
Dingyü Xue
YangQuan Chen

System Simulation 
Techniques with 

MATLAB®
and Simulink®





SYSTEM SIMULATION
TECHNIQUES WITH
MATLAB® AND SIMULINK®





SYSTEM SIMULATION
TECHNIQUES WITH
MATLAB® AND SIMULINK®

Dingyü Xue
Northeastern University, China

YangQuan Chen
University of California, Merced, USA



This edition first published 2014
C© 2014 John Wiley & Sons, Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to
reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright,
Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product
names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The
publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this
book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book
and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the
understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author
shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

MATLAB R© is a trademark of MathWorks, Inc. and is used with permission. MathWorks, Inc. does not warrant the accuracy
of the text or exercises in this book. This book’s use or discussion of MATLAB R© software or related products does not
constitute endorsement or sponsorship by MathWorks, Inc. of a particular pedagogical approach or particular use of the
MATLAB R© software.

Library of Congress Cataloging-in-Publication Data

Xue, Dingyü.
System simulation techniques with MATLAB and Simulink / Dingyü Xue, YangQuan Chen.

1 online resource.
Includes bibliographical references and index.
Description based on print version record and CIP data provided by publisher; resource not viewed.
ISBN 978-1-118-69435-0 (Adobe PDF) – ISBN 978-1-118-69437-4 (ePub) – ISBN 978-1-118-64792-9 (cloth)

1. System analysis–Data processing. 2. Computer simulation. 3. MATLAB. 4. SIMULINK. I. Chen, YangQuan,
1966– II. Title.

T57.62
620.00285′53–dc23

2013025348

A catalogue record for this book is available from the British Library.

ISBN: 978-1-118-64792-9

Typeset in 10/12pt Times by Aptara Inc., New Delhi, India

1 2014

http://www.wiley.com


Contents

Foreword xiii

Preface xv

1 Introduction to System Simulation Techniques and Applications 1
1.1 Overview of System Simulation Techniques 1
1.2 Development of Simulation Software 2

1.2.1 Development of Earlier Mathematics Packages 2
1.2.2 Development of Simulation Software and Languages 4

1.3 Introduction to MATLAB 5
1.3.1 Brief History of the Development of MATLAB 5
1.3.2 Characteristics of MATLAB 6

1.4 Structure of the Book 7
1.4.1 Structure of the Book 7
1.4.2 Code Download and Internet Resources 8
1.4.3 Fonts Used in this Book 8
Exercises 9
References 9

2 Fundamentals of MATLAB Programming 11
2.1 MATLAB Environment 11

2.1.1 MATLAB Interface 11
2.1.2 MATLAB On-line Help and Documentation 11

2.2 Data Types in MATLAB 13
2.2.1 Constants and Variables 13
2.2.2 Structure of MATLAB Statements 13
2.2.3 Matrix Representation in MATLAB 14
2.2.4 Multi-dimensional Arrays 15

2.3 Matrix Computations in MATLAB 16
2.3.1 Algebraic Computation 16
2.3.2 Logical Operations 19
2.3.3 Comparisons and Relationships 20
2.3.4 Data Type Conversion 20

2.4 Flow Structures 21
2.4.1 Loop Structures 21
2.4.2 Conditional Structures 22
2.4.3 Switches 23
2.4.4 Trial Structure 23



vi Contents

2.5 Programming and Tactics of MATLAB Functions 23
2.5.1 Structures of MATLAB Functions 24
2.5.2 Handling Variable Numbers of Arguments 26
2.5.3 Debugging of MATLAB Functions 26
2.5.4 Pseudo Codes 27

2.6 Two-dimensional Graphics in MATLAB 27
2.6.1 Basic Two-dimensional Graphics 28
2.6.2 Plotting Functions with Other Options 29
2.6.3 Labeling MATLAB Graphics 30
2.6.4 Adding Texts and Other Objects to Plots 30
2.6.5 Other Graphics Functions with Applications 31
2.6.6 Plotting Implicit Functions 32

2.7 Three-dimensional Graphics 33
2.7.1 Three-dimensional Curves 33
2.7.2 Surface Plots 35
2.7.3 Local Processing of Graphics 36

2.8 Graphical User Interface Design in MATLAB 36
2.8.1 Graphical User Interface Tool – Guide 37
2.8.2 Handle Graphics and Properties of Objects 38
2.8.3 Menu System Design 43
2.8.4 Illustrative Examples in GUI Design 43
2.8.5 Toolbar Design 48
2.8.6 Embedding ActiveX Components in GUIs 51

2.9 Accelerating MATLAB Functions 52
2.9.1 Execution Time and Profiles of MATLAB Functions 52
2.9.2 Suggestions for Accelerating MATLAB Functions 53
2.9.3 Mex Interface Design 55
Exercises 60
References 63

3 MATLAB Applications in Scientific Computations 65
3.1 Analytical and Numerical Solutions 66
3.2 Solutions to Linear Algebra Problems 67

3.2.1 Inputting Special Matrices 67
3.2.2 Matrix Analysis and Computation 69
3.2.3 Inverse and Pseudo Inverse of Matrices 72
3.2.4 Similarity Transform and Decomposition of Matrices 74
3.2.5 Eigenvalues and Eigenvectors of Matrices 78
3.2.6 Solution of Matrix Equations 79
3.2.7 Nonlinear Matrix Functions 83

3.3 Solutions of Calculus Problems 85
3.3.1 Analytical Solutions to Calculus Problems 85
3.3.2 Numerical Difference and Differentiation 87
3.3.3 Numerical Integration 89
3.3.4 Numerical Multiple Integration 90

3.4 Solutions of Ordinary Differential Equations 91
3.4.1 Numerical Methods of Ordinary Differential Equations 91
3.4.2 MATLAB Solutions to ODE Problems 92



Contents vii

3.4.3 Conversion of ODE Sets 99
3.4.4 Validation of Numerical ODE Solutions 101
3.4.5 Solutions to Differential Algebraic Equations 102
3.4.6 Solutions to Linear Stochastic Differential Equations 104
3.4.7 Analytical Solutions to ODEs 107
3.4.8 Numerical Laplace Transforms in ODE Solutions 108

3.5 Nonlinear Equation Solutions and Optimization 110
3.5.1 Solutions of Nonlinear Equations 110
3.5.2 Solutions to Nonlinear Equations with Multiple Solutions 113
3.5.3 Unconstrained Optimization 116
3.5.4 Linear Programming 117
3.5.5 Quadratic Programming 118
3.5.6 General Nonlinear Programming 118
3.5.7 Global Search Methods in Optimization Problems 120

3.6 Dynamic Programming and its Applications in Path Planning 120
3.6.1 Matrix Representation of Graphs 120
3.6.2 Optimal Path Planning of Oriented Graphs 121
3.6.3 Optimal Path Planning of Graphs 123

