
Edited by Tharwat Tadros

Emulsion Formation and Stability

Edited by Tharwat F. Tadros

Emulsion Formation and Stability

Related Titles

Tadros, T. F.

Dispersion of Powders

in Liquids and Stabilization of Suspensions

2012

ISBN: 978-3-527-32941-0

Tadros, T. F. (ed.)

Self-Organized Surfactant Structures

2010

ISBN: 978-3-527-31990-9

Tadros, T. F. (ed.)

Colloids and Interface Science Series

6 Volume Set

2010

ISBN: 978-3-527-31461-4

Tadros, T. F.

Rheology of Dispersions

2010

ISBN: 978-3-527-32003-5

Wilkinson, K. J., Lead, J. R. (eds.)

Environmental Colloids and Particles

Behaviour, Separation and Characterisation

2007

ISBN: 978-0-470-02432-4

Emulsion Formation and Stability

WILEY-VCH Verlag GmbH & Co. KGaA

The Editor

Prof. Dr. Tharwat F. Tadros 89 Nash Grove Lane Wokingham Berkshire RG40 4HE United Kingdom All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at .

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form — by photoprinting, microfilm, or any other means — nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-31991-6 ePDF ISBN: 978-3-527-64797-2 ePub ISBN: 978-3-527-64796-5 mobi ISBN: 978-3-527-64795-8 oBook ISBN: 978-3-527-64794-1

Cover Design Adam-Design, Weinheim Typesetting Laserwords Private Limited, Chennai, India Printing and Binding Markono Print Media Pte Ltd, Singapore

Contents

Preface XI List of Contributors XIII

1	Emulsion Formation, Stability, and Rheology 1
	Tharwat F. Tadros
1.1	Introduction 1
1.1.1	Nature of the Emulsifier 1
1.1.2	Structure of the System 2
1.1.3	Breakdown Processes in Emulsions 3
1.1.4	Creaming and Sedimentation 3
1.1.5	Flocculation 4
1.1.6	Ostwald Ripening (Disproportionation) 4
1.1.7	Coalescence 4
1.1.8	Phase Inversion 4
1.2	Industrial Applications of Emulsions 4
1.3	Physical Chemistry of Emulsion Systems 5
1.3.1	The Interface (Gibbs Dividing Line) 5
1.4	Thermodynamics of Emulsion Formation and Breakdown 6
1.5	Interaction Energies (Forces) between Emulsion Droplets
	and Their Combinations 8
1.5.1	van der Waals Attraction 8
1.5.2	Electrostatic Repulsion 9
1.5.3	Steric Repulsion 12
1.6	Adsorption of Surfactants at the Liquid/Liquid Interface 14
1.6.1	The Gibbs Adsorption Isotherm 14
1.6.2	Mechanism of Emulsification 17
1.6.3	Methods of Emulsification 19
1.6.4	Role of Surfactants in Emulsion Formation 21
1.6.5	Role of Surfactants in Droplet Deformation 22
1.7	Selection of Emulsifiers 26
1.7.1	The Hydrophilic–Lipophilic Balance (HLB) Concept 26
1.7.2	The Phase Inversion Temperature (PIT) Concept 29
1.7.3	The Cohesive Energy Ratio (CER) Concept 31

1.7.4	The Critical Packing Parameter (CPP) for Emulsion Selection 32
1.8	Creaming or Sedimentation of Emulsions 35
1.8.1	Creaming or Sedimentation Rates 36
1.8.2	Prevention of Creaming or Sedimentation 37
1.9	Flocculation of Emulsions 40
1.9.1	Mechanism of Emulsion Flocculation 40
1.9.1.1	Flocculation of Electrostatically Stabilized Emulsions 41
1.9.1.2	Flocculation of Sterically Stabilized Emulsions 42
1.9.2	General Rules for Reducing (Eliminating) Flocculation 43
1.10	Ostwald Ripening 44
1.11	Emulsion Coalescence 45
1.11.1	Rate of Coalescence 46
1.11.2	Phase Inversion 47
1.12	Rheology of Emulsions 48
1.12.1	Interfacial Rheology 48
1.12.1.1	
1.12.1.2	Interfacial Shear Viscosity 49
1.12.2	Measurement of Interfacial Viscosity 49
1.12.3	Interfacial Dilational Elasticity 50
1.12.4	Interfacial Dilational Viscosity 51
1.12.5	Non-Newtonian Effects 51
1.12.6	Correlation of Emulsion Stability with Interfacial Rheology 51
1.12.6.1	
1.12.6.2	Protein Films 51
1.13	Bulk Rheology of Emulsions 53
1.13.1	Analysis of the Rheological Behavior of Concentrated Emulsions 54
1.14	Experimental $\eta_{\rm r} - \phi$ Curves 57
1.14.1	Experimental $\eta_r - \phi$ Curves 58
1.14.2	Influence of Droplet Deformability 58
1.15	Viscoelastic Properties of Concentrated Emulsions 59
1.15.1	High Internal Phase Emulsions (HIPEs) 61
1.15.2	Deformation and Breakup of Droplets in Emulsions during Flow 66
	References 73
2	Emulsion Formation in Membrane and Microfluidic Devices 77
	Goran T. Vladisavljević, Isao Kobayashi, and Mitsutoshi Nakajima
2.1	Introduction 77
2.2	Membrane Emulsification (ME) 78
2.2.1	Direct Membrane Emulsification 78
2.2.2	Premix Membrane Emulsification 79
2.2.3	Operating Parameters in Membrane Emulsification 80
2.2.4	Membrane Type 80
2.2.4.1	Surfactant Type 80
2.2.4.2	Transmembrane Pressure and Wall Shear Stress 81
	Transmembrane ressure and wan shear stress or

