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Editorial

The “Concrete Yearbook” is a very important source of information for engineers
involved in design, analysis, planning and production of concrete structures. It is
published on a yearly basis and offers chapters devoted to various subjects with high
actuality. Any chapter gives extended information based on the latest state of the art,
written by renowned experts in the areas considered. The subjects change every year
and may return in later years for an updated treatment. This publication strategy
guarantees, that not only the most recent knowledge is involved in the presentation of
topics, but that the choice of the topics itself meets the demand of actuality as well.

For decades already the themes chosen are treated in such a way, that on the one hand
the reader is informed about the backgrounds and on the other hand gets acquainted
with practical experience, methods and rules to bring this knowledge into practice. For
practicing engineers, this is an optimum combination. Engineering practice requires
knowledge of rules and recommendations, as well as understanding of the theories or
assumptions behind them, in order to find adequate solutions for the wide scope of
problems of daily or special nature.

During the history of the “Concrete Yearbook” an interesting development was noted.
In the early editions themes of interest were chosen on an incidental basis. Meanwhile,
however, the building industry has gone through a remarkable development. Where in
the past predominantly matters concerning structural safety and serviceability were in
the centre of attention, nowadays an increasing awareness develops due to our
responsibility with regard to society in a broader sense. This is reflected e.g. by the
wish to avoid problems related to limited durability of structures. Expensive repair of
structures has been, and unfortunately still is, necessary because of insufficient
awareness of deterioration processes of concrete and reinforcing steel in the past.
Therefore structural design should focus now on realizing structures with sufficient
reliability and serviceability for a specified period of time, without substantial
maintenance costs. Moreover we are confronted with a heritage of older structures
that should be assessed with regard to their suitability to safely carry the often increased
loads applied to them today. Here several aspects of structural engineering have to be
considered in an interrelated way, like risk, functionality, serviceability, deterioration
processes, strengthening techniques, monitoring, dismantlement, adaptability and
recycling of structures and structural materials, and the introduction of modern
high performance materials. Also the significance of sustainability is recognized.
This added to the awareness that design should not focus only on individual structures
and their service life, but as well on their function in a wider context, with regard to
harmony with their environment, acceptance by society, the responsible use of
resources, low energy consumption and economy. Moreover the construction processes
should become cleaner, with less environmental nuisance and pollution.

The editors of the “Concrete Yearbook” have clearly recognized those and other trends
and offer now a selection of coherent subjects which resort under a common “umbrella”
of a broader societal development of high relevance. In order to be able to copewith the
corresponding challenges the reader is informed about progress in technology,

IX



theoretical methods, new findings of research, new ideas on design and execution,
development in production, assessment and conservation strategies. By the actual
selection of topics and the way those are treated, the “Concrete Yearbook” offers a
splendid opportunity to get and stay aware of the development of technical knowledge,
practical experience and concepts in the field of design of concrete structures on an
international level.

Prof. Dr. Ir. Dr.-Ing. h.c. Joost Walraven, TU Delft
Honorary president of the international concrete federation fib
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1 Introduction

The wind energy industry in Germany has an excellent global standing when it comes
to the development and construction of wind turbines. Germany currently represents
the world’s largest market for wind energy. So far, more than 21 000 wind turbines with
a total output of approx. 25 000 MW have been installed across the country. And at the
moment that figure is growing by approx. 2000 MW every year [1]. Developments in
land-based installations are moving in the direction of more powerful turbines with
more than 3 MW per installation and towers exceeding 140 m in height.1)

However, the number of lucrative sites on land (onshore) is dwindling. Therefore, it is
planned to construct wind turbines at sea (offshore) in the coming years. The plans
provide for offshore wind farms in the North Sea and Baltic Sea and are intended to
increase substantially the proportion of renewable energies in electricity generation.
The target for the medium-term is installations in the North Sea and Baltic Sea with a
total output amounting to some 3000 MW. By 2030 it is hoped that offshore wind
turbines with a total output of about 20 000 to 25 000 MW will have been built [2].

Figure 1.1 shows the results of a study carried out by DEWI, the German Wind Energy
Institute. It shows the annual installed wind energy output for each year since 1990 plus
the forecast up to the year 2030. According to the study, the decline in onshore
installations should be compensated for by the anticipated development in offshore

1) Source: Bun desverband der Windenergie e.V. ( www.wind- energie.de).

Fig. 1.1 Installed wind energy output per year in Germany [3]
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wind farms and by the repowering of land-based installations, leading to a doubling in
the annual installed output by the year 2020.

