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Introduction

This book originates from a graduate course given at the University of Milan in
2007.

Our goal is twofold: first, to present a self-contained introduction to the
geometric and analytic aspects of the Yamabe problem on a complete noncompact
Riemannian manifold, treating existence, nonexistence, uniqueness and a priori
estimates of the solutions. Secondly, we intend to describe in a way accessible
to the nonspecialist a range of methods and techniques that can be successfully
applied to more general nonlinear equations which arise in applications.

The classical Yamabe problem concerns the possibility of pointwise confor-
mally deforming a metric of scalar curvature S(x) on the manifold M to a new
metric with prescribed scalar curvature K(x). In the case where K is constant it is
a natural higher dimensional generalization of the Poincaré–Köbe Uniformization
Theorem for Riemann surfaces and can be seen as a way to select a privileged
metric on the manifold.

If 〈 , 〉 is the original metric of the Riemannian manifold M and we denote

with 〈̃ , 〉 = ϕ2 〈 , 〉, ϕ > 0, a conformally deformed metric, then the two scalar

curvatures S(x) and S̃(x) are related by the equation

ϕ2S̃(x) = S(x)− 2(m− 1)
Δϕ

ϕ
− (m− 1)(m− 4)

|∇ϕ|2
ϕ2

(see equation (2.7) in Chapter 2), where Laplacian, gradient, and norm are those
of the metric 〈 , 〉. In the case where the dimension m of the manifold is greater
than or equal to three, it is useful to set

ϕ = u
2

m−2

so that the above equation takes the form

S̃u
m+2
m−2 = Su− 4

m− 1

m− 2
Δu.

Thus the Yamabe problem amounts to finding a positive solution u of the familiar
Yamabe equation

cmΔu− Su+Ku
m+2
m−2 = 0, (1)

1



2 Introduction

where cm = 4m−1
m−2 and K = S̃, the prescribed scalar curvature of the conformally

deformed metric. If M is compact and K is constant, after an initial attempted
solution by H. Yamabe [Yam60], the problem was solved thanks to efforts of N.
Trudinger [Tru68], T. Aubin [Aub76] and R. Schoen [Sch84] (see the nice survey
paper by J.M. Lee and T.H. Parker, [LP87], for a complete and self-contained
treatment). The solution was obtained using variational methods, and one of the
main analytic difficulties stems from the fact that m+2

m−2 is the critical exponent for

the Sobolev embedding W 1,2 ↪→ L
2m

m−2 .
A natural generalization of the classical Yamabe problem is the case where

K is nonconstant and/or M is noncompact. In this direction we mention the
pioneering work of J. L. Kazdan and F. W. Warner, [KW74a], [KW74b], [KW75a],
[KW75b]. It should also be mentioned that even the classical Yamabe problem of
deforming the metric to one of constant scalar curvature in the noncompact setting
is in general not solvable, as first shown by Z. R. Jin, [Jin88].

The Yamabe problem for noncompact manifolds with variable prescribed cur-
vature is the subject of the present monograph. Indeed, we describe methods which
allows us to consider the more general Yamabe-type equations (resp. inequalities)
of the form

Δu+ a(x)u− b(x)uσ = 0 (resp. ≥ 0) (2)

where σ > 1, and we study nonexistence, a priori estimates, uniqueness and
existence.

Equations of the form (2) and still more general differential inequalities of
the form

uΔu+ a(x)u2 − b(x)uσ+1 ≥ −A|∇u|2 (3)

arise in complex analysis (e.g. in the study of the structure of complete Kähler
manifolds, [LY90], [Li90] and [LR96], in the Schwarz Lemma for the ratio of vol-
ume elements of Kähler manifolds of the same dimension, [Gri76], in the study of
pluriharmonic functions on a Kähler manifold, [PRS08]), in the study of harmonic
maps with bounded dilation ([EL78] and [PRS08] Chapter 8), in the classification
of locally conformally flat manifolds ([PRS07]), in the study of Yang-Mills fields,
and in population dynamics, to quote only a few examples.

Existence and nonexistence of positive solutions of (2) clearly depend on the
geometry of the underlying manifold, typically encoded by curvature or volume
growth of geodesic balls, on properties of the coefficients (typically the relative
signs of the coefficients a(x) and b(x)) and their asymptotic behavior and on the
mutual interplay of the two. This interplay can be taken into account in terms of
the relative asymptotic behavior of the coefficients versus the geometry at infinity
of the manifold or, at a deeper level, in terms of spectral properties of Schrödinger
operators naturally associated to the equation.