2.3.1	Microfluidic Junctions 82
2.3.2	Microfluidic Flow-Focusing Devices (MFFD) 83
2.4	Microfluidic Devices with Parallel Microchannel Arrays 85
2.4.1	Grooved-Type Microchannel Arrays 86
2.4.2	Straight-through Microchannel Arrays 88
2.5	Glass Capillary Microfluidic Devices 89
2.6	Application of Droplets Formed in Membrane and Microfluidic
	Devices 93
2.7	Conclusions 93
	Acknowledgments 94
	References 94
3	Adsorption Characteristics of Ionic Surfactants at Water/Hexane
	Interface Obtained by PAT and ODBA 99
	Nenad Mucic, Vincent Pradines, Aliyar Javadi, Altynay Sharipova,
	Jürgen Krägel, Martin E. Leser, Eugene V. Aksenenko,
	Valentin B. Fainerman, and Reinhard Miller
3.1	Introduction 99
3.2	Experimental Tools 99
3.3	Theory 101
3.4	Results 102
3.5	Summary 107
	Acknowledgments 107
	References 107
4	Measurement Techniques Applicable to the Investigation of Emulsion
	Formation during Processing 109
	Nima Niknafs, Robin D. Hancocks, and Ian T. Norton
4.1	Introduction 109
4.2	Online Droplet Size Measurement Techniques 112
4.2.1	Laser Systems 112
4.2.2	Sound Systems 115
4.2.3	Direct Imaging 115
4.2.4	Other Techniques 118
4.3	Techniques Investigating Droplet Coalescence 121
4.4	Concluding Remarks 123
	References 125
5	Emulsification in Rotor-Stator Mixers 127
	Andrzej W. Pacek, Steven Hall, Michael Cooke, and Adam J. Kowalski
5.1	Introduction 127
5.2	Classification and Applications of Rotor–Stator Mixers 128
5.2.1	Colloid Mills 129
5.2.2	In-Line Radial Discharge Mixers 130
5.2.3	Toothed Devices 131

VIII	Contents	
	5.2.4	Batch Radial Discharge Mixers 132
	5.2.5	Design and Arrangement 133
	5.2.6	Operation 136
	5.3	Engineering Description of Emulsification/Dispersion Processes 138
	5.3.1	Drop Size Distributions and Average Drop Sizes 138
	5.3.2	Drop Size in Liquid–Liquid Two-Phase Systems – Theory 140
	5.3.3	Maximum Stable Drop Size in Laminar Flow 141
	5.3.4	Maximum Stable Drop Size in Turbulent Flow 142
	5.3.5	Characterization of Flow in Rotor–Stator Mixers 143
	5.3.5.1	Shear Stress 143
	5.3.5.2	Average Energy Dissipation Rate 144
	5.3.5.3	Power Draw 144
	5.3.6	Average Drop Size in Liquid–Liquid Systems 145
	5.3.7	Scaling-up of Rotor-Stator Mixers 147
	5.4	Advanced Analysis of Emulsification/Dispersion Processes in
		Rotor–Stator Mixers 152
	5.4.1	Velocity and Energy Dissipation Rate in Rotor–Stator Mixers 153
	5.4.1.1	Batch Rotor–Stator Mixers 154
	5.4.1.2	In-Line Rotor—Stator Mixers 157
	5.4.2	Prediction of Drop Size Distributions during Emulsification 160
	5.5	Conclusion 163
		Nomenclature 163
		References 165
	6	Formulation, Characterization, and Property Control of Paraffin
Emulsions 169		
		Jordi Esquena and Jon Vilasau
	6.1	Introduction 169
	6.1.1	Industrial Applications of Paraffin Emulsions 170
	6.1.2	Properties of Paraffin 170
	6.1.3	Preparation of Paraffin Emulsions 172
	6.2	Surfactant Systems Used in Formulation of Paraffin Emulsions 174
	6.2.1	Phase Behavior 175
	6.3	Formation and Characterization of Paraffin Emulsions 178
	6.4	Control of Particle Size 181
	6.5	Stability of Paraffin Emulsions 185
	6.5.1	Stability as a Function of Time under Shear (Orthokinetic Stability) 185
	6.5.2	Stability) 185 Stability as a Function of Freeze–Thaw Cycles 186
	6.5.3	Stability as a Function of Freeze–Thaw Cycles 186 Stability as a Function of Electrolytes 189
	6.6	Conclusions 195
	0.0	Acknowledgments 196
		References 196
		ICICICIICO 170