The towers supporting onshore wind turbines are mainly of steel or prestressed
concrete with internal or external prestressing. Steel lattice masts are also used in
isolated instances. The prestressed concrete towers make use of both in situ and precast
concrete. In recent years, the use of hybrid towers, consisting of a prestressed concrete
shaft and a steel top section, has proved to be a very economical solution, especially for
wind turbines in the multi-megawatt category. The choice of a suitable tower design is
governed by the conditions at the site (fabrication, transport, erection, etc.). Figure 1.2
illustrates typical towers for onshore wind turbines.

Both shallow and deep foundations can be used for onshore wind turbines. Soil
improvement measures can be employed to upgrade subsoil properties to those
required for shallow foundations [4, 5]. Driven piles of steel or concrete with appro-
priate toe forms are frequently used as deep foundations.

So far, about 25 wind farms have been approved for construction off the German coast
in the North Sea and Baltic Sea within the 12-mile zone and the exclusive economic
zone (EEZ) for water depths of up to 45m. But the better wind conditions at sea call for
a greater technical input for the loadbearing structure and the fabrication and erection
of the wind turbines [6]. Besides the depth of the water, the choice of a suitable offshore
structure is especially dependent on the wave and current conditions plus the subsoil
beneath the seabed. Concrete structures in the form of gravity bases are economic
propositions for nearshore sites and for greater depths of water, see [7]. Such
foundations are built in a dock, for example, then floated out to their final position
and sunk. Resolved designs with individual members made from prestressed high-
strength concrete are also feasible. An overview of the offshore foundation concepts
currently under discussion can be found in Section 5.

Fig. 1.2 Typical onshore tower designs for wind turbines

2 1 Introduction



The ongoing development of ever more powerful wind turbines plus additional
requirements for the design and construction of their offshore foundation structures
exceeds the actual experience gained so far in the various disciplines concerned. Wind
turbines represent structures subjected to highly dynamic loading patterns. The load
cycles of onshore installations can reach N ¼ 109, but those of offshore installations can
be exposed to further load cycles of up to N ¼ 108 due to the sea conditions. Therefore,
for the design of loadbearing structures, fatigue effects – and not just maximum loads –
are extremely important. This can lead, in particular, to multi-axial stress states arising
in the connections and joints of concrete and hybrid structures (see Sections 3.6 and
4.9), which have considerable effects on the fatigue strength and so far have not been
addressed in the applicable design codes.

On the whole, there is still a great need for further research in the various disciplines
involved in the planning, design and construction of wind turbines. It was for this
reason that the Centre for Wind Energy Research ForWind (www.forwind.de) was set
up at the Carl von Ossietzky University of Oldenburg and the Leibniz University of
Hannover in 2003, thus enabling engineers from different disciplines to work together
on research into wind energy. Supported by the Lower Saxony Ministry of Science and
Culture, the objective of the centre is to pool research activities. Construction
technology research into offshore wind turbines began at the University of Hannover
as long ago as 2000 in the shape of the GIGAWIND (www.gigawind.de) joint project
sponsored by the Federal Ministry for the Environment, Nature Conservation and
Nuclear Safety. These research activities are divided into three areas: actions due to
wind and waves, design of loadbearing structures (including foundations) and environ-
mental technology aspects. GIGAWIND alpha ventus is a project associated with the
RAVE (Research at Alpha Ventus) research initiative and therefore has access to the
extensive programme of measurements carried out at the Alpha Ventus test site,
Germany’s first offshore wind farm. At European level, the University of Hannover
participates in the European Academy of Wind Energy (www.eawe.eu). The objective
here is to promote research and development and to train PhD students in the field of
wind energy in various European countries.

The basic concepts for the planning, design, analysis and construction of tower
structures, focusing on wind turbines especially, will be explored in the next chapters.

Many aspects of these basic concepts also apply to the structural and constructional
requirements of other tower-type structures, for example

– telecommunications towers
– radar towers and lighthouses in shipping lanes
– antenna support structures and masts for mobile telephone networks
– chimneys

For more information on these structures please refer to Beton-Kalender 2006 Teil 1,
pp. 103–223 [8].

1 Introduction 3
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2 Actions on wind turbines

2.1 Permanent actions

In addition to the typical dead loads of the plant (rotor and nacelle) and the structure
(tower and foundation), there are also other loads that are classed as permanent actions:
for example the loads of items fitted inside the tower (cables, intermediate platforms,
etc.), and those due to further electrical equipment, for example transformers,
ventilation systems.

