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Preface

One hundred and seventy years ago (in 1843) W.R. Hamilton formally introduced
the four-dimensional quaternions, perceiving them as one of the major discoveries
of his life. One year later, in 1844, H. Grassmann published the first version of his
Ausdehnungslehre, now known as Grassmann algebra, without any dimensional
limitations. Circa thirty years later (in 1876) W.K. Clifford supplemented the
Grassmann product of vectors with an inner product, which fundamentally unified
the preceding works of Hamilton and Grassmann in the form of Clifford’s geometric
algebras or Clifford algebras. A Clifford algebra is a complete algebra of a vector
space and all its subspaces, including the measurement of volumes and dihedral
angles between any pair of subspaces.

To work in higher dimensions with quaternion and Clifford algebras allows us
to systematically generalize known concepts of symmetry, phase, analytic signal
and holomorphic function to higher dimensions. And as demonstrated in the cur-
rent proceedings, it successfully generalizes Fourier and wavelet transformations
to higher dimensions. This is interesting both for the development of analysis in
higher dimensions, as well as for a broad range of applications in multi-dimensional
signal, image and color image processing. Therefore a wide variety of readers from
pure mathematicians, keen to learn about the latest developments in quaternion
and Clifford analysis, to physicists and engineers in search of dimensionally ap-
propriate and efficient tools in concrete applications, will find many interesting
contributions in this book.

The contributions in this volume originated as papers in a session on Quater-
nion and Clifford–Fourier transforms and wavelets of the 9th International Con-
ference on Clifford Algebras and their Applications (ICCA9), which took place
from 15th to 20th July 2011 at the Bauhaus-University in Weimar, Germany. The
session was organized by the editors of this volume.

After the conference we asked the contributors to prepare expanded versions
of their works for this volume, and many of them agreed to participate. The ex-
panded submissions were subjected to a further round of reviews (in addition to
the original reviews for the ICCA9 itself) in order to ensure that each contribution
was clearly presented and worthy of publication. We are very grateful to all those
reviewers whose efforts contributed significantly to the quality of the final chapters
by asking the authors to revise, clarify or to expand on points in their drafts.
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The contributions have been edited to achieve as much uniformity in presen-
tation and notation as can reasonably be achieved across the somewhat different
traditions that have arisen in the quaternion and Clifford communities. We hope
that this volume will contribute to a growing unification of ideas across the ex-
panding field of hypercomplex Fourier transforms and wavelets.

The book is divided into two parts: Chapters 1 to 6 deal exclusively with
quaternions ℍ, while Chapters 7 to 16 mainly deal with Clifford algebras 𝐶ℓ𝑝,𝑞,
but sometimes include high-dimensional complex as well as quaternionic results
in several subsections. This is natural, since complex numbers (ℂ ∼= 𝐶ℓ0,1) and
quaternions (ℍ ∼= 𝐶ℓ0,2) are low-dimensional Clifford algebras, and often appear
as subalgebras, e.g., ℂ ∼= 𝐶𝑙+2,0, ℍ

∼= 𝐶𝑙+3,0, etc. The first chapter was written
especially for this volume to provide some background on the history of the subject,
and to show how the contributions that follow relate to each other and to prior
work. We especially thank Fred Brackx (Ghent/Belgium) for agreeing to contribute
to this chapter at a late stage in the preparation of the book.

The quaternionic part begins with an exploration by Ell (Chapter 1) of the
evolution of quaternion Fourier transform (QFT) definitions as a framework for
problems in vector-image and vector-signal processing, ranging from NMR prob-
lems to applications in colour image processing. Next, follows an investigation by
Hitzer and Sangwine (Chapter 2) into a steerable quaternion algebra split, which
leads to: a local phase rotation interpretation of the classical two-sided QFT, effi-
cient fast numerical implementations and the design of new steerable QFTs.

Then Le Bihan and Sangwine (Chapter 3) perform a quaternionic spectral
analysis of non-stationary improper complex signals with possible correlation of
real and imaginary signal parts. With a one-dimensional QFT they introduce a
hyperanalytic signal closely linked to the geometric features of improper com-
plex signals. In the field of low level image processing Moya-Sánchez and Bayro-
Corrochano (Chapter 4) employ quaternionic atomic functions to enhance geo-
metric image features and to analytically express image processing operations like
low-pass, steerable and multiscale filtering, derivatives, and local phase computa-
tion.

In the next two chapters on quaternion analysis Georgiev and Morais (Chap-
ter 5) characterize a class of quaternion Bochner functions generated via a quater-
nion Fourier–Stieltjes transform and generalize Bochner’s theorem to quaternion
functions. In Chapter 6 Georgiev, Morais, Kou and Sprößig study the asymptotic
behavior of the QFT, apply the QFT to probability measures, including positive
definite measures, and extend the classical Bochner–Minlos theorem to the frame-
work of quaternion analysis.

The Clifford algebra part begins with Chapter 7 by Hitzer, Helmstetter and
Abl̷amowicz, who establish a detailed algebraic characterization of the continuous
manifolds of (multivector) square roots of −1 in all real Clifford algebras 𝐶ℓ𝑝,𝑞,
including as examples detailed computer generated tables of representative square
roots of −1 in dimensions 𝑛 = 𝑝+ 𝑞 = 5, 7 with signature 𝑠 = 𝑝− 𝑞 = 3(mod 4).
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Their work is fundamental for any form of Clifford–Fourier transform (CFT) using
multivector square roots of −1 instead of the complex imaginary unit. Based on
this Bujack, Scheuermann and Hitzer (Chapter 8) introduce a general (Clifford)
geometric Fourier transform covering most CFTs in the literature. They prove a
range of standard properties and specify the necessary conditions in the transform
design.