/	Polymeric O/W Nano-emulsions Obtained by the Phase Inversion
	Composition (PIC) Method for Biomedical Nanoparticle
	Preparation 199
	Gabriela Calderó and Conxita Solans
7.1	Introduction 199
7.2	Phase Inversion Emulsification Methods 200
7.3	Aspects on the Choice of the Components 201
7.4	Ethylcellulose Nano-Emulsions for Nanoparticle Preparation 202
7.5	Final Remarks 204
	Acknowledgments 205
	References 205
8	Rheology and Stability of Sterically Stabilized Emulsions 209
	Tharwat F. Tadros
8.1	Introduction 209
8.2	General Classification of Polymeric Surfactants 210
8.3	Interaction between Droplets Containing Adsorbed Polymeric
	Surfactant Layers: Steric Stabilization 212
8.3.1	Mixing Interaction G_{mix} 213
8.3.2	Elastic Interaction $G_{\rm el}$ 214
8.4	Emulsions Stabilized by Polymeric Surfactants 216
8.4.1	W/O Emulsions Stabilized with PHS-PEO-PHS Block Copolymer 219
8.5	Principles of Rheological Techniques 220
8.5.1	Steady State Measurements 220
8.5.1.1	Bingham Plastic Systems 221
8.5.1.2	Pseudoplastic (Shear Thinning) System 221
8.5.1.3	Herschel-Bulkley General Model 222
8.5.2	Constant Stress (Creep) Measurements 222
8.5.3	Dynamic (Oscillatory) Measurements 223
8.6	Rheology of Oil-in-Water (O/W) Emulsions Stabilized with Poly(Vinyl Alcohol) 226
8.6.1	Effect of Oil Volume Fraction on the Rheology of the Emulsions 226
8.6.2	Stability of PVA-Stabilized Emulsions 229
8.6.3	Emulsions Stabilized with an A-B-A Block Copolymer 236
8.6.4	Water-in-Oil Emulsions Stabilized with A-B-A Block Copolymer 240
0.0.4	References 245
	ACICICIACES 243

Index 247

Preface

This book is based on selection of some papers from the Fifth World Congress on Emulsions that was held in Lyon, in October 2010. These series of World congresses emphasize the importance of emulsions in industry, including food, cosmetics, pharmaceuticals, agrochemicals, and paints. Following each meeting, a number of topics were selected, the details of which were subsequently published in the journals, Colloids and Surfaces and Advances in Colloid and Interface Science. The selected papers of the fourth Congress (2006) were published by Wiley-VCH (Germany).

This book contains selected topics from the Fifth World Congress, the title of which "Emulsion Formation and Stability" reflects the importance of emulsification techniques, the production of nanoparticles for biomedical applications as well as the importance of application of rheological techniques for studying the interaction between the emulsion droplets.

Chapter 1 describes the principles of emulsion formation, selection of emulsifiers, and control of emulsion stability. A section is devoted to the rheology of emulsions, including both interfacial rheology as well as the bulk rheology of emulsions. Chapter 2 deals with emulsion formation using membrane and microfluidics devices. In membrane emulsification (ME), the system is produced by injection of a pure disperse phase or a premix of a coarse emulsion into the continuous phase through a microporous membrane. Hydrophobic membranes are used to produce water-in-oil (W/O) emulsions, whereas hydrophilic membranes are used to produce oil-in-water (O/W) emulsions. In microfluidics, the combined two-phase flow is forced through a small orifice that allows one to obtain monodisperse droplets. Chapter 3 deals with adsorption of ionic surfactants at the hexane/water interface using the profile analysis technique (PAT) and the oscillating drop and bubble analyzer (ODBA). Theoretical models were used to analyze the adsorption results. Chapter 4 describes the various techniques that can be applied to investigate emulsion formation during processing. The effect of different emulsion techniques on the droplet size distribution was investigated using various methods such as light diffraction and ultrasound. Particular attention was given to online droplet size measurements. Chapter 5 deals with emulsification using rotor-stator mixers that are commonly used in industry, both in laboratory and large-scale production of emulsions. The various types of rotor-stator mixers are described. The selection