From the geometrical interpretation of the equation, it is natural to expect it
will be easier to have existence when a and b are “close” enough, for instance they
have the same sign, while it will be more difficult to have existence (and therefore
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it will be easier to prove nonexistence) when a and b are farther apart, for instance
when they have opposite sign. This expectation is confirmed by both the existence
and the nonexistence results that we will describe.

The geometry of the manifold also plays a natural role in the uniqueness re-
sults as well in the a priori estimates on the solutions. The latter have a particular
geometric interest since they are responsible for the completeness/noncompleteness
of the deformed metric.

As mentioned above, we use a variety of techniques adapted to the geometric
situation at hand in which the lack of compactness and of symmetry and homo-
geneity prevents the use of more standard tools typical of compact situations or
of the Euclidean setting.

In particular, for existence we will essentially use the method of sub-super
solutions, [Ama76], [Sat73]. Nonexistence will be obtained using Liouville-type
results which in turn are obtained using either integral formulas or a method
based on the coupling of the supposed solution of the Yamabe-type inequality with
that of an appropriate Schrödinger-type inequality associated to it, in a manner
reminiscent of the classical generalized maximum principle. Uniqueness will be
obtained using variants of the weak maximum principle (see, e.g., [PRS05b]) and of
clever integration by parts arguments. Finally, a priori estimates will be typically
obtained using an elaboration of the old idea of the proof of the Schwarz’s Lemma
by L. H. Ahlfors, [Ahl38], which is at the heart of the maximum principle.

The book is divided into seven chapters.
In the first chapter we give a quick review of Riemannian geometry using

the method of moving frames. While we assume basic knowledge of Riemannian
geometry, several computations will be carried out in full detail in order to ac-
quaint the reader with notation and formalism. We concentrate on derivation of
the symmetry properties of the curvature tensors together with a number of other
identities that will be repeatedly used in the sequel. In particular, we will describe
the commutation rules for covariant derivatives up to fourth order. Then we de-
scribe comparison results for the Laplacian of the Riemannian distance function,
and for the volume of geodesic balls in terms of lower bounds for the Ricci curva-
ture. We point out that our treatment, which follows that of [PRS05b], does not
use Jacobi fields.

In Chapter 2 we first derive equations for the change of curvature tensors
under a conformal change of the metric and introduce the Yamabe equation. As a
side product of our computations we obtain decomposition of the Riemann curva-
ture tensor in its irreducible components and we exhibit the conformal invariance
of the Weyl tensor. Then, we briefly consider the case where M is compact to
illustrate the interplay between geometry and analysis, with a few illuminating
examples such as the Kazdan-Warner obstruction, a result of Obata on Einstein
manifolds and a far-reaching “generalization” due to Véron-Véron, through which
we prove further results of Escobar. Along the way we give a detailed proof, which
inspires to Petersen’s treatise [Pet06a], of a famous rigidity result of Obata. The
goal is also to give some geometrical feeling on the subject that will enable us to
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proceed with the noncompact case: the case of the rest of our investigation.
The core of the monograph begins with Chapter 3, devoted to nonexistence

results. As mentioned above, since our methods apply to more general situations
which have a wide range of applications, we consider in fact differential inequalities
of the form (2) and (3). We describe several nonexistence results; in most of them
we assume that u satisfies suitable integrability conditions, that b(x) is nonnegative
and that there exists a positive solution ϕ to the differential inequality

Δϕ+Ha(x)ϕ ≤ −K
|∇ϕ|2
ϕ

with H,K parameters satisfying H > 0, K > −1. Note that in the special case
where K = 0 the latter condition amounts to the fact that the bottom of the
spectrum of the operator −Δ−Ha(x) is nonnegative. Since −Δ is a nonnegative
operator, the condition is trivially satisfied if a(x) ≤ 0 on M and may be inter-
preted as a measure of smallness in a spectral sense of the positive part of a(x).
This agrees with the heuristic intuition on the effect of the relative signs of a(x)
and b(x) on the existence of solutions. The existence of the positive function ϕ
enters the proof in two different ways. In Theorem 3.2 one uses the functions ϕ
to obtain an integral inequality involving u and its gradient from which one con-
cludes that u is constant, and therefore necessarily identically zero. In a second
group of results, the function ϕ is combined with the solution u to give rise to a
diffusion-type differential inequality for which we prove a Liouville theorem. This
yields the desired triviality. We also show that when σ is greater than or equal to
the critical exponent (m+2)/(m− 2), then, by performing an appropriate change
of the metric and of the solution, the nonexistence results can be improved to
allow even some controlled negativity of the coefficient b(x).