A series of four chapters on image processing begins with Batard and Ber-
thier’s (Chapter 9) on spinorial representation of images focusing on edge- and
texture detection based on a special CFT for spinor fields, that takes into account
the Riemannian geometry of the image surface. Then Girard, Pujol, Clarysse, Mar-
ion, Goutte and Delachartre (Chapter 10) investigate analytic signals in Clifford
algebras of 𝑛-dimensional quadratic spaces, and especially for three-dimensional
video (2D + 𝑇 ) signals in (complex) biquaternions (∼= 𝐶ℓ3,0). Generalizing from
the right-sided QFT to a rotor CFT in 𝐶ℓ3,0, which allows a complex fast Fourier
transform (FFT) decomposition, they investigate the corresponding analytic video
signal including its generalized six biquaternionic phases. Next, Bernstein, Bou-
chot, Reinhardt and Heise (Chapter 11) undertake a mathematical overview of gen-
eralizations of analytic signals to higher-dimensional complex and Clifford analysis
together with applications (and comparisons) for artificial and real-world image
samples.

Soulard and Carré (Chapter 12) define a novel colour monogenic wavelet
transform, leading to a non-marginal multiresolution colour geometric analysis of
images. They show a first application through the definition of a full colour image
denoising scheme based on statistical modeling of coefficients.

Motivated by applications in optical coherence tomography, Bernstein (Chap-
ter 13) studies inverse scattering for Dirac operators with scalar, vector and quater-
nionic potentials, by writing Maxwell’s equations as Dirac equations in Clifford
algebra (i.e., complex biquaternions). For that she considers factorizations of the
Helmholtz equation and related fundamental solutions; standard- and Faddeev’s
Green functions.

In Chapter 14 Bahri introduces a windowed CFT for signal functions 𝑓 :
ℝ𝑛 → 𝐶ℓ0,𝑛, and investigates some of its properties. For a different type of win-
dowed CFT for signal functions 𝑓 : ℝ𝑛 → 𝐶ℓ𝑛,0, 𝑛 = 2, 3(mod 4), Fu, Kähler and
Cerejeiras establish in Chapter 15 a Balian–Low theorem, a strong form of Heisen-
berg’s classical uncertainty principle. They make essential use of Clifford frames
and the Clifford–Zak transform.

Finally, Li and Qian (Chapter 16) employ a compressed sensing technique in
order to introduce a new kind of sparse representation of signals in a Hardy space
dictionary (of elementary wave forms) over a unit disk, together with examples
illustrating the new algorithm.

We thank all the authors for their enthusiastic participation in the project
and their enormous patience with the review and editing process. We further thank
the organizer of the ICCA9 conference K. Guerlebeck and his dedicated team for
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their strong support in organizing the ICCA9 session on Quaternion and Clifford–
Fourier Transforms and Wavelets. We finally thank T. Hempfling and B. Hellriegel
of Birkhäuser Springer Basel AG for venturing to accept and skillfully accompany
this proceedings with a still rather unconventional theme, thus going one more
step in fulfilling the 170 year old visions of Hamilton and Grassmann.

Eckhard Hitzer
Tokyo, Japan

Stephen Sangwine
Colchester, United Kingdom

October 2012
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History of Quaternion and Clifford–Fourier
Transforms and Wavelets

Fred Brackx, Eckhard Hitzer and Stephen J. Sangwine

Abstract. We survey the historical development of quaternion and Clifford–
Fourier transforms and wavelets.

Mathematics Subject Classification (2010). Primary 42B10; secondary 15A66,
16H05, 42C40, 16-03.

Keywords. Quaternions, Clifford algebra, Fourier transforms, wavelet trans-
forms.

The development of hypercomplex Fourier transforms and wavelets has taken place
in several different threads, reflected in the overview of the subject presented in
this chapter. We present in Section 1 an overview of the development of quaternion
Fourier transforms, then in Section 2 the development of Clifford–Fourier trans-
forms. Finally, since wavelets are a more recent development, and the distinction
between their quaternion and Clifford algebra approach has been much less pro-
nounced than in the case of Fourier transforms, Section 3 reviews the history of
both quaternion and Clifford wavelets.

We recognise that the history we present here may be incomplete, and that
work by some authors may have been overlooked, for which we can only offer our
humble apologies.

1. Quaternion Fourier Transforms (QFT)

1.1. Major Developments in the History of the Quaternion Fourier Transform

Quaternions [51] were first applied to Fourier transforms by Ernst [49, § 6.4.2]
and Delsuc [41, Eqn. 20] in the late 1980s, seemingly without knowledge of the
earlier work of Sommen [90, 91] on Clifford–Fourier and Laplace transforms fur-
ther explained in Section 2.2. Ernst and Delsuc’s quaternion transforms were two-
dimensional (that is they had two independent variables) and proposed for ap-
plication to nuclear magnetic resonance (NMR) imaging. Written in terms of two
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independent time variables1 𝑡1 and 𝑡2, the forward transforms were of the following
form2:

ℱ(𝜔1, 𝜔2) =

∞∫
−∞

∞∫
−∞

𝑓(𝑡1, 𝑡2)𝑒
𝒊𝜔1𝑡1𝑒𝒋𝜔2𝑡2d𝑡1d𝑡2 . (1.1)

Notice the use of different quaternion basis units 𝒊 and 𝒋 in each of the two ex-
ponentials, a feature that was essential to maintain the separation between the
two dimensions (the prime motivation for using a quaternion Fourier transforma-
tion was to avoid the mixing of information that occurred when using a complex
Fourier transform – something that now seems obvious, but must have been less
so in the 1980s). The signal waveforms/samples measured in NMR are complex, so
the quaternion aspect of this transform was essential only for maintaining the sep-
aration between the two dimensions. As we will see below, there was some unused
potential here.