of a rotor-stator mixer for a specific end product depends on the required droplet size distribution and the scale of the process. Chapter 6 describes the formulation, characterization, and property control of paraffin emulsions. The industrial application of paraffin emulsions is described highlighting the property of paraffin and method of preparation. The surfactants used in formation of paraffin emulsions are described in terms of their phase behavior. The control of particle size and its distribution of the resulting emulsion are described at a fundamental level. Chapter 7 describes polymeric O/W nanoemulsions produced by the phase inversion composition (PIC) method with application of the resulting nanoparticles in biomedicine. A description of the PIC method is given with reference to the aspects of choice of the components. The production of ethyl cellulose nanoparticles is described. Chapter 8 gives a detailed analysis of the rheology and stability of sterically stabilized emulsions. A section is devoted to the general classification of polymeric surfactants followed by discussion of the theory of sterically stabilized emulsions. The application of block and graft copolymers for preparation of highly stable emulsions is described. The principles of the various rheological techniques that can be applied to study the interaction between droplets in an emulsion are described. Various types of sterically stabilized emulsions are described: O/W emulsions stabilized with an A-B-A block copolymer of poly(ethylene oxide) (PEO, A) and poly(propylene oxide) (PPO, B); partially hydrolyzed poly(vinyl acetate) (PVAc); and W/O emulsions stabilized with an A-B-A block copolymer of poly(hydroxyl stearic acid) (PHS, A) and PEO (B).

On the basis of the above descriptions and details, it is clear that this book covers a wide range of topics: both fundamental and applied. It also highlights the engineering aspects of emulsion production and their characterization, both in the laboratory and during manufacture. It is hoped that this book will be of great help to emulsion research scientists, in both academia and industry.

I would like to thank the organizers – and in particular Dr Jean-Erik Poirier and Dr Alain Le Coroller - for giving me the opportunity to attend the Fifth World Congress and to edit this book.

October 2012 Tharwat F. Tadros

List of Contributors

Eugene V. Aksenenko

Ukrainian National Academy of Sciences Institute of Colloid Chemistry & Chemistry of Water 42 Vernadsky Avenue 03680 Kyiv (Kiev) Ukraine

Gabriela Calderó

Institute for Advanced Chemistry of Catalonia Consejo Superior de Investigaciones Científicas (IQAC-CSIC) spain

and

CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Jordi Girona 18-26 08034 Barcelona Spain

Michael Cooke

The University of Manchester School of Chemical Engineering and Analytical Sciences Manchester M60 1QD UK

Jordi Esquena

Institute for Advanced Chemistry of Catalonia Consejo Superior de Investigaciones Científicas (IQAC-CSIC) spain

and

CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Jordi Girona 18-26 08034 Barcelona Spain

Valentin B. Fainerman

Donetsk Medical University Medical Physicochemical Centre 16 Ilych Avenue 83003 Donetsk Ukraine

Steven Hall

University of Birmingham School of Chemical Engineering Edgbaston Birmingham, B15 2TT UK

Robin D. Hancocks

University of Birmingham School of Chemical Engineering Edgbaston Birmingham, B15 2TT UK

Aliyar Javadi

MPI of Colloids and Interfaces Department Interfaces Am Mühlenberg 1 14424 Potsdam-Golm Germany

Isao Kobayashi

National Food Research Institute National Agriculture and Food Research Organization Kannondai 2-1-12 Tsukuba, Ibaraki, 305-8642 Japan

Adam J. Kowalski

Process Science Unilever R&D Port Sunlight Bebington Wirral, CH63 3JW UK

Jürgen Krägel

MPI of Colloids and Interfaces Department Interfaces Am Mühlenberg 1 14424 Potsdam-Golm Germany

Martin E. Leser

Nestlé R&D Center 809 Collins Avenue Marysville, OH 43040 U.S.A.