And when it comes to offshore wind turbines there are yet further dead loads to be
considered such as external platforms, boat moorings or cathodic corrosion protection.

For the dynamic analysis in particular, the masses of the individual items and
components must be known and taken into account accurately in the design.

2.2 Turbine operation (rotor and nacelle)

The actions due to the operation of the turbine are determined by means of numerical
simulations (see also Section 4.9.1). In addition to various wind load models, with
the superposition of wave action effects where applicable, such simulations must also
take into account particular operating situations, for example starting and stopping
procedures.

The load case combinations to be investigated are laid down in the relevant codes
and guidelines, for example the DIBt guideline for onshore wind turbines [9], see
Section 4.5.3, and DIN EN 61400-3 for offshorewind turbines [10]. Load combinations
are also defined in the guidelines published by a number of certification bodies, for
example the GL Guideline [11], see Section 4.6.4.

Note: The GL Guideline for offshore wind turbines [11] is based on Rules and
Guidelines, IV Industrial Services – 1 Guideline for the Certification of Wind
Turbines dating from 2003/04, which in July 2010 was republished in a revised
edition.

2.3 Wind loads

2.3.1 Wind loads for onshore wind turbines

According to DIN 1055-4 [12], the environmental conditions in Germany (including
the German Bight) can be divided into four wind zones (Figure 2.1).

The reference values (vref; qref) in the table are valid for

– averaging over a period of 10min,
– a 0.02 probability of being exceeded in one year,
– a height of 10m above ground level,
– flat, open terrain, which corresponds to terrain category II in DIN 1055-4

annex B.

Concrete Structures for Wind Turbines. First edition. Jürgen Grünberg, Joachim Göhlmann.
� 2013 Ernst & Sohn GmbH & Co. KG. Published 2013 by Ernst & Sohn GmbH & Co. KG.
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The relationship between reference values for wind speed vref and dynamic pressure
qref is given by the following equation:

qref kPa½ � ¼ vref m=s½ �ð Þ2
1600

When designing towers, only the reference dynamic pressures for terrain categories II
(inland) or I (wind zone 4 directly on the coast) should be assumed. Less onerous
terrain categories (III and higher) can be ruled out because the effects of the various
ground roughnesses decrease as the height of the structure increases.

Therefore, the combined profiles given in DIN 1055-4 [12] for structures up to 50m in
height should not be used either (see also Beton-Kalender 2006 [8]).

Prior to the introduction of DIN 1055-4 [12], the wind loads for tower-type structures
were calculated according to DIN 1056 [13] or annex A of DIN 4131 [14] or annex A of
DIN 4228 [15]. Beton-Kalender 2006 [8] compares the wind loads according to the old
standards and DIN 1055-4 [12].

2.3.1.1 Wind loads according to the DIBt guideline
According to DIN 1055-4, the following basic parameters apply (see Figure 2.2 and
Table 2.1):

– 50-year return wind vm50 (z)
– 50-year return gust ve50 (z)

Fig. 2.1 Wind zones to DIN 1055-4 [12]
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Fig. 2.2 Angle of attack for the rotor of a wind turbine

Table 2.1 Wind conditions for onshore wind turbines in terrain category II according to [12]

Basic parameters according to DIN 1055-4 [12]a) Unit Remarks

Wind zone WZ 1 WZ 2 WZ 3 WZ 4

vm50 (¼ vref)
b) 22.5 25.0 27.5 30.0 m/s 50-year return wind,

10-min average

ve50¼ 2.10.5 � vm50 32.6 36.2 39.9 43.5 m/s 50-year return wind,
2–4 s gust

vm1¼ 0.8 � vm50 18.0 20.0 22.0 24.0 m/s 1-year return wind,
10-min average

ve1¼ 0.8 � ve50 26.1 29.0 31.9 34.8 m/s 1-year return wind,
2–4 s gust

Additional parameters according to DIBt guideline [9] for dynamic analyses

Vave¼ 0.18 � vm50 (h)¼ 0.18 � vref � (h/10)0.16 m/s Annual average wind
speed at hub height h [m]

I15,A¼ 0.18 — Average turbulence
intensity,
class A, for Vhub¼ 15m/s

aA¼ 2 — Slope parameter for
turbulence characteristics

a) z¼ 10m above ground level, terrain category II, site altitude� sea levelþ 800m
b) According to [16], Vref (capital V) denotes the wind speed of the 50-year return wind at
hub height h.