The fact that exponentials in the above formulation do not commute (with
each other, or with the ‘signal’ function 𝑓), means that other formulations are
possible3, and indeed Ell in 1992 [45, 46] formulated a transform with the two
exponentials positioned either side of the signal function:

ℱ(𝜔1, 𝜔2) =

∞∫
−∞

∞∫
−∞

𝑒𝒊𝜔1𝑡1𝑓(𝑡1, 𝑡2) 𝑒
𝒋𝜔2𝑡2 d𝑡1d𝑡2 . (1.2)

Ell’s transform was a theoretical development, but it was soon applied to the
practical problem of computing a holistic Fourier transform of a colour image [84]
in which the signal samples (discrete image pixels) had three-dimensional values
(represented as quaternions with zero scalar parts). This was a major change
from the previously intended application in nuclear magnetic resonance, because
now the two-dimensional nature of the transform mirrored the two-dimensional
nature of the image, and the four-dimensional nature of the algebra used followed
naturally from the three-dimensional nature of the image pixels.

Other researchers in signal and image processing have followed Ell’s formu-
lation (with trivial changes of basis units in the exponentials) [27, 24, 25], but as
with the NMR transforms, the quaternion nature of the transforms was applied
essentially to separation of the two independent dimensions of an image (Bülow’s
work [24, 25] was based on greyscale images, that is with one-dimensional pixel
values). Two new ideas emerged in 1998 in a paper by Sangwine and Ell [86].
These were, firstly, the choice of a general root 𝜇 of −1 (a unit quaternion with
zero scalar part) rather than a basis unit (𝒊, 𝒋 or 𝒌) of the quaternion algebra,

1The two independent time variables arise naturally from the formulation of two-dimensional
NMR spectroscopy.
2Note, that Georgiev et al. use this form of the quaternion Fourier transform (QFT) in Chapter 6
to extend the Bochner–Minlos theorem to quaternion analysis. Moreover, the same form of QFT
is extended by Georgiev and Morais in Chapter 5 to a quaternion Fourier–Stieltjes transform.
3See Chapter 1 by Ell in this volume with a systematic review of possible forms of quaternion
Fourier transformations.



Quaternion, Clifford–Fourier & Wavelet Transforms History xiii

and secondly, the choice of a single exponential rather than two (giving a choice
of ordering relative to the quaternionic signal function):

ℱ(𝜔1, 𝜔2) =

∞∫
−∞

∞∫
−∞

𝑒𝜇(𝜔1𝑡1+𝜔2𝑡2)𝑓(𝑡1, 𝑡2)d𝑡1d𝑡2 . (1.3)

This made possible a quaternion Fourier transform of a one-dimensional signal:

ℱ(𝜔) =
∞∫

−∞
𝑒𝜇𝜔𝑡𝑓(𝑡)d𝑡 . (1.4)

Such a transform makes sense only if the signal function has quaternion values,
suggesting applications where the signal has three or four independent components.
(An example is vibrations in a solid, such as rock, detected by a sensor with three
mutually orthogonal transducers, such as a vector geophone.)

Very little has appeared in print about the interpretation of the Fourier coef-
ficients resulting from a quaternion Fourier transform. One interpretation is com-
ponents of different symmetry, as explained by Ell in Chapter 1. Sangwine and Ell
in 2007 published a paper about quaternion Fourier transforms applied to colour
images, with a detailed explanation of the Fourier coefficients in terms of elliptical
paths in colour space (the 𝑛-dimensional space of the values of the image pixels in
a colour image) [48].

1.2. Splitting Quaternions and the QFT

Following the earlier works of Ernst, Ell, Sangwine (see Section 1.1), and Bülow
[24, 25], Hitzer thoroughly studied the quaternion Fourier transform (QFT) applied
to quaternion-valued functions in [54]. As part of this work a quaternion split

𝑞± =
1

2
(𝑞 ± 𝒊𝑞𝒋), 𝑞 ∈ ℍ, (1.5)

was devised and applied, which led to a better understanding of 𝐺𝐿(ℝ2) trans-
formation properties of the QFT spectrum of two-dimensional images, including
colour images, and opened the way to a generalization of the QFT concept to a
full spacetime Fourier transformation (SFT) for spacetime algebra 𝐶ℓ3,1-valued
signals.

This was followed up by the establishment of a fully directional (opposed
to componentwise) uncertainty principle for the QFT and the SFT [58]. Indepen-
dently Mawardi et al. [77] established a componentwise uncertainty principle for
the QFT.

The QFT with a Gabor window was treated by Bülow [24], a study which
has been continued by Mawardi et al. in [1].