3.7 Data Interpolation and Statistical Analysis 124
3.7.1 Interpolation of One-dimensional Data 124
3.7.2 Interpolation of Two-dimensional Data 126
3.7.3 Least Squares Curve Fitting 129
3.7.4 Data Sorting 129
3.7.5 Fast Fourier Transform 130
3.7.6 Data Analysis and Statistics 131
Exercises 136
References 142

4 Mathematical Modeling and Simulation with Simulink 145
4.1 Brief Description of the Simulink Block Library 146

4.1.1 Signal Sources 147
4.1.2 Continuous Blocks 148
4.1.3 Discrete-time Blocks 150
4.1.4 Lookup Table Blocks 151
4.1.5 User-defined Functions 151
4.1.6 Math Blocks 152
4.1.7 Logic and Bit Operation Blocks 153
4.1.8 Nonlinearity Blocks 153
4.1.9 Output Blocks 154
4.1.10 Signal Related Blocks 155
4.1.11 Ports and Subsystem Blocks 156
4.1.12 Commonly Used Blocks 156
4.1.13 Other Toolboxes and Blocksets 157

4.2 Simulink Modeling 159
4.2.1 Establishing a Model Window 159
4.2.2 Connecting and Simple Manipulation of Blocks 159
4.2.3 Parameter Modification in Blocks 162



viii Contents

4.3 Model Manipulation and Simulation Analysis 164
4.3.1 Model Creation and Fundamental Modeling Skills 164
4.3.2 Model Explorer 165
4.3.3 On-line Help System in Simulink 167
4.3.4 Output and Printing of Simulink Models 168
4.3.5 Simulink Environment Setting 168
4.3.6 Debugging Tools of Simulink Models 171

4.4 Illustrative Examples of Simulink Modeling 172
4.5 Modeling, Simulation and Analysis of Linear Systems 180

4.5.1 Modeling of Linear Systems 180
4.5.2 Analysis Interface for Linear Systems 182

4.6 Simulation of Continuous Nonlinear Stochastic Systems 184
4.6.1 Simulation of Random Signals in Simulink 184
4.6.2 Statistical Analysis of Simulation Results 185
Exercises 188
References 191

5 Commonly Used Blocks and Intermediate-level Modeling Skills 193
5.1 Commonly Used Blocks and Modeling Skills 193

5.1.1 Examples of Vectorized Blocks 193
5.1.2 Signals Labeling in Simulink Models 195
5.1.3 Algebraic Loop and its Elimination in Simulink Models 197
5.1.4 Zero-crossing Detection and Simulation of Simulink Models 201

5.2 Modeling and Simulation of Multivariable Linear Systems 202
5.2.1 Modeling State Space Multivariable Systems 202
5.2.2 Multivariable System Modeling with Control System Toolbox 205

5.3 Nonlinear Components with Lookup Table Blocks 209
5.3.1 Single-valued Nonlinearities 209
5.3.2 Multi-valued Nonlinearities with Memories 211
5.3.3 Multi-dimensional Lookup Table Blocks 215
5.3.4 Code Realization of Static Nonlinearities 216

5.4 Block Diagram Based Solutions of Differential Equations 217
5.4.1 Ordinary Differential Equations 218
5.4.2 Differential Algebraic Equations 219
5.4.3 Delayed Differential Equations 221
5.4.4 Switching Differential Equations 224
5.4.5 Fractional-order Differential Equations 225

5.5 Output Block Library 226
5.5.1 Output Block Group 227
5.5.2 Examples of Output Blocks 229
5.5.3 Model Parameter Display and Model Browser 233
5.5.4 Gauge Display of Signals 234
5.5.5 Digital Signal Processing Outputs 237

5.6 Three-dimensional Animation of Simulation Results 238
5.6.1 Fundamentals of Virtual Reality 238
5.6.2 V-realm Software and World Modeling 239
5.6.3 Browsing Virtual Reality World with MATLAB 242
5.6.4 Virtual Reality World Driven by Simulink Models 243



Contents ix

5.7 Subsystems and Block Masking Techniques 245
5.7.1 Building Subsystems 245
5.7.2 Conditional Subsystems 246
5.7.3 Masking Subsystems 249
5.7.4 Constructing Users’ Own Block Library 256
5.7.5 An Illustrative Example: F-14 Aircraft Simulation 257
Exercises 260
References 264

6 Advanced Techniques in Simulink Modeling and Applications 265
6.1 Command-line Modeling in Simulink 265

6.1.1 Simulink Models and File Manipulations 265
6.1.2 Simulink Models and Model Files 266
6.1.3 Drawing Block Diagrams with MATLAB Commands 267

6.2 System Simulation and Linearization 272
6.2.1 Execution of Simulation Process 272
6.2.2 Linearization of Nonlinear Systems 274
6.2.3 Padé Approximation to Pure Time Delays 278

6.3 S-function Programming and Applications 280
6.3.1 Writing S-functions in MATLAB 281
6.3.2 Application Example of S-functions: Simulation of ADRC Systems 284
6.3.3 Level-2 S-function Programming 290
6.3.4 Writing S-functions in C 293
6.3.5 Masking an S-function Block 295

6.4 Examples of Optimization in Simulation: Optimal Controller Design Applications 296
6.4.1 Optimal Criterion Selection for Servo Control Systems 297
6.4.2 Objective Function Creation and Optimal Controller Design 298
6.4.3 Global Optimization Approach 301
Exercises 303
References 306

7 Modeling and Simulation of Engineering Systems 307
7.1 Physical System Modeling with Simscape 308

7.1.1 Limitations of Conventional Modeling Methodology 308
7.1.2 Introduction to Simscape 309
7.1.3 Overview of Simscape Foundation Library 310
7.1.4 Conversions of Two Types of Signals 312
7.1.5 Brief Description of the Simscape Language 315
7.1.6 Modeling and Simulation of Complicated Electrical Network 316

7.2 Description of SimPowerSystems 318
7.3 Modeling and Simulation of Electronic Systems 322

7.3.1 Introduction to the SimElectronics Blockset 323
7.3.2 Modeling of Analogue Electronic Circuits 325
7.3.3 Modeling of Digital Electronic Circuits 328
7.3.4 Modeling of Power Electronics Circuits 332
7.3.5 Embedding Spice Models in Simulink 333

7.4 Simulation of Motors and Electric Drive Systems 336
7.4.1 Simulation of DC Motor Drive Systems 336
7.4.2 Simulation of AC Motor Drive Systems 341



x Contents

7.5 Modeling and Simulation of Mechanical Systems 346
7.5.1 Simulation of Simple Mechanical Systems 346
7.5.2 Introduction to the SimMechanics Blockset 348
7.5.3 Examples of Mechanical System Simulation 352
7.5.4 Interfacing Simulink with Other CAD Tools 357
Exercises 360
References 362