Chapter 4 is devoted to establishing a priori upper and lower estimates for
the asymptotic behavior of solutions of the differential inequalities

Δu+ a(x)u− b(x)uσ ≥ 0, resp. Δu+ a(x)u− b(x)uσ ≤ 0,

under assumptions on a(x) and b(x) related to an assumed radial lower bound
for the Ricci curvature. As briefly mentioned above, the results are obtained by
applying Alhfors’s old idea, namely, one considers an auxiliary function defined in
terms of the solution u which by construction attains an extremum, and applies
the usual maximum principle. Clearly, the heart of the method consists in finding
the best auxiliary function for the problem at hand. We exhibit examples showing
that our estimates are essentially sharp. Some further estimates, which cannot
be obtained with the previous method, are provided by direct comparison with
the aid of the maximum principle (see section 4.3). The chapter ends with some
nonexistence results for the Yamabe problem, which complement those described
in Chapter 3.

In Chapter 5 we discuss some uniqueness results for positive solutions of
Yamabe-type equations (2). The first, the very general Theorem 5.1, states that
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if the coefficient b(x) is nonnegative and not identically zero, then two solutions
whose difference is L2-integrable are necessarily the same. Although very general,
it is sharp, and, remarkably, the assumption on the L2-integrability cannot be
replaced by an Lp condition with p > 2. The result is obtained by means of a
clever elementary integral inequality. The second result, Theorem 5.2, follows by
a comparison argument which relies on a version of the weak maximum principle
(see Theorem 5.3) which is interesting in its own. While in most of the results
available in the literature, uniqueness is obtained by requiring that solutions have
a rather precisely determined asymptotic behavior, our result applies to solutions
whose behavior at infinity is specified in a much less stringent manner, see (5.13);
moreover, the conclusion is reached assuming only conditions on the volume growth
of the manifold. Counterexamples show the sharpness of each result. The chapter
ends with a geometric application to the group of conformal diffeomorphisms of
a complete manifold and to the uniqueness of solutions of the geometric Yamabe
problem.

Chapter 6 deals with existence results for Yamabe-type equations (2) on the
complete, noncompact, Riemannian manifold M . The main tool is the monotone
iteration scheme in various forms, and we give a rather detailed description of
it in the appendix at the end of the chapter. The application of the scheme in
this context goes back to W. M. Ni, [Ni82], in the Euclidean setting and to P.
Aviles and R. C. McOwen, [AM85] and [AM88], for noncompact manifolds. After
having introduced some preliminary material on spectral theory, and a useful
comparison result, the main body of the chapter is then devoted to the construction
of (global and local) super- and subsolutions for the problem. In general terms,
supersolutions are obtained under assumptions on the sign of b(x) and of the first
eigenvalue of L = Δ+ a(x) on appropriate domains. Because of the combination
of signs of the coefficients, subsolutions are harder to find. We give a number of
sufficient conditions which ensure that such subsolutions do exist: among them
the spectral condition λL

1 (M) < 0, for which we provide a new sufficient condition
contained in Theorem 6.11. Furthermore, we mention Theorem 6.15, in which
existence is guaranteed under a very week growth condition on b(x), and also
Theorem 6.16, where a further weakining on the condition on the sign of b(x)
is balanced by the necessity of imposing a constant negative lower bound on the
Ricci curvature. We explicitly note that the assumptions of our existence theorems
match those of the nonexistence results in the previous chapters.

In the last chapter, Chapter 7, we consider some particular cases where the
symmetry of the geometry allows one to use special techniques and to obtain
stronger results. Typically this happens in Euclidean and Hyperbolic spaces, and
more generally in the case of models (in the sense of R. Greene and H. Wu,
[GW79]), or manifolds with special symmetry. The specific feature of models which
make the analysis more precise is that the Laplacian of the distance function
from the origin is given explicitly, as opposed to the case of a general manifold
where only upper and lower bounds may be obtained under suitable curvature
assumptions, by means of the the Laplacian and Hessian comparison theorems,
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and where the possible presence of the cut locus raises additional difficulties.
We describe refined techniques adapted to the situation at hand and obtain

results that, as a by-product, show the degree of sharpness of the general theory
and methods we have developed dealing with generic complete Riemannian man-
ifolds. It seems worth remarking that, in the specific case of Hyperbolic space,
we provide a nonexistence result with the aid of a Rellich-Pohozaev type formula
(see Theorem 7.7) and, even more, in Proposition 7.9 we introduce an integral
obstruction to the existence of a conformal deformation which is of a different
nature with respect to the Kazdan-Warner condition.