Hitzer reports in [59] initial results (obtained in co-operation with Sangwine)
about a further generalization of the QFT to a general form of orthogonal 2D
planes split (OPS-) QFT, where the split (1.5) with respect to two orthogonal
pure quaternion units 𝒊, 𝒋 is generalized to a steerable split with respect to any two
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pure unit quaternions 𝑓, 𝑔 ∈ ℍ, 𝑓2 = 𝑔2 = −1. This approach is fully elaborated
upon in a contribution to the current volume (see Chapter 2). Note that the
Cayley–Dickson form [87] of quaternions and the related simplex/perplex split
[47] are obtained for 𝑓 = 𝑔 = 𝒊 (or more general 𝑓 = 𝑔 = 𝜇), which is employed in
Chapter 3 for a novel spectral analysis of non-stationary improper complex signals.

2. Clifford–Fourier Transformations in Clifford’s
Geometric Algebra

W.K. Clifford introduced (Clifford) geometric algebras in 1876 [28]. An introduc-
tion to the vector and multivector calculus, with functions taking values in Clifford
algebras, used in the field of Clifford–Fourier transforms (CFT) can be found in
[53, 52]. A tutorial introduction to CFTs and Clifford wavelet transforms can be
found in [55]. The Clifford algebra application survey [65] contains an up to date
section on applications of Clifford algebra integral transforms, including CFTs,
QFTs and wavelet transforms4.

2.1. How Clifford Algebra Square Roots of −1 Lead to Clifford–Fourier
Transformations

In 1990 Jancewicz defined a trivector Fourier transformation

ℱ3{𝑔}(𝝎) =
∫
ℝ3

𝑔(x)𝑒−𝑖3x⋅𝝎𝑑3x, 𝑖3 = 𝒆1𝒆2𝒆3, 𝑔 : ℝ3 → 𝐶ℓ3,0, (2.1)

for the electromagnetic field5 replacing the imaginary unit 𝑖 ∈ ℂ by the central
trivector 𝑖3, 𝑖

2
3 = −1, of the geometric algebra 𝐶ℓ3,0 of three-dimensional Euclidean

space ℝ3 = ℝ3,0 with orthonormal vector basis {𝒆1, 𝒆2, 𝒆3}.
In [50] Felsberg makes use of signal embeddings in low-dimensional Clifford

algebras ℝ2,0 and ℝ3,0 to define his Clifford–Fourier transform (CFT) for one-
dimensional signals as

ℱ𝑓𝑒
1 [𝑓 ](𝑢) =

∫
ℝ

exp (−2𝜋𝑖2𝑢𝑥) 𝑓(𝑥) 𝑑𝑥, 𝑖2 = 𝒆1𝒆2, 𝑓 : ℝ→ ℝ, (2.2)

where he uses the pseudoscalar 𝑖2 ∈ 𝐶ℓ2,0, 𝑖
2
2 = −1. For two-dimensional signals6

he defines the CFT as

ℱ𝑓𝑒
2 [𝑓 ](𝑢) =

∫
ℝ2

exp (−2𝜋𝑖3 < 𝑢, 𝑥 >) 𝑓(𝑥) 𝑑𝑥, 𝑓 : ℝ2 → ℝ2, (2.3)

4Fourier and wavelet transforms provide alternative signal and image representations. See Chap-

ter 9 for a spinorial representation and Chapter 16 by Li and Qian for a sparse representation of
signals in a Hardy space dictionary (of elementary wave forms) over a unit disk.
5Note also Chapter 11 in this volume, in which Bernstein considers optical coherence tomography,
formulating the Maxwell equations with the Dirac operator and Clifford algebra.
6Note in this context the spinor representation of images by Batard and Berthier in Chapter 9
of this volume. The authors apply a CFT in 𝐶ℓ3,0 to the spinor represenation, which uses in
the exponential kernel an adapted choice of bivector, that belongs to the orthonormal frame

of the tangent bundle of an oriented two-dimensional Riemannian manifold, isometrically im-
mersed in ℝ3.
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where he uses the pseudoscalar 𝑖3 ∈ 𝐶ℓ3,0. It is used amongst others to introduce
a concept of two-dimensional analytic signal. Together with Bülow and Sommer,
Felsberg applied these CFTs to image stucture processing (key-notion: structure
multivector) [50, 24].

Ebling and Scheuermann [44, 43] consequently applied to vector signal pro-
cessing in two- and three dimensions, respectively, the following two-dimensional
CFT

ℱ2{𝑓}(𝝎) =
∫
ℝ2

𝑓(x)𝑒−𝑖2x⋅𝝎𝑑2x, 𝑓 : ℝ2 → ℝ2, (2.4)

with Clifford–Fourier kernel

exp (−𝒆1𝒆2(𝜔1𝑥1 + 𝜔2𝑥2)), (2.5)

and the three-dimensional CFT (2.1) of Jancewicz with Clifford–Fourier kernel

exp (−𝒆1𝒆2𝒆3(𝜔1𝑥1 + 𝜔2𝑥2 + 𝜔3𝑥3)). (2.6)

An important integral operation defined and applied in this context by Ebling
and Scheuermann was the Clifford convolution. These Clifford–Fourier transforms
and the corresponding convolution theorems allow Ebling and Scheuermann for
amongst others the analysis of vector-valued patterns in the frequency domain.