8 Modeling and Simulation of Non-Engineering Systems 363
8.1 Modeling and Simulation of Pharmacokinetics Systems 363

8.1.1 Introduction to Pharmacokinetics 363
8.1.2 Compartment Modeling of Pharmacokinetics Systems 364
8.1.3 Physiologically based Pharmacokinetic Modeling with Simulink 367
8.1.4 Pharmacodynamic Modeling 374
8.1.5 Nonlinear Generalized Predictive Control of Anesthesia 375

8.2 Video and Image Processing Systems 376
8.2.1 Importing Pictures and Videos into MATLAB 377
8.2.2 Display and Output of Videos and Images 378
8.2.3 Fundamental Blocks for Video and Image Processing 380
8.2.4 Processing of Video and Images through Examples 383
8.2.5 Real-time Processing of Videos and Images 389

8.3 Finite State Machine Simulation and Stateflow Applications 390
8.3.1 Introduction of Finite State Machines 391
8.3.2 Fundamentals of Stateflow 391
8.3.3 Commonly Used Commands in Stateflow 395
8.3.4 Application Examples with Stateflow 396
8.3.5 Describing Flows with Stateflow 408

8.4 Simulation of Discrete Event Systems with SimEvents 408
8.4.1 Concepts of Discrete Event Dynamic Systems 408
8.4.2 Introduction to SimEvents 409
8.4.3 Modeling and Simulation of Queuing Systems 412
Exercises 416
References 417

9 Hardware-in-the-loop Simulation and Real-time Control 419
9.1 Simulink and Real-Time Workshop 419

9.1.1 Introduction to Hardware-in-the-loop Techniques 419
9.1.2 Standalone Code Generation 420
9.1.3 Real-time Simulation and Target Computer Simulation 422
9.1.4 Hardware-in-the-loop Simulation with xPC Target 426

9.2 Introduction to dSPACE and its Blocks 429
9.2.1 Introduction to dSPACE 429
9.2.2 dSPACE Block Library 430

9.3 Introduction to Quanser and its Blocks 430
9.3.1 Introduction to Quanser 430
9.3.2 Quanser Block Library 431
9.3.3 Plants in Quanser Rotary Series 433



Contents xi

9.4 Hardware-in-the-loop Simulation and Real-time Control Examples 433
9.4.1 Mathematical Descriptions of the Plants 433
9.4.2 Quanser Real-time Control Experimentation 436
9.4.3 dSPACE Real-time Control Experimentation 438

9.5 Low Cost Solutions with NIAT 439
9.5.1 Commonly Used Blocks in the NIAT Library 440
9.5.2 Modeling and Simulation of Pendubot Systems 440
9.5.3 Hardware-in-the-loop Simulation Experiment of Pendubot Systems 445

9.6 HIL Solutions with Even Lower Costs 446
9.6.1 Arduino Interface Installation and Settings 446
9.6.2 Applications of Arduino Control 447
9.6.3 The MESABox 449
Exercises 450
References 451

Appendix: Functions and Models 453

Index 459





Foreword

It is a pleasure for me to write a foreword for this book by Dingyü Xue and YangQuan Chen.
Dingyü came to the University of Sussex in 1988 to study for his DPhil with me. At the time,
computing, relating to control engineering, was starting to move from Fortran to MATLAB, first
on terminals connected to a central mainframe computer and then to standalone desktop machines.
Digital simulation languages, which had replaced analog computers, were also heading in the same
direction. The original version of MATLAB used on the mainframe was written in Fortran, followed
by the much faster C version a few years later. One great advantage of MATLAB was that its
fundamental data type was the matrix, the concept of which I first came across in the now little
known language APL. APL was a very efficient coding language, so much so that a fair comment
would be that it required as many lines of commenting as coding for a person to understand a program,
and it also required a special keyboard. Other major features of MATLAB were the very good graph
plotting facilities and the tools available for providing an excellent graphical user interface for a
program. The graphical features provided for programming and for the display of results in Simulink
were also a major improvement over the features of existing digital simulation languages.

In the early days of MATLAB, I had several general programs on the mainframe computer which
used a question and answer interface and gave the output as a printed plot of points. Dingyü, in doing
his research, developed a deep understanding of MATLAB and the capabilities of the GUI, one
eventual result of which was the program CtrlLAB which is freely available from the MathWorks
library. The genesis of this was a program described in my 1962 doctoral dissertation written in
Manchester Autocode, which used paper tape to provide the data input and the values of points as
output. Intermediate stages had seen its coding in APL and MATLAB using a question and answer
format. Dingyü has therefore used MATLAB and Simulink avidly for the past 25 years, including,
I suspect, most of the versions issued over that period. He has spent thousands of hours writing new
code and modifying existing routines to be compatible, or to take advantage of new features in the
changing versions of MATLAB and Simulink. I have known YangQuan Chen – whom Dingyü first
met in Singapore about twenty years ago – for the past ten years. Since they first met, they have
cooperated a lot with their complementary research interests being united by their use of MATLAB
and Simulink.

This book is therefore written by two people who have had a wealth of first-hand experience of
using MATLAB/Simulink in control engineering research and teaching its use to students in China
and the USA in both mathematical and control-related courses for over two decades. Also, much
of the material has been available in earlier versions of the book in Chinese, where it has been
extremely well received, and it is used at many universities. Feedback from these publications has
provided suggestions for improvements which have been incorporated here.

The coverage of the book is such that it provides a basic introduction to the use of MATLAB/
Simulink before going on to address their usage in many facets of mathematics and engineering. After



xiv Foreword

covering the general aspects of programming and computation in MATLAB, details of applications
in many areas of scientific computation are given, covering areas such as differential equations and
optimization. Chapters 3–6 are primarily devoted to Simulink, starting from consideration of the
functions of the various blocks and continuing to describe a variety of applications covering topics
such as linear and nonlinear system simulations, multivariable systems, vectorized blocks, output
blocks, the animation of results, linearization of nonlinear systems, S-functions and optimization
in simulations. Chapter 7 discusses the more specific engineering application blocks for electronic
systems, electrical drive systems and so on, that are available in Simscape, and in chapter 8 some
simulation applications for non-engineering systems, image processing and finite state machines are
described which show the wide applicability of modeling and simulation techniques.

I’m sure that this book with its many examples and problems will prove a major asset to you, the
reader, in learning the simulation capabilities of MATLAB/Simulink, but as Dingyü and YangQuan
would no doubt confirm, the only way to really learn is by the hard work of “doing”. So attempt the
exercises and also design your own to possibly clarify certain points and gain greater understanding.

Derek P Atherton
Professor Emeritus

University of Sussex, UK
March 2013



Preface

As Confucius has said, “The mechanic, who wishes to do his work well, must first sharpen his
tools”, so MATLAB/Simulink is the right tool to solve problems in the field of systems simulation.
It can free the scientist and engineer from tedious, laborious and error-prone work in low-level
computer programming, and it is obvious that by the use of MATLAB and Simulink, the efficiencies
of researchers can be significantly improved. In communities such as systems simulation and control
engineering, MATLAB/Simulink is the de facto international computer language, and the importance
of such a tool is being taught in universities worldwide.