Reinhard Miller

MPI of Colloids and Interfaces Department Interfaces Am Mühlenberg 1 14424 Potsdam-Golm Germany

Nenad Mucic

MPI of Colloids and Interfaces Department Interfaces Am Mühlenberg 1 14424 Potsdam-Golm Germany

Mitsutoshi Nakajima

National Food Research Institute, National Agriculture and Food Research Organization Kannondai 2-1-12 Tsukuba, Ibaraki, 305-8642 Japan

and

University of Tsukuba Graduate School of Life and Environmental Sciences 1-1-1 Tennoudai, Tsukuba Ibaraki, 305-8572 Japan

Nima Niknafs

University of Birmingham School of Chemical Engineering Edgbaston Birmingham, B15 2TT UK

Ian T. Norton

University of Birmingham School of Chemical Engineering Edgbaston Birmingham, B15 2TT UK

Andrzej W. Pacek

University of Birmingham School of Chemical Engineering Edgbaston Birmingham, B15 2TT UK

Vincent Pradines

CNRS Laboratoire de Chimie de Coordination UPR8241 205, route de Narbonne 31077 Toulouse Cedex 04 France

Altynay Sharipova

MPI of Colloids and Interfaces Department Interfaces Am Mühlenberg 1 14424 Potsdam-Golm Germany

Conxita Solans

Institute for Advanced Chemistry of Catalonia Consejo Superior de Investigaciones Científicas (IQAC-CSIC) spain

and

CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Iordi Girona 18-26 08034 Barcelona Spain

Tharwat Tadros

89 Nash Grove Lane Wokingham Berkshire, RG40 4HE UK

Ion Vilasau

Institute for Advanced Chemistry of Catalonia Consejo Superior de Investigaciones Científicas (IQAC-CSIC) spain

and

UK

CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Jordi Girona 18-26 08034 Barcelona Spain

Goran T. Vladisavljević

Loughborough University Chemical Engineering Department Ashby Road Loughborough Leicestershire LE11 3TU

1

Emulsion Formation, Stability, and Rheology

Tharwat F. Tadros

1.1 Introduction

Emulsions are a class of disperse systems consisting of two immiscible liquids [1-3]. The liquid droplets (the disperse phase) are dispersed in a liquid medium (the continuous phase). Several classes may be distinguished: oil-in-water (O/W), water-in-oil (W/O), and oil-in-oil (O/O). The latter class may be exemplified by an emulsion consisting of a polar oil (e.g., propylene glycol) dispersed in a nonpolar oil (paraffinic oil) and vice versa. To disperse two immiscible liquids, one needs a third component, namely, the emulsifier. The choice of the emulsifier is crucial in the formation of the emulsion and its long-term stability [1-3].

Emulsions may be classified according to the nature of the emulsifier or the structure of the system. This is illustrated in Table 1.1.

1.1.1

Nature of the Emulsifier

The simplest type is ions such as OH⁻ that can be specifically adsorbed on the emulsion droplet thus producing a charge. An electrical double layer can be produced, which provides electrostatic repulsion. This has been demonstrated with very dilute O/W emulsions by removing any acidity. Clearly that process is not practical. The most effective emulsifiers are nonionic surfactants that can be used to emulsify O/W or W/O. In addition, they can stabilize the emulsion against flocculation and coalescence. Ionic surfactants such as sodium dodecyl sulfate (SDS) can also be used as emulsifiers (for O/W), but the system is sensitive to the presence of electrolytes. Surfactant mixtures, for example, ionic and nonionic, or mixtures of nonionic surfactants can be more effective in emulsification and stabilization of the emulsion. Nonionic polymers, sometimes referred to as *polymeric surfactants*, for example, Pluronics, are more effective in stabilization of the emulsion, but they may suffer from the difficulty of emulsification (to produce small droplets) unless high energy is applied for the process. Polyelectrolytes such as poly(methacrylic

Table 1.1 Classification of emulsion types.

Nature of emulsifier	Structure of the system		
Simple molecules and ions	Nature of internal and external phase: O/W, W/O		
Nonionic surfactants	_		
Surfactant mixtures	Micellar emulsions (microemulsions)		
Ionic surfactants	Macroemulsions		
Nonionic polymers	Bilayer droplets		
Polyelectrolytes	Double and multiple emulsions		
Mixed polymers and surfactants	Mixed emulsions		
Liquid crystalline phases	_		
Solid particles	_		

acid) can also be applied as emulsifiers. Mixtures of polymers and surfactants are ideal in achieving ease of emulsification and stabilization of the emulsion. Lamellar liquid crystalline phases that can be produced using surfactant mixtures are very effective in emulsion stabilization. Solid particles that can accumulate at the O/W interface can also be used for emulsion stabilization. These are referred to as *Pickering emulsions*, whereby particles are made partially wetted by the oil phase and by the aqueous phase.