Note that the latter Fourier kernel (2.6) has also been used by Mawardi and
Hitzer in [78, 63, 78] to define their Clifford–Fourier transform of three-dimensional
multivector signals: that means, they researched the properties of ℱ3{𝑔}(𝝎) of
(2.1) in detail when applied to full multivector signals 𝑔 : ℝ3 → 𝐶ℓ3,0. This included
an investigation of the uncertainty inequality for this type of CFT. They subse-
quently generalized ℱ3{𝑔}(𝝎) to dimensions 𝑛 = 3(mod 4), i.e., 𝑛 = 3, 7, 11, . . .,

ℱ𝑛{𝑔}(𝝎) =
∫
ℝ𝑛

𝑔(x)𝑒−𝑖𝑛x⋅𝝎𝑑𝑛x, 𝑔 : ℝ𝑛 → 𝐶ℓ𝑛,0, (2.7)

which is straightforward, since for these dimensions the pseudoscalar 𝑖𝑛 = 𝒆1 . . . 𝒆𝑛
squares to −1 and is central [64], i.e., it commutes with every other multivector
belonging to 𝐶ℓ𝑛,0. A little less trivial is the generalization of ℱ2{𝑓}(𝝎) of (2.4) to

ℱ𝑛{𝑓}(𝝎) =
∫
ℝ𝑛

𝑓(x)𝑒−𝑖𝑛x⋅𝝎𝑑𝑛x, 𝑓 : ℝ𝑛 → 𝐶ℓ𝑛,0, (2.8)

with 𝑛 = 2(mod 4), i.e., 𝑛 = 2, 6, 10 . . ., because in these dimensions the pseu-
doscalar 𝑖𝑛 = 𝒆1 . . .𝒆𝑛 squares to −1, but it ceases to be central. So the relative
order of the factors in ℱ𝑛{𝑓}(𝝎) becomes important, see [66] for a systematic
investigation and comparison.

In the context of generalizing quaternion Fourier transforms (QFT) via alge-
bra isomorphisms to higher-dimensional Clifford algebras, Hitzer [54] constructed
a spacetime Fourier transform (SFT) in the full algebra of spacetime 𝐶ℓ3,1, which
includes the CFT (2.1) as a partial transform of space. Implemented analogously
(isomorphicaly) to the orthogonal 2D planes split of quaternions, the SFT permits
a natural spacetime split, which algebraically splits the SFT into right and left
propagating multivector wave packets. This analysis allows to compute the effect
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of Lorentz transformations on the spectra of these wavepackets, as well as a 4D
directional spacetime uncertainty formula [58] for spacetime signals.

Mawardi et al. extended the CFT ℱ2{𝑓}(𝝎) of (2.4) to a windowed CFT in
[76]. Fu et al. establish in Chapter 15 a strong version of Heisenberg’s uncertainty
principle for Gabor-windowed CFTs.

In Chapter 8 in this volume, Bujack, Scheuermann, and Hitzer, expand the
notion of Clifford–Fourier transform to include multiple left and right exponential
kernel factors, in which commuting (or anticommuting) blades, that square to
−1, replace the complex unit 𝑖 ∈ ℂ, thus managing to include most practically
used CFTs in a single comprehensive framework. Based on this they have also
constructed a general CFT convolution theorem [23].

Spurred by the systematic investigation of (complex quaternion) biquater-
nion square roots of −1 in 𝐶ℓ3,0 by Sangwine [85], Hitzer and Ablamowicz [62]
systematically investigated the explicit equations and solutions for square roots of
−1 in all real Clifford algebras 𝐶ℓ𝑝,𝑞, 𝑝+ 𝑞 ≤ 4. This investigation is continued in
the present volume in Chapter 7 by Hitzer, Helmstetter and Ablamowicz for all
square roots of −1 in all real Clifford algebras 𝐶ℓ𝑝,𝑞 without restricting the value
of 𝑛 = 𝑝 + 𝑞. One important motivation for this is the relevance of the Clifford
algebra square roots of −1 for the general construction of CFTs, where the imagi-
nary unit 𝑖 ∈ ℂ is replaced by a

√−1 ∈ 𝐶ℓ𝑝,𝑞, without restriction to pseudoscalars
or blades.

Based on the knowledge of square roots of −1 in real Clifford algebras 𝐶ℓ𝑝,𝑞,
[60] develops a general CFT in 𝐶ℓ𝑝,𝑞, wherein the complex unit 𝑖 ∈ ℂ is replaced
by any square root of −1 chosen from any component and (or) conjugation class
of the submanifold of square roots of −1 in 𝐶ℓ𝑝,𝑞, and details its properties, in-
cluding a convolution theorem. A similar general approach is taken in [61] for the
construction of two-sided CFTs in real Clifford algebras 𝐶ℓ𝑝,𝑞, freely choosing two
square roots from any one or two components and (or) conjugation classes of the
submanifold of square roots of −1 in 𝐶ℓ𝑝,𝑞. These transformations are therefore
generically steerable.

This algebraically motivated approach may in the future be favorably com-
bined with group theoretic, operator theoretic and spinorial approaches, to be
discussed in the following.

2.2. The Clifford–Fourier Transform in the Light of Clifford Analysis

Two robust tools used in image processing and computer vision for the analysis
of scalar fields are convolution and Fourier transformation. Several attempts have
been made to extend these methods to two- and three-dimensional vector fields
and even multi-vector fields. Let us give an overview of those generalized Fourier
transforms.

