chemical systems as models of their
biological counterparts. Some examples of realizations based on these experimental
schemes are described.
Zhilin Qu and Michael Nivala, in their chapter “Multiscale Nonlinear Dynamics

in Cardiac Electrophysiology: From Sparks to Sudden Death,” analyze the nonlinear
dynamics of the heart, which are regulated by nonlinear dynamics occurring on
multiple scales, ranging from random molecular motions to more regular cellular
and tissue-level behaviors. They review experimental observations and mechanistic
insights gained from the mathematical modeling of biological functions across
subcellular, tissue, and organ scales in the heart. They also discuss the role of
nonlinear dynamics in the genesis of lethal cardiac events.
In the next subsection, we briefly discuss motivations for and approaches to

linking various scales.

1.1.2
Analysis

Bridging various scales is a very challenging problem of applied mathematics.
To get a better feel for the issues analyzed in this book, let us take a quick look at the
spectrum of characteristic spatial/time values in Systems Neuroscience. The brain is
a complex system with a huge range of structural and functional scales [4–13,51,52].
In order to understand the function of the brain, modeling and simulation tech-
niques are applied at many different levels from subcellular to systems: cell! circuit
!network! cognition.3) Some spatial characteristic magnitudes are as follows:

molecules �1A
�
, synaptic cleft in chemical synapse (width) �20–40nm, neurons

3) For “directly” interacting with a brain, as
opposed to modeling, the interested reader
is referred to Musil’s amusing, surrealistic
visit to his brain in 1913: “This writer’s
brain: I hastily slid down the fifth turn in
the vicinity of the third mound. . . . The
mass of the cerebral cortex arched over

me . . . unfathomable, like strange
mountains at dusk. Night was already
falling over the region of the
medulla; . . . hummingbird colors [like the
colors of modern neuroimages (MP)], . . . ,
disconnected sounds [neuron spikes
(MP)] . . . ” [53].
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�4–100mm, axon (diameter) �0.5–20mm, axon length �1mm–1m, neural circuits
�1mm, and from here to the whole brain and cognition. The characteristic time
scales in neuroscience correspond to frequencies spanning four orders ofmagnitude,
from the so-called slow-four �0.025–0.066Hz to slow-one, and then to delta¼
1.5–4Hz! theta¼ 4–10Hz! beta¼ 10–30Hz! gamma¼ 30–80Hz!high fre-
quency¼ 80–200Hz! the ultrahigh frequency¼ 200–600Hz [7]. Moreover, realistic
models of a single neuron contain two distinct time scales – slow and fast. These
ranges of the spatial and temporal scales are bewildering.However, since the scales are
so disparate, why not analyze eachof them independently? Indeed, traditionally, this is
exactly how problems with multiple scales are approached – different scales are
separated and their interaction with each other only takes place through some
“passive,” phenomenological parameters. For highly informative, inspiring discus-
sions ofmodeling andbridgingmultiple scales see Phillips [40], especially Chapter 12;
it is the subtitle of the book –Modeling Across Scales – not the title that articulates its
relevance to our discussion. For an extensive, far-reaching account of the physical
perspective on biological modeling, see Phillips et al. [15]. The traditional way of
separating scales has been successful in dealing with many problems. However, as
we have discussed, there are numerous important situations where different
scales cannot be considered independently, and it is precisely the interactions
between disparate scales that give rise to phenomena otherwise absent. In
Neuroscience, for example, the interactions between theta and gamma oscilla-
tions may represent a cellular basis of long-term memory formation in humans
(see review [54] and references therein). When dealing with a complex system that
is characterized by multiple scales (“ . . . the twin difficulties of scale and
complexity.”), it is often desirable to reduce the complexity by constructing an
effective model that is a coarsened version of the original one. Homogenization is
one possible principled way to perform multiscale analysis and to “bridge the
scales” (for other powerful multiscale methods, see Ref. [55] and references
there). Homogenization is used to properly average out, or homogenize, the fast
scales in systems of ordinary or partial differential equations (these fast scales
reflect high-frequency variations, in time or space, of some characteristic physical
parameters). Doing so leads to effective equations that do not contain a small
parameter and are hence more amenable to numerical solution or analysis. In
neuroscience homogenization was applied, for example, to the propagation of
traveling wave fronts in an inhomogeneous, excitable neural medium [56].
Homogenization (or multiscale analysis) in the presence of a large number of

nonseparated (spatial or temporal) scales has been recognized as very important for
applications and is far from being well understood mathematically. This book opens
with a chapter by Mathieu Desbrun, Roger Donaldson, and Houman Owhadi
“Modeling Across Scales: Discrete Geometric Structures in Homogenization and
Inverse Homogenization” that addresses a situation with nonseparated spatial scales.
Imaging and simulation methods are typically constrained to resolutions much
coarser than the scale of physical microstructures present in body tissues. Both
mathematical homogenization and numerical homogenization address this practi-
cal issue by identifying and computing appropriate spatial averages that result in
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