1.1.2 Structure of the System

- 1) O/W and W/O macroemulsions: These usually have a size range of $0.1-5~\mu m$ with an average of $1-2~\mu m$.
- 2) Nanoemulsions: these usually have a size range of 20–100 nm. Similar to macroemulsions, they are only kinetically stable.
- 3) **Micellar emulsions or microemulsions**: these usually have the size range of 5–50 nm. They are thermodynamically stable.
- 4) **Double and multiple emulsions:** these are emulsions-of-emulsions, W/O/W, and O/W/O systems.
- 5) Mixed emulsions: these are systems consisting of two different disperse droplets that do not mix in a continuous medium. This chapter only deals with macroemulsions.

Several breakdown processes may occur on storage depending on particle size distribution and density difference between the droplets and the medium. Magnitude of the attractive versus repulsive forces determines flocculation. Solubility of the disperse droplets and the particle size distribution determine Ostwald ripening. Stability of the liquid film between the droplets determines coalescence. The other process is phase inversion.

1.1.3 Breakdown Processes in Emulsions

The various breakdown processes are illustrated in Figure 1.1. The physical phenomena involved in each breakdown process are not simple, and it requires analysis of the various surface forces involved. In addition, the above-mentioned processes may take place simultaneously rather than consecutively and this complicates the analysis. Model emulsions, with monodisperse droplets, cannot be easily produced, and hence, any theoretical treatment must take into account the effect of droplet size distribution. Theories that take into account the polydispersity of the system are complex, and in many cases, only numerical solutions are possible. In addition, measurements of surfactant and polymer adsorption in an emulsion are not easy and one has to extract such information from measurement at a planer interface.

In the following sections, a summary of each of the above-mentioned breakdown processes and details of each process and methods of its prevention are given.

1.1.4 **Creaming and Sedimentation**

This process results from external forces usually gravitational or centrifugal. When such forces exceed the thermal motion of the droplets (Brownain motion), a concentration gradient builds up in the system with the larger droplets moving faster to the top (if their density is lower than that of the medium) or to the bottom (if their density is larger than that of the medium) of the container. In the limiting cases, the droplets may form a close-packed (random or ordered) array at the top or bottom of the system with the remainder of the volume occupied by the continuous liquid phase.

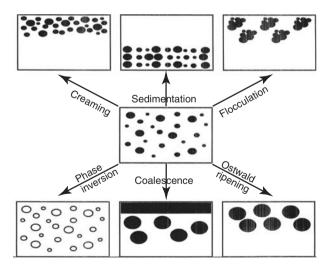


Figure 1.1 Schematic representation of the various breakdown processes in emulsions.

1.1.5

Flocculation

This process refers to aggregation of the droplets (without any change in primary droplet size) into larger units. It is the result of the van der Waals attraction that is universal with all disperse systems. Flocculation occurs when there is not sufficient repulsion to keep the droplets apart to distances where the van der Waals attraction is weak. Flocculation may be "strong" or "weak," depending on the magnitude of the attractive energy involved.

1.1.6

Ostwald Ripening (Disproportionation)

This results from the finite solubility of the liquid phases. Liquids that are referred to as *being immiscible* often have mutual solubilities that are not negligible. With emulsions, which are usually polydisperse, the smaller droplets will have larger solubility when compared with the larger ones (due to curvature effects). With time, the smaller droplets disappear and their molecules diffuse to the bulk and become deposited on the larger droplets. With time, the droplet size distribution shifts to larger values.

1.1.7

Coalescence

This refers to the process of thinning and disruption of the liquid film between the droplets with the result of fusion of two or more droplets into larger ones. The limiting case for coalescence is the complete separation of the emulsion into two distinct liquid phases. The driving force for coalescence is the surface or film fluctuations which results in close approach of the droplets whereby the van der Waals forces is strong thus preventing their separation.

1.1.8

Phase Inversion

This refers to the process whereby there will be an exchange between the disperse phase and the medium. For example, an O/W emulsion may with time or change of conditions invert to a W/O emulsion. In many cases, phase inversion passes through a transition state whereby multiple emulsions are produced.

1.2

Industrial Applications of Emulsions

Several industrial systems consist of emulsions of which the following is worth mentioning: food emulsion, for example, mayonnaise, salad creams, deserts, and beverages; personal care and cosmetics, for example, hand creams, lotions, hair sprays, and sunscreens; agrochemicals, for example, self-emulsifiable oils which produce emulsions on dilution with water, emulsion concentrates (EWs), and crop oil sprays; pharmaceuticals, for example, anesthetics of O/W emulsions, lipid emulsions, and double and multiple emulsions; and paints, for example, emulsions of alkyd resins and latex emulsions. Dry cleaning formulations – this may contain water droplets emulsified in the dry cleaning oil which is necessary to remove soils and clays. Bitumen emulsions: these are emulsions prepared stable in the containers, but when applied the road chippings, they must coalesce to form a uniform film of bitumen. Emulsions in the oil industry: many crude oils contain water droplets (for example, the North sea oil) and these must be removed by coalescence followed by separation. Oil slick dispersions: the oil spilled from tankers must be emulsified and then separated. Emulsification of unwanted oil: this is an important process for pollution control.