In [25] Bülow and Sommer define a so-called quaternionic Fourier transform
of two-dimensional signals 𝑓(𝑥1, 𝑥2) taking their values in the algebra ℍ of real
quaternions. Note that the quaternion algebra ℍ is nothing else but (isomorphic
to) the Clifford algebra 𝐶ℓ0,2 where, traditionally, the basis vectors are denoted
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by 𝒊 and 𝒋, with 𝒊2 = 𝒋2 = −1, and the bivector by 𝒌 = 𝒊𝒋. In terms of these basis
vectors this quaternionic Fourier transform takes the form

ℱ𝑞[𝑓 ](𝑢1, 𝑢2) =

∫
ℝ2

exp (−2𝜋𝒊𝑢1𝑥1) 𝑓(𝑥1, 𝑥2) exp (−2𝜋𝒋𝑢2𝑥2) 𝑑𝑥. (2.9)

Due to the non-commutativity of the multiplication in ℍ, the convolution theorem
for this quaternionic Fourier transform is rather complicated, see also [23].

This is also the case for its higher-dimensional analogue, the so-called Clif-
ford–Fourier transform7 in 𝐶ℓ0,𝑚 given by

ℱ𝑐𝑙[𝑓 ](𝑢) =

∫
ℝ𝑚

𝑓(𝑥) exp (−2𝜋𝒆1𝑢1𝑥1) . . . exp (−2𝜋𝒆𝑚𝑢𝑚𝑥𝑚) 𝑑𝑥. (2.10)

Note that for 𝑚 = 1 and interpreting the Clifford basis vector 𝒆1 as the imaginary
unit 𝑖, the Clifford–Fourier transform (2.10) reduces to the standard Fourier trans-
form on the real line, while for 𝑚 = 2 the quaternionic Fourier transform (2.9) is
recovered when restricting to real signals.

Finally Bülow and Sommer also introduce a so-called commutative hyper-
complex Fourier transform given by

ℱℎ[𝑓 ](𝑢) =

∫
ℝ𝑚

𝑓(𝑥) exp
(
−2𝜋∑𝑚

𝑗=1�̃�𝑗𝑢𝑗𝑥𝑗

)
𝑑𝑥 (2.11)

where the basis vectors (�̃�1, . . . , �̃�𝑚) obey the commutative multiplication rules
�̃�𝑗 �̃�𝑘 = �̃�𝑘�̃�𝑗 , 𝑗, 𝑘 = 1, . . . ,𝑚, while still retaining �̃�2

𝑗 = −1, 𝑗 = 1, . . . ,𝑚. This
commutative hypercomplex Fourier transform offers the advantage of a simple
convolution theorem.

The hypercomplex Fourier transforms ℱ𝑞, ℱ𝑐𝑙 and ℱℎ enable Bülow and
Sommer to establish a theory of multi-dimensional signal analysis and in partic-
ular to introduce the notions of multi-dimensional analytic signal8, Gabor filter,
instantaneous and local amplitude and phase, etc.

In this context the Clifford–Fourier transformations by Felsberg [50] for one-
and two-dimensional signals, by Ebling and Scheuermann for two- and three-
dimensional vector signal processing [44, 43], and by Mawardi and Hitzer for gen-
eral multivector signals in 𝐶ℓ3,0 [78, 63, 78], and their respective kernels, as already
reviewed in Section 2.1, should also be considered.

The above-mentioned Clifford–Fourier kernel of Bülow and Sommer

exp (−2𝜋𝒆1𝑢1𝑥1) ⋅ ⋅ ⋅ exp (−2𝜋𝒆𝑚𝑢𝑚𝑥𝑚) (2.12)

was in fact already introduced in [19] and [89] as a theoretical concept in the
framework of Clifford analysis. This generalized Fourier transform was further
elaborated by Sommen in [90, 91] in connection with similar generalizations of
the Cauchy, Hilbert and Laplace transforms. In this context also the work of Li,
McIntosh and Qian should be mentioned; in [72] they generalize the standard

7Note that in this volume Mawardi establishes in Chapter 14 a windowed version of the CFT

(2.10).
8See also Chapter 10 by Girard et al. and Chapter 11 by Bernstein et al. in this volume.
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multi-dimensional Fourier transform of a function in ℝ𝑚, by extending the Fourier
kernel exp

(
𝑖
〈
𝜉, 𝑥
〉)

to a function which is holomorphic in ℂ𝑚 and monogenic9

in ℝ𝑚+1.
In [15, 16, 18] Brackx, De Schepper and Sommen follow another philoso-

phy in their construction of a Clifford–Fourier transform. One of the most funda-
mental features of Clifford analysis is the factorization of the Laplace operator.
Indeed, whereas in general the square root of the Laplace operator is only a pseudo-
differential operator, by embedding Euclidean space into a Clifford algebra, one
can realize

√−Δ𝑚 as the Dirac operator ∂𝑥. In this way Clifford analysis sponta-
neously refines harmonic analysis. In the same order of ideas, Brackx et al. decided
to not replace nor to improve the classical Fourier transform by a Clifford analysis
alternative, since a refinement of it automatically appears within the language of
Clifford analysis. The key step to making this refinement apparent is to interpret
the standard Fourier transform as an operator exponential:

ℱ = exp
(
−𝑖

𝜋

2
ℋ
)
=

∞∑
𝑘=0

1

𝑘!