2.3 Wind loads 7



– 1-year return wind vm1 (z)
– 1-year return gust Ve1 (z)

Additional parameters (DIBt guideline [9]):

– Annual average wind speed vave
– Average turbulence intensity I15
– Verification of the wind turbine for compliance with the turbulence intensity of

turbulence category A according to [16].

2.3.1.2 Checking the susceptibility to vibration
According to DIN 1055-4 [12] Section 10, the wind forces acting on structures not
susceptible to vibration are based on the peak dynamic pressure, which is averaged over
a gust duration of 2–4 s (Table 2.2).

According to DIN 1055-4 [12] 6.2 (2), the wind loads for structures acting as
cantilevers may be determined according to the simplified method for structures
not susceptible to vibration (see below) provided the following condition is
satisfied:

xs
h
� dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

href
h

� hþ b

b

r
þ 0:125 �

ffiffiffiffiffiffiffi
h

href

r !2 with href ¼ 25 m

where

xs displacement of top of structure under dead load assumed to act in the direction of
the wind [m]

d logarithmic damping decrement according to annex F
b width of structure [m]
h height of structure [m].

Table 2.2 Peak dynamic pressure (to DIN 1055-4 [12] Table B.2)

qB zj
� � ¼ c � qref � zj=10

� �d
or cmin � qref for zj < zmin

� �
Terrain category I II III IV

Factor c 2.6 2.1 1.6 1.3

Exponent d 0.19 0.24 0.31 0.40

zmin 2.00 4.00 8.00 16.00

cmin 1.9 1.7 1.5 1.3

8 2 Actions on wind turbines



2.3.1.3 Example of application
Prestressed concrete wind turbine structure, hub height 130m (see Section 5.2):

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
href
h

� hþ b

b

r
þ 0:125 �

ffiffiffiffiffiffiffi
h

href

r !2 ¼

0:04ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25

129:7
� 129:7þ 5:6

5:6

r
þ 0:125 �

ffiffiffiffiffiffiffiffiffiffiffi
129:7

25

r !2 ¼
0:04ffiffiffiffiffiffiffiffiffi

4:66
p þ 0:125 � ffiffiffiffiffiffiffiffiffi

5:19
p� �2 ¼ 0:0067

xs=h ¼ y36=ðz36 � z1Þ ¼ 4:274=ð130:174� 0:500Þ ¼ 0:0330 > 0:0067

The tower is therefore susceptible to vibration.

According to [9] 8.3.1, the vibration effect of the tower in the direction of the wind caused
by the gustiness of the wind for a wind turbine in the “non-operational” condition (see
Section 4.5.2) must be taken into account by way of an equivalent static load, which
according to [9] Section B.3 or DIN 1055-4 [12] annex C may be calculated as follows:

Resultant equivalent static wind load in structure segment j ([12] C.2)

FWj ¼ G � cfj � qmðzjÞ:Aj

where

G gust response factor to DIN1055-4 [12] C.3
cfj aerodynamic force coefficient for segment i to DIN 1055-4 [12] 12.6 or 12.7
qm (zj) average dynamic pressure at location zj
zj average height of segment j above ground level
Aj reference area of segment j

Average dynamic pressure (10-min average) ([12] C.2 (3))

qm zj
� � ¼ r

2
� vm zj

� �� �2
or qm kPa½ � ¼ vm m=s½ �ð Þ2

1600

r density of air: r¼ 1.25 kg/m3

vm average wind speed (Table 2.3)

Table 2.3 Average wind speed (to DIN 1055-4 [12] Table B.2).

vm zj
� � ¼ a � vref � zj=10

� �b
or amin � vref for zj < zmin

� �
Terrain category I II III IV

Factor a 1.18 1.00 0.77 0.56

Exponent b 0.12 0.16 0.22 0.30

zmin 2.00 4.00 8.00 16.00

amin 0.97 0.86 0.73 0.64
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Figure 2.3 shows the associated wind speed profiles.

The gust response factor (G) is related to the average dynamic pressure qm. DIN 1055-4
[12] C.3 (1) contains the following formula:

G ¼ 1þ 2 � g � Iv zeð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

0 þ R2
x

q
where

Iv (ze) turbulence intensity at effective height ze (Table 2.4)
ze reference height (see DIN 1055-4 [12] Figure C.1) [m] (ze¼ 0.6 � h applies for

towers of height h)
g peak factor
Q0 quasi-static component (basic gust component) of gust response
Rx resonance component of response as a result of gust response

These parameters are explained below.