The above importance of emulsion in industry justifies a great deal of basic research to understand the origin of instability and methods to prevent their break down. Unfortunately, fundamental research on emulsions is not easy because model systems (e.g., with monodisperse droplets) are difficult to produce. In many cases, theories on emulsion stability are not exact and semiempirical approaches are used.

1.3 Physical Chemistry of Emulsion Systems

1.3.1

The Interface (Gibbs Dividing Line)

An interface between two bulk phases, for example, liquid and air (or liquid/vapor), or two immiscible liquids (oil/water) may be defined provided that a dividing line is introduced (Figure 1.2). The interfacial region is not a layer that is one-molecule thick. It is a region with thickness δ with properties different from the two bulk phases α and β .

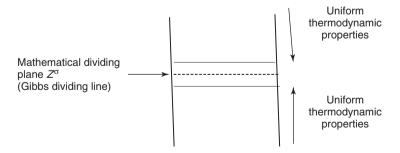


Figure 1.2 The Gibbs dividing line.

Using Gibbs model, it is possible to obtain a definition of the surface or interfacial tension γ .

The surface free energy dG^{σ} is made of three components: an entropy term S^{σ} dT, an interfacial energy term $Ad\gamma$, and a composition term Σ $n_i d\mu_i$ (n_i is the number of moles of component i with chemical potential μ_i). The Gibbs-Deuhem equation is

$$dG^{\sigma} = -S^{\sigma}dT + Ad\gamma + \sum n_{i}d\mu_{i}$$
(1.1)

At constant temperature and composition

$$dG^{\sigma} = Ad\gamma$$

$$\gamma = \left(\frac{\partial G^{\sigma}}{\partial A}\right)_{T,n_i} \tag{1.2}$$

For a stable interface, γ is positive, that is, if the interfacial area increases G^{σ} increases. Note that γ is energy per unit area (mJ m⁻²), which is dimensionally equivalent to force per unit length (mN m⁻¹), the unit usually used to define surface or interfacial tension.

For a curved interface, one should consider the effect of the radius of curvature. Fortunately, γ for a curved interface is estimated to be very close to that of a planer surface, unless the droplets are very small (<10 nm). Curved interfaces produce some other important physical phenomena that affect emulsion properties, for example, the Laplace pressure Δp , which is determined by the radii of curvature of the droplets

$$\Delta p = \gamma \left(\frac{1}{r_1} + \frac{1}{r_2} \right) \tag{1.3}$$

where r_1 and r_2 are the two principal radii of curvature.

For a perfectly spherical droplet, $r_1 = r_2 = r$ and

$$\Delta p = \frac{2\gamma}{r} \tag{1.4}$$

For a hydrocarbon droplet with radius 100 nm, and $\gamma = 50$ mN m⁻¹, $\Delta p = 10^6$ Pa (10 atm).

1.4 Thermodynamics of Emulsion Formation and Breakdown

Consider a system in which an oil is represented by a large drop 2 of area A_1 immersed in a liquid 2, which is now subdivided into a large number of smaller droplets with total area A_2 ($A_2 \gg A_1$) as shown in Figure 1.3. The interfacial tension y_{12} is the same for the large and smaller droplets because the latter are generally in the region of 0.1 to few micrometers.

The change in free energy in going from state I to state II is made from two contributions: A surface energy term (that is positive) that is equal to $\Delta A \gamma_{12}$ (where $\Delta A = A_2 - A_1$). An entropy of dispersions term that is also positive

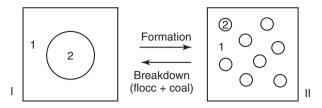
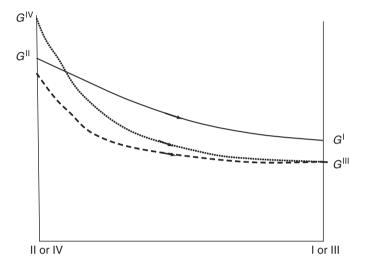



Figure 1.3 Schematic representation of emulsion formation and breakdown.

Figure 1.4 Free energy path in emulsion breakdown – (straight line) Flocc. + coal.; (dashed line) Flocc. + coal. + Sed.; and (dotted line) Flocc. + coal. + sed. + Ostwald ripening.