(
−𝑖

𝜋

2

)𝑘
ℋ𝑘 , (2.13)

where ℋ is the scalar operator

ℋ =
1

2

(−Δ𝑚 + 𝑟2 −𝑚
)
. (2.14)

This expression links the Fourier transform with the Lie algebra 𝔰𝔩2 generated

by Δ𝑚 and 𝑟2 = ∣𝑥∣2 and with the theory of the quantum harmonic oscillator
determined by the Hamiltonian − 1

2

(
Δ𝑚 − 𝑟2

)
. Splitting the operator ℋ into a

sum of Clifford algebra-valued second-order operators containing the angular Dirac
operator Γ, one is led, in a natural way, to a pair of transforms ℱℋ± , the harmonic
average of which is precisely the standard Fourier transform:

ℱℋ± = exp

(
𝑖𝜋𝑚

4

)
exp

(
∓ 𝑖𝜋Γ

2

)
exp

(
𝑖𝜋

4

(
Δ𝑚 − 𝑟2

))
. (2.15)

For the special case of dimension two, Brackx et al. obtain a closed form for
the kernel of the integral representation of this Clifford–Fourier transform leading
to its internal representation

ℱℋ± [𝑓 ](𝜉) = ℱℋ± [𝑓 ](𝜉1, 𝜉2) =
1

2𝜋

∫
ℝ2

exp
(±𝒆12(𝜉1𝑥2 − 𝜉2𝑥1)

)
𝑓(𝑥) 𝑑𝑥 , (2.16)

which enables the generalization of the calculation rules for the standard Fourier
transform both in the 𝐿1 and in the 𝐿2 context. Moreover, the Clifford–Fourier
transform of Ebling and Scheuermann

ℱ𝑒[𝑓 ](𝜉) =

∫
ℝ2

exp (−𝒆12(𝑥1𝜉1 + 𝑥2𝜉2)) 𝑓(𝑥) 𝑑𝑥 , (2.17)

9See also in this volume Chapter 4 by Moya-Sánchez and Bayro-Corrochano on the application
of atomic function based monogenic signals.
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can be expressed in terms of the Clifford–Fourier transform:

ℱ𝑒[𝑓 ](𝜉) = 2𝜋ℱℋ± [𝑓 ](∓𝜉2,±𝜉1) = 2𝜋ℱℋ± [𝑓 ](±𝒆12𝜉) , (2.18)

taking into account that, under the isomorphism between the Clifford algebras
𝐶ℓ2,0 and 𝐶ℓ0,2, both pseudoscalars are isomorphic images of each other.

The question whether ℱℋ± can be written as an integral transform is an-
swered positively in the case of even dimension by De Bie and Xu in [39]. The
integral kernel of this transform is not easy to obtain and looks quite complicated.
In the case of odd dimension the problem is still open.

Recently, in [35], De Bie and De Schepper have studied the fractional Clifford–
Fourier transform as a generalization of both the standard fractional Fourier trans-
form and the Clifford–Fourier transform. It is given as an operator exponential by

ℱ𝛼,𝛽 = exp

(
𝑖𝛼𝑚

2

)
exp (𝑖𝛽Γ) exp

(
𝑖𝛼

2

(
Δ𝑚 − 𝑟2

))
. (2.19)

For the corresponding integral kernel a series expansion is obtained, and, in the
case of dimension two, an explicit expression in terms of Bessel functions.

The above, more or less chronological, overview of generalized Fourier trans-
forms in the framework of quaternionic and Clifford analysis, gives the impression
of a medley of ad hoc constructions. However there is a structure behind some of
these generalizations, which becomes apparent when, as already slightly touched
upon above, the Fourier transform is linked to group representation theory, in
particular the Lie algebras 𝔰𝔩2 and 𝔬𝔰𝔭(1∣2). This unifying character is beautifully
demonstrated by De Bie in the overview paper [34], where, next to an extensive
bibliography, also new results on some of the transformations mentioned below
can be found. It is shown that using realizations of the Lie algebra 𝔰𝔩2 one is lead
to scalar generalizations of the Fourier transform, such as:

(i) the fractional Fourier transform, which is, as the standard Fourier transform,
invariant under the orthogonal group; this transform has been reinvented
several times as well in mathematics as in physics, and is attributed to Namias
[81], Condon [30], Bargmann [2], Collins [29], Moshinsky and Quesne [80];
for a detailed overview of the theory and recent applications of the fractional
Fourier transform we refer the reader to [82];

(ii) the Dunkl transform, see, e.g., [42], where the symmetry is reduced to that
of a finite reflection group;

(iii) the radially deformed Fourier transform, see, e.g., [71], which encompasses
both the fractional Fourier and the Dunkl transform;

(iv) the super Fourier transform, see, e.g., [33, 31], which is defined in the context
of superspaces and is invariant under the product of the orthogonal with the
symplectic group.

Realizations of the Lie algebra 𝔬𝔰𝔭(1∣2), on the contrary, need the framework of
Clifford analysis, and lead to:
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(v) the Clifford–Fourier transform and the fractional Clifford–Fourier transform,
both already mentioned above; meanwhile an entire class of Clifford–Fourier
transforms has been thoroughly studied in [36];

(vi) the radially deformed hypercomplex Fourier transform, which appears as a
special case in the theory of radial deformations of the Lie algebra 𝔬𝔰𝔭(1∣2),
see [38, 37], and is a topic of current research, see [32].