Although MATLAB itself was developed and advocated by mathematicians, it was in fact first
acknowledged by researchers in the engineering community, and in particular, by the researchers in
the field of control engineering. The development of MATLAB and Simulink received a significant
amount of innovative contribution from scholars and researchers in the field of control engineering.
Already, a significant number of toolboxes and blocksets are oriented to control problems. MATLAB
itself has extremely strong capabilities for solving problems in scientific computation and system
simulation, with its handy graphical facilities and integrated simulation facilities. It is being used by
researchers in more and more engineering and other scientific fields, and it has huge potential and
great applications possibilities in related fields.

The authors have been consistently using MATLAB in education and scientific research since
1988, and have had some of their MATLAB packages added to MATLAB Central. A significant
amount of first-hand knowledge and experience have been accumulated.

The first author started introducing MATLAB into education more than twenty years ago, and
has tried to instruct students in the use such tools. For instance, the book “Computer-aided control
systems design — MATLAB languages and applications” published by Tsinghua University Press
was regarded as the first of its kind and one of the best in China and has been cited by tens of
thousands of journal papers and books. The second author has had more than ten years of experience
of scientific research and education in universities in the United States, after his work in industry. He
has built up a lot of experience in MATLAB/Simulink based simulation as well as hardware-in-the-
loop simulation and real-time design of control systems. Two other books have also been written by
the authors and introduced into English world, concentrating on, respectively, the fields of automatic
control and scientific computation.

The first edition of this present book was published by Tsinghua University Press in Chinese
in 2002, and the second edition was published there in 2011. It has been used as a textbook and
reference book by many universities in China. With evolution of MATLAB, Simulink and related
products, a lot of new material and innovative work has emerged. It is not possible to cover all the
material in one book, so the material here was carefully chosen, and tailored to meet the demands
of engineering students and researchers in the relevant disciplines. The current shape of this book
was finalized in the course at the Northeastern University, China, and also by offering seminars and



xvi Preface

series lectures at Utah State University in the USA, at Baosteel Co. Ltd and at Harbin Institute of
Technology in China. Based on the programming and educational experiences of over twenty years,
the authors have finally debuted the book to the English-speaking world, and we feel sure that this
book will be welcomed by readers worldwide.

The educational work in this book, together with other related educational work, was directed
and encouraged by the former supervisors, Professors Xingquan Ren and Xinhe Xu of Northeastern
University, China, and Professor Derek P Atherton at Sussex University, UK. It was them who
guided the first author into the field of system simulation and, in particular, into the paradise of
MATLAB/Simulink programming and education.

A lot of suggestions were received during the preparation of related books, and among them, the
authors are in particular grateful for the help given by Professor Hengjun Zhu of Beijing Jiaotong
University, the late Professor Jingqing Han of the Institute of System Sciences of Academia Sinica,
Professor Xiaohua Zhang of Harbin Institute of Technology, China, and Professor Igor Podlubny of
the University of Kosice, Slovakia.

Fruitful discussions with colleagues Drs Feng Pan, Dali Chen, Ying Wei, Jianjiang Cui, Liangyong
Wang, Zheng Fang resulted in some new ideas and materials in this book, and Zhuo Li in proofreading
an early draft of the book. The Chapter 9.6 was based on contribution of MESA LAB Ph.D. students
Brandon Stark, Zhuo Li and Brendan Smith of UC Merced.

We wish to thank editorial staffs of Wiley: Tom Carter, Project Editor; Paul Petralia and Anne
Hunt. Copyediting by Paul Beverley is particularly appreciated!

This book was supported by the MathWorks Book Program, and MATLAB, Simulink and related
products can be acquired from

MathWorks, Inc., 3 Apple Hill Drive, Natick, MA, 01760-2098 USA
Tel:+01-508-647-7000, and FAX: +01-508-647-7101
Email: info@mathworks.com, Webpage: http://www.mathworks.com
Last but not least, the authors are grateful to their family members for the understanding and

support during the years of working. Dingyü Xue would like to thank his wife, Jun Yang, and
daughter Yang Xue, and YangQuan Chen would like to thank his wife, Huifang Dou, and his sons
Duyun, David and Daniel.

Dingyü Xue, Northeastern University, China
YangQuan Chen, University California, Merced, USA

mailto:info@mathworks.com
http://www.mathworks.com


1
Introduction to System Simulation
Techniques and Applications

1.1 Overview of System Simulation Techniques

Systems are the integrated wholes composed of interrelated and interacting entities; these could be
engineering systems or non-engineering systems. Engineering systems are the whole composed of
interacting components such that certain system objectives can be achieved. For instance, motor
drive systems are composed of an actuating component, a power transfer component and a signal
measurement component, so as to control the motor speed or position, among other objectives.

The field of non-engineering systems is much wider. From universe to micro world, any integrated
whole can also be regarded as a system, since there are interrelated and interacting relationships.

In order to quantitatively study the behavior of a system, the internal characteristics and interacting
relationship should be extracted, to construct a model of the system. System models can be classified
as physical models and mathematical models. Following the rapid development and utilization of
computer technology, the application of mathematical models is more and more popular.

A mathematical model of a system is a mathematical expression describing the dynamical behavior
of the system. They can be used to describe the relationship of quantities in the system and they
are the basis of system analysis and design. From the viewpoint of the type of mathematical model,
systems can be classified as continuous-time systems, discrete-time systems, discrete event systems
and hybrid systems. Systems can also be classified as subclasses of linear, nonlinear, time invariant,
time varying, lumped parameters, distributed parameters, deterministic and stochastic systems.

System simulation is a subject within which the system behavior can be studied on the basis of the
mathematical models of the actual systems. Usually computer simulation of the systems is the main
topic of the subject, including the topics of systems, modeling, simulation algorithms, computer
programming, display of simulation results, and validation of simulation results.

Of all the topics listed above, simulation algorithms and computer programming are the most
important topics, and determine whether the original problems can be solved. The modeling and
simulation result display and validation can be solved easily with MATLAB, and Simulink, the
most authoritative and practical computer language. Using MATLAB and Simulink is the innovative
characteristic of the whole book. In Section 1.2, a brief introduction to the historical development
and future expectation of computer mathematical software and simulation languages will be given. In
Section 1.3, development of MATLAB/Simulink programming is presented, and practical examples

System Simulation Techniques with MATLAB®and Simulink®, First Edition. Dingyü Xue and YangQuan Chen.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.



2 System Simulation Techniques with MATLAB® and Simulink®

are explored, such that the reader can start to experience the powerful facilities of MATLAB. In
Section 1.4, the main contents and the characteristic behavior of systems are presented.