Figure 2.4 shows the associated turbulence intensity profiles.

Fig. 2.3 Average wind speeds for various wind zones

Table 2.4 Turbulence intensity (to DIN 1055-4 [12] Table B.2)

Iv zeð Þ ¼ e � ze=10ð Þf or Iv;max for ze < zmin

� �
Terrain category I II III IV

Factor e 0.14 0.19 0.28 0.43

Exponent f �0.12 �0.16 �0.22 �0.30

zmin 2.00 4.00 8.00 16.00

Iv,max 0.20 0.22 0.29 0.37
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Peak factor (Figure 2.5) according to DIN 1055-4 [12] C.3 (2):

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � ln nE � tð Þ

p
þ 0:6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � ln nE � tð Þp
where

t averaging period for reference wind speed vref: t¼ 600 s (¼ 10min)

Expected value for frequency of gust response to DIN 1055-4 [12] C.3 (3):

nE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2E;0 � Q2

0 þ n21;x � R2
x

Q2
0 þ R2

x

s

where

n1,x first natural frequency [Hz] of structure vibration in direction of wind (x
direction)

nE,0 expected value of frequency [Hz] of gust response of structure assuming a quasi-
static structural behaviour:

Fig. 2.4 Turbulence intensities for various terrain categories

Fig. 2.5 Peak factor

2.3 Wind loads 11



nE;0 ¼ vm zeð Þ
Li zeð Þ �

1

1:11 � S0:615

where

S ¼ 0:46 � bþ h

Li zeð Þ þ 10:58 �
ffiffiffiffiffiffiffiffiffi
b � hp

Li zeð Þ

b, h width, height of structure to DIN 1055-4 [12] Figure C.1
vm (ze) average wind speed at effective height z¼ ze (see above) to DIN 1055-4 [12]

Table B.2 (see above)
Li (ze) integral length of longitudinal component of turbulence in direction of average

wind for z¼ ze (Table 2.5)

Basic gust component Q0, squared ([12] C.3 (5))

Q2
0 ¼

1

1þ 0:9 � bþ h

Li zeð Þ
� �0:63

Resonance response component Rx, squared ([12] C.3 (6))

R2
x ¼

p2

2 � d � RN � Rh � Rb

where

d logarithmic damping decrement for vibrations in wind direction to DIN 1055-4 [12]
annex F

Dimensionless spectral density function RN ([12] C.3 (7))

RN ¼ 6:8 � N1;x

1þ 10:2 � N1;x

� �5=3

Table 2.5 Integral length Li (z) of turbulence (to DIN 1055-4 [12] C.3 (4))

Li zð Þ ¼ 300 � z=300ð Þe ðLi; z in mÞ for zmin � z � 300 m

Li zð Þ ¼ 300 � zmin=300ð Þe ðLi; zmin in mÞ for z � zmin

Terrain category I II III IV

Exponent e 0.13 0.26 0.37 0.46

zmin 2.00 4.00 8.00 16.00
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where

N1;x ¼ n1;x � Li zeð Þ
vm zeð Þ

Aerodynamic transfer functions Rh and Rb ([12] C.3 (8))

These are specified for the fundamental vibration mode with identical sign (defor-
mation in the same direction) and are calculated, starting from RL, as follows:

RL ¼ 1

h
� 1

2 � h2
� 1� e�2�h� �

for > 0

RL ¼ 1 for ¼ 0

where

Rh ¼ RL with hh ¼
4:6 � N1;x � h

Li zeð Þ

Rb ¼ RL with hb ¼
4:6 � N1;x � b

Li zeð Þ
Logarithmic damping decrement d ([12] F.5)

Estimate of the logarithmic damping decrement for the fundamental flexural vibration
mode to DIN 1055-4 [12] F.5 (1):

d ¼ ds þ da þ dd

Structural damping ds see Table 2.6.

Aerodynamic damping ([12] F.5 (3))

da ¼ r � b � cf
2 � n1;x �m1;x

� vm zeð Þ

where

r density of air: r¼ 1.25 kg/m3

Table 2.6 Structural damping (to DIN 1055-4 [12] F.5 (2))

ds¼ a1 �n1þ b1� dmin

where

n1 ¼ fundamental flexural vibration frequency [Hz].

Parameters a1, b1, dmin to 1055-4 [12] Table F.2 (extract)

Type of structure a1 b1 dmin

Reinforced concrete towers 0.050 0 0.025

Masonry/concrete chimneys 0.075 0 0.030
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