(since producing a large number of droplets is accompanied by an increase in configurational entropy), which is equal to $T\Delta S^{\text{conf}}$.

From the second law of thermodynamics

$$\Delta G^{\text{form}} = \Delta A \gamma_{12} - T \Delta S^{\text{conf}}$$
(1.5)

In most cases, $\Delta A \gamma_{12} \gg -T \Delta S^{\rm conf}$, which means that $\Delta G^{\rm form}$ is positive, that is, the formation of emulsions is nonspontaneous and the system is thermodynamically unstable. In the absence of any stabilization mechanism, the emulsion will break by flocculation, coalescence, Ostwald ripening, or combination of all these processes. This is illustrated in Figure 1.4 that shows several paths for emulsion breakdown processes.

In the presence of a stabilizer (surfactant and/or polymer), an energy barrier is created between the droplets, and therefore, the reversal from state II to state I becomes noncontinuous as a result of the presence of these energy barriers. This is illustrated in Figure 1.5. In the presence of the above energy barriers, the system becomes kinetically stable.

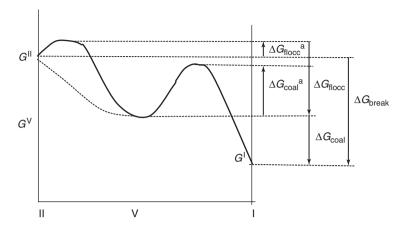


Figure 1.5 Schematic representation of free energy path for breakdown (flocculation and coalescence) for systems containing an energy barrier.

1.5 Interaction Energies (Forces) between Emulsion Droplets and Their Combinations

Generally speaking, there are three main interaction energies (forces) between emulsion droplets and these are discussed in the following sections.

1.5.1 van der Waals Attraction

The van der Waals attraction between atoms or molecules is of three different types: dipole–dipole (Keesom), dipole-induced dipole (Debye), and dispersion (London) interactions. The Keesom and Debye attraction forces are vectors, and although dipole–dipole or dipole-induced dipole attraction is large, they tend to cancel because of the different orientations of the dipoles. Thus, the most important are the London dispersion interactions that arise from charge fluctuations. With atoms or molecules consisting of a nucleus and electrons that are continuously rotating around the nucleus, a temporary dipole is created as a result of charge fluctuations. This temporary dipole induces another dipole in the adjacent atom or molecule. The interaction energy between two atoms or molecules G_a is short range and is inversely proportional to the sixth power of the separation distance r between the atoms or molecules

$$G_{\rm a} = -\frac{\beta}{r^6} \tag{1.6}$$

where β is the London dispersion constant that is determined by the polarizability of the atom or molecule.

Hamaker [4] suggested that the London dispersion interactions between atoms or molecules in macroscopic bodies (such as emulsion droplets) can be added resulting in strong van der Waals attraction, particularly at close distances of

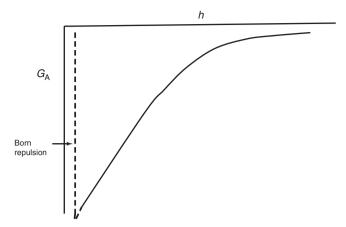


Figure 1.6 Variation of the van der Waals attraction energy with separation distance.

separation between the droplets. For two droplets with equal radii R, at a separation distance h, the van der Waals attraction G_A is given by the following equation (due to Hamaker)

$$G_{\rm A} = -\frac{AR}{12h} \tag{1.7}$$

where A is the effective Hamaker constant

$$A = \left(A_{11}^{1/2} - A_{22}^{1/2}\right)^2 \tag{1.8}$$

where A_{11} and A_{22} are the Hamaker constants of droplets and dispersion medium, respectively.

The Hamaker constant of any material depends on the number of atoms or molecules per unit volume q and the London dispersion constant β

$$A = \pi^2 q^2 \beta \tag{1.9}$$

 G_A increases very rapidly with decrease of h (at close approach). This is illustrated in Figure 1.6 that shows the van der Waals energy-distance curve for two emulsion droplets with separation distance h.

In the absence of any repulsion, flocculation is very fast producing large clusters. To counteract the van der Waals attraction, it is necessary to create a repulsive force. Two main types of repulsion can be distinguished depending on the nature of the emulsifier used: electrostatic (due to the creation of double layers) and steric (due to the presence of adsorbed surfactant or polymer layers.

1.5.2

Electrostatic Repulsion

This can be produced by adsorption of an ionic surfactant as shown in Figure 1.7, which shows a schematic picture of the structure of the double layer according to