1.2 Development of Simulation Software

Historically, computer simulation techniques went through the following stages of development:
In the 1940s, analog simulation was the major way of simulation. Digital simulation began in
1950s, and in the 1960s, the first simulation languages and packages began to emerge. In the 1980s,
development of object oriented simulation techniques was the leading trend. With the popularity and
wide availability of digital computers, in the past 30 years, a great many professional computer sim-
ulation languages and tools have appeared, such as CSMP, ACSL, SIMNON, MATLAB/Simulink,
MatrixX/System Build and CSMP-C. Because MATLAB/Simulink has become more and more
popular and powerful, most of the above-mentioned simulation packages are no longer available.
MATLAB/Simulink has became the de facto standard computer language and tool for system
simulation.

1.2.1 Development of Earlier Mathematics Packages

The rapid development of digital computers and programming languages powered research into
numerical computation. In the early stages of the development of scientific computation, a lot of
famous packages emerged such as the LINPACK package [1] – linear algebraic equation solver,
the eigenvalue-based package EISPACK [2, 3], the NAG package [4] developed by the Numerical
Algorithm Group in Oxford, and the subroutines provided in the well-established book Numerical
Recipes [5]. These packages were very popular and had a very good reputation among the users
worldwide.

The well-established EISPACK and LINPACK packages are mainly used to solve eigenvalue
problems and singular value decomposition based linear algebra algorithms. These packages were
all written in Fortran.

For instance, to find all the eigenvalues of a real square matrix A of size N , and the eigenvalues are
represented by W R and W I, for real and imaginary parts, and the eigenvector matrix is represented
by Z, the following subroutine calls are suggested in the EISPACK package

CALL BALANC(NM,N,A,IS1,IS2,FV1)

CALL ELMHES(NM,N,IS1,IS2,A,IV1)

CALL ELTRAN(NM,N,IS1,IS2,A,IV1,Z)

CALL HQR2(NM,N,IS1,IS2,A,WR,WI,Z,IERR)

IF (IERR.EQ.0) GOTO 99999

CALL BALBAK(NM,N,IS1,IS2,FV1,N,Z)

Before the above subroutine calls, you should write a piece of code to assign the matrix to the
program. Then with the above statements, the main program can be written. After the compiling and
linking process, the executable file can be generated. The results can finally be obtained with the
executable file.

A large number of numerical subroutines are provided in the NAG package and in the book,
Numerical Recipes [5]. The NAG package is even more professional since many more subroutines
are provided. In Numerical Recipes, a large number of high-quality subroutines, written in C, Pascal
and Fortran, are provided; these subroutines can be used directly by researchers and engineers. There



Introduction to System Simulation Techniques and Applications 3

are more than 200 effective and reliable subroutines, and the subroutines are trusted by researchers
worldwide.

Readers with a knowledge of Fortran and C programming might already know that, in those two
programming languages, the scientific computation of matrices and graphics are rather complicated.
For instance, to solve a linear algebraic equation, the elements in the matrices should be assigned
first. Then a subroutine has to be written to implement the solution algorithms, such as the Gaussian
elimination algorithm, and finally the result has to be output. If the subroutine written or selected
is not reliable, misleading conclusions may be reached. Normally such a low-level subroutine can
consist of over 100 statements. A small programming error can result in wrong conclusions.

Writing programs with packages has the following disadvantages

• Inconvenience. If the user is not familiar with the package being used, it might be very difficult to
write programs with it, and it is always error-prone. If the slightest error is made in the program,
erroneous results and misleading conclusions can be obtained.

• Trivial procedures are involved. A main program has to be written, and compiling and linking
to the program should be made to generate executable files. A lot of effort is needed to debug the
program and to validate the program.

• Too many executables. To solve a specific problem, a dedicated program has to be prepared. An
executable file must be generated for this specific problem. The code reuse is not good, where a
lot of similar problems may have to be solved.

• Not suitable for data transfer between independent programs. Each program can solve
one particular problem. It might be difficult to transfer data from one standalone program to
another. And it might not be suitable for solving one common problem by several standalone
programs.

• Difficult to allocate the array size. In many mathematical computation problems the most
important variables can be matrices. In most packages, the dimensions of the matrices might
be set very low; for instance, in the package for control systems analysis and design in [6], the
dimension is normally set to 10. It cannot be used to solve very high order systems.

Also, most earlier packages were written in Fortran. The plotting facilities of standard Fortran are
not very good. Some other packages such as GINO-F [7] have to be used instead. However, on some
platforms this package may not be available.

Apart from the above-mentioned shortcomings there is yet another difficult problem. A program
written in Fortran or C cannot be easily transported to other platforms, since the source code on
different platforms may not be compatible. For instance, a program written for Microsoft Windows
cannot be executed at all on Linux without changes. Modifications must be made to the source code,
and the source code has to be recompiled to generate executables. This is a rather difficult task,
especially when plotting facilities are part of the source code.

Despite this, the development of mathematical packages is still going on. The most advanced
numerical algorithms are implemented in mathematical packages, and more effective, more accurate
and faster mathematical packages are still being produced. For instance, in the field of numerical
linear algebra, the brand new LAPACK is becoming the leading mathematical package [8]. However,
the objective of the new packages is no longer to support the average user; they are provided as
low-level support to mathematical languages. In new versions of MATLAB, the base packages
LINPACK and EISPACK have been abandoned, and LAPACK is used instead to provide support
for linear algebra computation.



4 System Simulation Techniques with MATLAB® and Simulink®

1.2.2 Development of Simulation Software and Languages

It can be seen from the limitations of these software packages that it might be rather complicated to
complete simulation tasks with them. It is not wise to restart everything from low-level programming,
and abandon the well-established packages, since the packages carry the experience and effort of
scientists in the field. Low-level programming cannot achieve such a goal. Thus high-level packages
and languages with good reputation, such as MATLAB/Simulink, should used instead to perform
simulation tasks.

Simulation techniques gained the attention of scholars and experts worldwide, and the International
Simulation Councils Inc (SCi) was founded in 1967 to formalize simulation language standards.
Computer Simulation Modeling Program (CSMP) can be regarded as the earliest simulation language
using that standard.

In the early 1980s, Mitchell and Gauthier Associates released a brand new simulation lan-
guage ACSL (Advanced Continuous Simulation Language) [9], based on SCi’s standard. Due to its
powerful facilities for simulation and analysis, ACSL dominated simulation languages in relevant
research communities.

In ACSL, the user should write a model program file with its dedicated syntaxes. The file was then
compiled and linked with the ACSL library, to create an executable file. ACSL commands can then
be used to perform simulation and analysis tasks. The main difference between ACSL and Fortran is
that ACSL is much easier to program, and the library is more powerful. ACSL can directly call the
subroutines written in Fortran. Many ACSL blocks (macros) are provided, such as transfer function
block TRAN, integrator block INTEG, lead-lag block LEDLAG, time delay block DELAY, dead zone
nonlinearity block DEAD, hysteresis block BAKLSH and rate limited integrator block LIMINT. These
blocks can be used to describe a simulation model of the system. ACSL commands can then be used
to analyze simulation results and to draw curves.