3. Quaternion and Clifford Wavelets

3.1. Clifford Wavelets in Clifford Analysis

The interest of the Ghent Clifford Research Group for generalizations of the Fourier
transform in the framework of Clifford analysis, grew out from the study of the mul-
tidimensional Continuous Wavelet Transform in this particular setting. Clifford-
wavelet theory, however restricted to the continuous wavelet transform, was initi-
ated by Brackx and Sommen in [20] and further developed by N. De Schepper in her
PhD thesis [40]. The Clifford-wavelets originate from a mother wavelet not only by
translation and dilation, but also by rotation, making the Clifford-wavelets appro-
priate for detecting directional phenomena. Rotations are implemented as specific
actions on the variable by a spin element, since, indeed, the special orthogonal
group SO(𝑚) is doubly covered by the spin group Spin(𝑚) of the real Clifford
algebra 𝐶ℓ0,𝑚. The mother wavelets themselves are derived from intentionally de-
vised orthogonal polynomials in Euclidean space. It should be noted that these
orthogonal polynomials are not tensor products of one-dimensional ones, but gen-
uine multidimensional ones satisfying the usual properties such as a Rodrigues
formula, recurrence relations, and differential equations. In this way multidimen-
sional Clifford wavelets were constructed grafted on the Hermite polynomials [21],
Laguerre polynomials [14], Gegenbauer polynomials [13], Jacobi polynomials [17],
and Bessel functions [22].

Taking the dimension 𝑚 to be even, say𝑚 = 2𝑛, introducing a complex struc-
ture, i.e., an SO(2𝑛)-element squaring up to −1, and considering functions with
values in the complex Clifford algebra ℂ2𝑛, so-called Hermitian Clifford analysis
originates as a refinement of standard or Euclidean Clifford analysis. It should be
noticed that the traditional holomorphic functions of several complex variables ap-
pear as a special case of Hermitian Clifford analysis, when the function values are
restricted to a specific homogeneous part of spinor space. In this Hermitian setting
the standard Dirac operator, which is invariant under the orthogonal group O(𝑚),
is split into two Hermitian Dirac operators, which are now invariant under the
unitary group U(𝑛). Also in this Hermitian Clifford analysis framework, multidi-
mensional wavelets have been introduced by Brackx, H. De Schepper and Sommen
[11, 12], as kernels for a Hermitian Continuous Wavelet Transform, and (general-
ized) Hermitian Clifford–Hermite polynomials have been devised to generate the
corresponding Hermitian wavelets [9, 10].
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3.2. Further Developments in Quaternion and Clifford Wavelet Theory

Clifford algebra multiresolution analysis (MRA) has been pioneered by M. Mitrea
[79]. Important are also the electromagnetic signal application oriented develop-
ments of Clifford algebra wavelets by G. Kaiser [70, 67, 68, 69].

Quaternion MRA Wavelets with applications to image analysis have been
developed in [92] by Traversoni. Clifford algebra multiresolution analysis has been
applied by Bayro-Corrochano [5, 3, 4] to: Clifford wavelet neural networks (infor-
mation processing), also considering quaternionic MRA, a quaternionic wavelet
phase concept, as well as applications to (e.g., robotic) motion estimation and
image processing.

Beyond this Zhao and Peng [94] established a theory of quaternion-valued
admissible wavelets. Zhao [93] studied Clifford algebra-valued admissible (continu-
ous) wavelets using the complex Fourier transform for the spectral representation.
Mawardi and Hitzer [74, 75] extended this to continuous Clifford and Clifford–
Gabor wavelets in 𝐶ℓ3,0 using the CFT of (2.1) for the spectral representation.
They also studied a corresponding Clifford wavelet transform uncertainty prin-
ciple. Hitzer [56, 57] generalized this approach to continous admissible Clifford
algebra wavelets in real Clifford algebras 𝐶ℓ𝑛,0 of dimensions 𝑛 = 2, 3(mod 4),
i.e., 𝑛 = 2, 3, 6, 7, 10, 11, . . .. Restricted to 𝐶ℓ𝑛,0 of dimensions 𝑛 = 2(mod 4) this
approach has also been taken up in [73].

Kähler et al. [26] treated monogenic (Clifford) wavelets over the unit ball.
Bernstein studied Clifford continuous wavelet transforms in 𝐿0,2 and 𝐿0,3 [6], as
well as monogenic kernels and wavelets on the three-dimensional sphere [7]. Bern-
stein et al. [8] further studied Clifford diffusion wavelets on conformally flat cylin-
ders and tori. In the current volume Soulard and Carré extend in Chapter 12 the
theory and application of monogenic wavelets to colour image denoising.
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1 Quaternion Fourier Transform: Re-tooling
Image and Signal Processing Analysis

Todd Anthony Ell

‘Did you ask a good question today?’ – Janet Teig

Abstract. Quaternion Fourier transforms (QFT’s) provide expressive power
and elegance in the analysis of higher-dimensional linear invariant systems.
But, this power comes at a cost – an overwhelming number of choices in the
QFT definition, each with consequences. This chapter explores the evolution
of QFT definitions as a framework from which to solve specific problems in
vector-image and vector-signal processing.
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1. Introduction

In recent years there has been an increasing recognition on the part of engineers
and investigators in image and signal processing of holistic vector approaches to
spectral analysis. Generally speaking, this type of spectral analysis treats the vec-
tor components of a system not in an iterated, channel-wise fashion but instead
in a holistic, gestalt fashion. The Quaternion Fourier transform (QFT) is one such
analysis tool.

One of the earliest documented attempts (1987) at describing this type of
spectral analysis was in the area of two-dimensional nuclear magnet resonance.
Ernst, et al. [6, pp. 307–308] briefly discusses using a hypercomplex Fourier trans-
form as a method to independently adjust phase angles with respect to two fre-
quency variables in two-dimensional spectroscopy. After introducing the concept
they immediately fall back to an iterated approach leaving the idea unexplored.
For similar reasons, Ell [2] in 1992 independently explored the use of QFTs as a
tool in the analysis of linear time-invariant systems of partial differential equations
(PDEs). Ell specifically ‘designed’ a quaternion Fourier transform whose spectral