After the ACSL source program has been written, the compiler and linker are used to create an
executable file. Running the program will automatically generate a prompt: ACSL>. At the prompt,
relevant commands can then be issued.

Example 1.1 Consider the well-known Van der Pol equation described by ÿ + μ(y2 − 1)ẏ +
y = 0. If μ = 1, a set of state variables y1 = y, y2 = ẏ can be selected, the Van der Pol equation can
be represented as ẏ1 = y1(1 − y2

2 ) − y2, ẏ2 = y1. The following statements in ACSL can be written
for describing the equation

PROGRAM VAN DER POL EQUATION

CINTERVAL CINT=0.01

CONSTANT Y1C=3.0, Y2C=2.5, TSTP=15.0

Y1=INTEG(Y1∗(1-Y2∗∗2)-Y2, Y1C)

Y2=INTEG(Y1, Y2C)

TERMT (T.GE.TSTP)

END

where the display step size is specified as CINT= 0.01. The initial values are represented by the vari-
ables Y1C and Y2C. The final simulation time TSTP is assigned as 15. The time variable T is assumed.
Compiling and linking the source ACSL program, an executable file can be generated. Executing
the program, the prompt ACSL> is given. At this a prompt, the following commands can be used:

ACSL> PREPAR T, Y1, Y2

ACSL> START

ACSL> PLOT Y1, Y2



Introduction to System Simulation Techniques and Applications 5

These inform the ACSL model to reserve the variables T, Y1 and Y2, and the phase plane trajectory
of Y1 and Y2 can be obtained. The internal parameters in the system can also be set, with the
command

ACSL> SET Y1C=-1, Y2C=-3

Other packages and simulation languages similar to ACSL appeared at the same time, such as the
SIMNON package [10] and ESL [11]. These packages have similar statement structures, since they
were based on the same standard.

The emergence and popularization of MATLAB brought mathematical computation to a com-
pletely new level. The Simulink environment equipped researchers with new solution methodologies
and schemes. Since the release of MATLAB many other software packages appeared, which imitated
the syntaxes and ideas of MATLAB, such as Ctrl-C, Matrix-X, O-Matrix, and the CemTool proposed
by Professor Kwan at Seoul National University. Octave [12] and Scilab [13] are still available as
free software. In this book, MATLAB is extensively and exclusively used for discussing different
kinds of simulation problems.

Computer algebra systems, or symbolic computation systems, brought into the field brand new
ideas and solutions. Deriving analytical formulae by using programming languages such as C, even
by very experienced programmers, may not be easy; indeed, sometimes it is impossible. High-
quality computer algebra systems were developed generation by generation. The earlier muMath
was developed by IBM, and the Reduce software introduced new solutions to such problems. The
dominating Maple [14] and Mathematica [15] soon took the lead in computer algebra systems, and
became very successful.

In earlier versions of Mathematica, there was an interface called MathLink to communicate with
MATLAB. To better solve computer algebra problems in MATLAB, a Symbolic Math Toolbox was
developed, which used Maple as its symbolic computation engine to combine the two major systems
together. Then the engine was replaced by muPad.

Since these software packages and languages are usually too expensive for average users, more
users are interested in getting free, open-source languages. The MATLAB-like languages such as
Octave and Scilab attracted the attention of software users, but the facilities provided by this software
are not powerful enough to compete with the sophisticated MATLAB language.

MATLAB and Simulink are the leading-edge tool in scientific computation and system simulation
research. It is also the top selected computer language in research fields such as automatic control.
In this book, MATLAB and Simulink will be extensively illustrated.

1.3 Introduction to MATLAB

1.3.1 Brief History of the Development of MATLAB

The creator of MATLAB, Professor Cleve Moler, is an influential scientist in numerical analysis,
especially in numerical linear algebra [1, 2, 3, 16, 17, 18]. In the late 1970s, while he was the director
of the computer department of the University of New Mexico, he found it inconvenient to solve linear
algebra problems numerically with the then popular EISPACK [2] and LINPACK [1] packages. He
then conceived and developed an interactive MATLAB (which stands for matrix laboratory); it
indeed brought great convenience for users to solve related problems. With the use of MATLAB,
matrix computation becomes a very easy problem. Earlier version of MATLAB can only be used to
solve matrix computation problems. There were very few functions related to matrix computation.
Since its emergence, MATLAB has received a great deal of attention and was welcomed by educators
and researchers alike world wide.



6 System Simulation Techniques with MATLAB® and Simulink®

Cleve Moler and Jack Little co-founded The MathWorks Inc. to develop MATLAB-related prod-
ucts. Cleve Moler is still the Chief Scientist at MathWorks. In 1984, the first commercial MATLAB
was released, with the supporting language changed from Fortran to C. Powerful graphics, mul-
timedia facilities and symbolic computation were gradually introduced into MATLAB. All these
make MATLAB more powerful still. Earlier versions on PCs were called PC-MATLAB, and the
workstation version is called Pro MATLAB. In 1990, MATLAB 3.5i was released and it was the
first version executable on Microsoft Windows, where the command window and graphics windows
can be displayed separately. The SimuLAB environment emerged later, introducing block diagram
based simulation facilities, and it was renamed Simulink the following year.

In 1992, the epoch-making MATLAB 4.0 was released by MathWorks, and in 1993, a PC version
was released. Graphical user interface programming was introduced, and in 1994, version 4.2 had
an enhanced interface design with new methods.

In 1997, MATLAB 5.0 was released and more data types such as cells, structured arrays, multi-
dimensional arrays, classes and objects were supported. Object oriented programming was possible
for the first time. In 2000, MATLAB 6.0 was released with many useful windows such as a history
command window and several different graphics windows could be displayed at the same time. The
kernel of LAPACK [8] and FFTW [19] were used instead of the original LINPACK and EISPACK.
The speed of computation and the numerical accuracy and stability were greatly enhanced. Graphical
user interface design methods were more flexible, and the interface with C was greatly improved.
In 2004, MATLAB 7.0 was introduced, the innovations and concepts of multi-domain physical
modeling and simulation were very attractive to engineers.

In 2012, MATLAB 8.0, also known as MATLAB R2012b, was released. In particular, Simulink
modeling and simulation facilities were significantly updated.

MathWorks is currently releasing two versions a year now, named version a and version b. At the
of writing, the current one was released on September 2012, named 2012b. This version is used in
this book to address simulation facilities with MATLAB/Simulink.

MATLAB has now become the de facto top scientific computation and simulation language.
The current MATLAB is no longer merely a “matrix laboratory”; it is now a promising, com-
pletely new, high-level computer language. MATLAB has been referred to as a “fourth generation”
computer language. It is playing an important role in education, academic research and industry.
The MATLAB language becomes ever more powerful, to adapt to ever growing needs. More and
more software and languages are now providing interfaces to MATLAB and Simulink, where it is
becoming a standard in many fields. It is not difficult to reach the conclusion that, in the fields of
scientific computation and system simulation, MATLAB will keep its unique and leading position
for a long time to come.

1.3.2 Characteristics of MATLAB

MATLAB can run on almost all computers and operating systems. For instance, in Microsoft
Windows, Linux and Mac OS X, MATLAB, source code written on one is completely compatible
with the others. It can be claimed that MATLAB is independent of computers and operating systems.

From the viewpoint of the authors, the relationships between MATLAB and other computer
languages such as C, are similar to the relationship between C and assembly language. Although the
execution efficiency of C is much higher than MATLAB, the readability, programming efficiency
and portability of MATLAB is much higher than C. Thus for scientific computation purposes,
MATLAB should be adopted. In this way, the efficiency of programming, its reliability and the
quality of the programs is much higher. For researchers in the area of scientific computation system



Introduction to System Simulation Techniques and Applications 7

simulation, MATLAB can easily reproduce all the functions implementable with C or Fortran. Even
if programmers have no knowledge of C or Fortran, they can still design high quality, user-friendly,
reliable, high quality programs with high efficiency.

Generally, MATLAB has a very high accuracy of numerical computation, mainly because of the
double-precision scheme adopted for the computation. Also, advanced well-tested algorithms with a
good reputation are adopted in MATLAB functions. In matrix-related computation, the accuracy can
reach the 10−15 level. Also, symbolic computation can derive analytical solutions to many problems.

Simulink is another shining point in MATLAB applications. The block diagram based modeling
techniques and its leading-edge multi-domain physical modeling technique bring users new solutions
to simulation problems. The finite state machine system provided in Stateflow, for example, provides
practical new tools for the modeling and simulation of discrete event systems and hybrid systems.
The interface to external hardware bridges the gap between pure numerical simulation and hardware-
in-the-loop simulation and real-time control.

MATLAB/Simulink is now widely used in automatic control, aerospace engineering, the automo-
bile industry, biomedical engineering, speech and image processing and computer engineering appli-
cations. In many fields, MATLAB/Simulink has already become the number one computer language.

1.4 Structure of the Book

1.4.1 Structure of the Book

As in the learning of any computer language, active and repetitive practice are essential to mastering
MATLAB and Simulink. Only regular practice will improve your ability in MATLAB programming
and your application skills. For the student readers, the statements, programs and models should
be used in person to gain more knowledge and skill with MATLAB. First-hand knowledge is very
important for mastering computer languages and tools.

In this first chapter, system simulation concepts are briefly discussed. The development of com-
puter packages and simulation languages is also briefly introduced. In Chapter 2, the concentration
is on the fundamentals of MATLAB programming. Useful topics in MATLAB programming such as
data types, statement structures, function programming, graphical visualization and graphical user
interface design are logically presented. Essential knowledge of MATLAB programming are fully
covered in this chapter. In Chapter 3, simulation-related scientific computation problem solutions
with MATLAB and applications are explained. The topics of numerical linear algebra, differential
equations, nonlinear equation solutions and optimization, dynamic programming, data interpolation
and statistical analysis are presented. These topics are the essential mathematical fundamentals
for solving simulation problems. In Chapter 4, primary knowledge on Simulink modeling is pre-
sented. A brief introduction to commonly used Simulink model groups is given first. The use of
the Simulink environment is presented, and examples are used to demonstrate Simulink applica-
tions in mathematical modeling. Modeling and simulation of linear systems are presented, followed
by the simulation studies of stochastic continuous systems. In Chapter 5, intermediate knowledge
of Simulink modeling is presented. Application skills of commonly used blocks, nonlinearities
modeling, algebraic loop avoidance, zero-crossing detection and solutions of various differential
equations are extensively studied. Simulation result visualization via gauges and virtual reality
techniques are also illustrated. Subsystem modeling and block masking techniques are presented
in this chapter, and the F-14 aircraft control problem is used to demonstrate the use of subsystem
model techniques. In Chapter 6, advanced techniques in Simulink modeling are presented. Mainly
programming based modeling techniques are introduced. Statement based modeling methods are
introduced first, and then linearization and S-function programming are introduced. Optimization



8 System Simulation Techniques with MATLAB® and Simulink®

based optimal controller design problems are demonstrated. Chapter 7 presents engineering sys-
tem simulation and multi-domain physical modeling technique. Simulation tools such as Simscape,
SimPowerSystems, SimElectronics and SimMechanics are presented, through examples, and the
simulation of electrical, electronic and mechanical systems is presented. In Chapter 8, we look
at some non-engineering system simulation techniques, including pharmacodynamical modeling
and control problems, image and video processing problems and discrete event system model-
ing problems. In Chapter 9, hardware-in-the-loop real-time simulation and control problems are
considered.

1.4.2 Code Download and Internet Resources

The MATLAB functions and models developed for the book can be downloaded directly from the
book service website at Wiley (http://www.wiley.com/go/xue) or from:

http://mechatronics.ucmerced.edu/simubook2013wiley

However, we suggest that you do not use all the downloaded files directly. It would be better to
input the functions and models yourself, since this is also a useful stage of learning and practical
experience. If the solutions obtained by the users are different from the ones given in the book, the
downloaded materials can be used for comparison.

The whole set of PDF and HTML manuals for MATLAB and its related toolboxes can be
downloaded directly from the official MathWorks website. There are also a lot more free third-
party toolboxes downloadable from internet. Moreover, active and experienced MATLAB users may
answer various of your questions. The commonly used websites and forums are:

• MathWorks Website: http://www.mathworks.com.

• User forum: http://www.mathworks.com/matlabcentral/newsreader/.

Here are two suggestions for the use of forums: first, when a problem is encountered, first try to
solve the problem by yourself. Sometimes the answers obtained by one’s own effort can be of great
benefit. Second, actively contribute to the questions to which you know the answers, or participate
in discussion, so as to improve the skills of others.

1.4.3 Fonts Used in this Book

The fonts in the book are illustrated as follows, to help you understand better the materials presented
here:

• Times-Roman fonts are for constants in formulae such as e, dx , and x axis.

• Italic Times-Roman font are provided by MATLAB to represent variables such as x t in MATLAB
equations, while bold italic Times-Roman font are used to present vectors and matrices, such as
A, x and f (t, x).

• Typewriter font is used to represent program listings, as well as function names, such as eig(),
tic, stateflow.

• The text in interfaces, Simulink group and block names are denoted by bold Helvetica font, such
as File menu, OK button and Step block.

http://www.wiley.com/go/xue
http://mechatronics.ucmerced.edu/simubook2013wiley
http://www.mathworks.com
http://www.mathworks.com/matlabcentral/newsreader


Introduction to System Simulation Techniques and Applications 9

Exercises

1.1 A large number of demonstration programs are provided in MATLAB. To invoke the main
demonstration program type the demo command in the MATLAB command window. Run the
demonstration program and get a feel of the powerful facilities provided in MATLAB.

1.2 Programs and models designed for this book can be downloaded from the website for the book,
and all the code is repeatable. It is advisable to input the program and block diagrams yourself,
rather than use the downloaded ones directly, so as to understand better the materials presented
in the book.

1.3 A powerful on-line help system is provided in MATLAB. Also the command lookfor allows
you to search for keywords and function names. You can also use the help or doc commands
to search for information, including syntax, of a particular MATLAB command. For example,
a Riccati matrix equation is given by

P A + AT P − P B R−1 BT P + Q = 0

and

A =

⎡
⎢⎢⎣

−27 6 −3 9
2 −6 −2 −6

−5 0 −5 −2
10 3 4 −11

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 3
16 4
−7 4

9 6

⎤
⎥⎥⎦ , Q =

⎡
⎢⎢⎣

6 5 3 4
5 6 3 4
3 3 6 2
4 4 2 6

⎤
⎥⎥⎦ , R =

[
4 1
1 5

]
.

Try to use the lookfor riccati command to find a possible Riccati equation solver, then
use the help command to find the syntax of the solver and solve P for the above equation.

References

[1] J J Dongarra, J R Bunch, C B Moler, et al. LINPACK user’s guide. Philadelphia: Society of Industrial and Applied
Mathematics (SIAM), 1979

[2] B T Smith, J M Boyle, J J Dongarra. Matrix eigensystem routines – EISPACK guide, Lecture notes in computer
sciences, volume 6. New York: Springer-Verlag, (2nd Edition), 1976

[3] B S Garbow, J M Boyle, J J Dongarra, et al. Matrix eigensystem routines – EISPACK guide extension, Lecture notes
in computer sciences, volume 51. New York: Springer-Verlag, 1977

[4] Numerical Algorithm Group. NAG FORTRAN library manual, 1982
[5] W H Press, B P Flannery, S A Teukolsky, et al. Numerical recipes, the art of scientific computing. Cambridge:

Cambridge University Press, 1986
[6] J L Melsa, S K Jones. Computer programs for computational assistance in the study of linear control theory. New York:

McGraw-Hill, 1973
[7] CAD Center. GINO-F Users’ manual, 1976
[8] E Anderson, Z Bai, C Bischof, et al. LAPACK users’ guide. SIAM Press, 3rd Edition, 1999
[9] E E L Mitchell, J S Gauthier. Advanced continuous simulation language (ACSL) – user’s manual. Mitchell & Gauthier

Associates, 1987
[10] K J Åström. Computer aided tools for control system design, In: Jamshidi M and Herget C J. (eds.) Computer-aided

control systems engineering. Amsterdam: Elsevier Science Publishers B V, 1985, 3–40
[11] R E Crosbie, S Javey, J L Hay, et al. ESL – a new continuous system simulation language. Simulation, 1985, 44(5):

242–246
[12] Octave Language Webpage. http://www.octave.org/
[13] SciLAB Language Webpage. http://scilabsoft.inria.fr/
[14] F Garvan. The Maple book. Boca Raton: Chapman & Hall/CRC, 2002

http://www.octave.org
http://scilabsoft.inria.fr


10 System Simulation Techniques with MATLAB® and Simulink®

[15] S Wolfram. The Mathematica book. Cambridge: Cambridge University Press, 1988
[16] G E Forsythe, M A Malcolm, C B Moler. Computer methods for mathematical computations. Englewood Cliffs:

Prentice-Hall, 1977
[17] G E Forsythe, C B Moler. Computer solution of linear algebraic systems. Englewood Cliffs: Prentice-Hall, 1967
[18] D Kahaner, C B Moler, S Nash. Numerical methods and software. Englewood Cliffs: Prentice Hall, 1989
[19] M Frigo, S G Johnson. The design and implementation of FFTW3. Proceedings of IEEE, 2005, 93(2):215–231



2
Fundamentals of MATLAB
Programming

Different kinds of computer languages for system simulations have been summarized in Chapter 1.
In this chapter, the top computation and simulation language MATLAB will be systematically intro-
duced. The programming and skills of the MATLAB language will be presented. In Section 2.1,
MATLAB windows and on-line help facilities will be presented. In Section 2.2, the fundamentals
of MATLAB programming will be illustrated, including data types, statements and matrix represen-
tation. Matrix manipulations, such as algebraic computation, logical and relationship expressions
and data conversion will be presented in Section 2.3. In Section 2.4, the use of flow charts in pro-
gramming will be illustrated, including loop structures, conditional structures, switches and trial
structures. In Section 2.5, the MATLAB function programming and pseudo code processing will
be presented. Two-dimensional and three-dimensional graphics and visualization techniques will be
presented in Sections 2.6 and 2.7. In Section 2.8, graphical user interface (GUI) techniques will be
explained. Equipped with the new GUI programming skills, user-friendly interfaces can be designed.
Section 2.9 will explore the skills of high speed, high efficiency programming, finally, we look at
vectorized programming methodology and MEX programming fundamentals.

2.1 MATLAB Environment

2.1.1 MATLAB Interface

At the time of writing, the current version of MATLAB is R2012b (or MATLAB version 8.0),
released by MathWorks Inc. in September 2012. Two versions are released each year, in March
and September respectively and labeled versions a and b. If MATLAB is installed and invoked, the
graphical interface shown in Fig. 2.1 will appear. Apart from the main Command Window, there are
other windows, such as the Current Folder window, Command History window and Workspace
window. The window layout can be rearranged with the Desktop → Desktop Layout menu item.
In MATLAB 8.0, brand new toolbar systems are made available.

2.1.2 MATLAB On-line Help and Documentation

All the manuals for MATLAB and its Toolboxes can be downloaded for free from MathWorks’s
website http://www.mathworks.com. They are provided both in PDF and HTML formats.

System Simulation Techniques with MATLAB®and Simulink®, First Edition. Dingyü Xue and YangQuan Chen.
© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.

http://www.mathworks.com


12 System Simulation Techniques with MATLAB® and Simulink®

Figure 2.1 Graphical interface of MATLAB R2012b.

In the MATLAB interface, select the Help menu in the RESOURCES panel in the MATLAB
interface (in earlier versions, click the menu Help → MATLAB Help); the on-line help window can
then be opened, as shown in Fig. 2.2, from which different types of information can be retrieved.
For a quick reference, doc or help commands can also be used, and the lookfor command can be
used for keyword searches.

Figure 2.2 On-line help window of MATLAB.