Many of the results presented in this monograph have been obtained over
the years by the authors jointly with many collaborators. To all of them we wish
to extend our thanks and appreciation. In particular we are indebted to S. Pigola
and M. Rimoldi who provided us with the proof of Theorem 2.10 in Chapter 2.



Chapter 1

Some Riemannian Geometry

In this chapter we give a quick review of Riemannian geometry using the moving
frame formalism. While we assume basic knowledge of Riemannian geometry, sev-
eral computations will be carried out in full detail in order to acquaint the reader
with notation and formalism. After having introduced frame and coframes, we
will describe connection and curvature in terms of the connection and curvature
forms. Symmetry properties of the curvature tensors will be described in detail
and we will derive a number of identities that will be repeatedly used in the sequel.
In particular, we will obtain the commutation rules for covariant derivatives up
to fourth order. Along the way, we will introduce Einstein manifolds and prove
Schur’s lemma. Then we introduce basic results for the Riemannian distance func-
tion from a fixed reference point o ∈ M , and discuss briefly the cut locus and
some of its properties. We will then describe comparison results for the Laplacian
of the Riemannian distance function and for the volume of geodesic balls in terms
of lower bounds for the Ricci curvature. We point out that our treatment, which
follows that of [PRS05b], does not use Jacobi fields. The chapter ends with a brief
section on the geometry of immersed submanifolds to fix notation and terminology
used in the second part of Chapter 2.

1.1 Preliminaries

Let (M, 〈 , 〉) be a Riemannian manifold of dimension m with metric 〈 , 〉. The aim
of this section is to fix notation and to describe the essential facts of the geometry of
(M, 〈 , 〉) using É. Cartan’s formalism. The usefulness of this approach will become
apparent in the sequel, and it will prove to be particularly effective in Chapter
2 in the derivation of the formulae which express the change of the Riemannian,
Ricci and scalar curvature under a conformal change of the metric.

     ogress in Mathematics 302, DOI 10.1007/978-3-0348-0376-2_1, © Springer Basel 2012 
, 
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8 Chapter 1. Some Riemannian Geometry

1.1.1 Moving frames and the first structure equations

Let p ∈ M and (U,ϕ) a local chart such that U 	 p, with coordinate functions
x1, . . . , xm, m = dim (M) . If q is a generic point in U we have, at q,

〈 , 〉 = 〈 , 〉ij dxi ⊗ dxj , (1.1)

where dxi denotes the differential of the function xi and 〈 , 〉ij are the (local)

components of the metric, defined by 〈 , 〉ij =
〈

∂
∂xi ,

∂
∂xj

〉
. In relation (1.1), and

throughout the book, we adopt the Einstein summation convention for repeated
indices. Applying in q the Gram-Schmidt orthonormalization process we can find
linear combinations of the 1-form dxk, which we will call θi, such that

〈 , 〉 = δij θ
i ⊗ θj , (1.2)

where δij is the Kronecker symbol. Since, as q varies in U , the previous process
gives rise to coefficients that are C∞-functions of q, the set of 1-forms

{
θi
}
, i =

1, . . . ,m, define an orthonormal system on U for the metric 〈 , 〉, i.e., a (local)
orthonormal (o.n.) coframe. We will sometimes write

〈 , 〉 =
m∑
i=1

(θi)2

instead of (1.2). We also define the (local) dual orthonormal frame {ei}, i =
1, . . . ,m, as the set of m (local) vector fields satisfying, on the open set U ,

θj(ei) = δji (1.3)

(where δji is just a suggestive way of writing the Kronecker symbol, reflecting the
position of the indexes in the pairing of θi and ej). We have the following

Proposition 1.1. Let
{
θi
}
be a local o.n. coframe on M , defined on an open set U ;

then there exist unique 1-forms{
θij
}
, i, j = 1, . . . ,m

on U such that, ∀ i, j = 1, . . . ,m,

dθi = −θij ∧ θj , (1.4)

θij + θji = 0. (1.5)

The forms
{
θij
}
are called the Levi-Civita connection forms associated to the o.n.

coframe
{
θi
}
.

Remark. Equations (1.4) are classically known as the first structure equations.
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Proof. Let us assume the existence of the forms
{
θij
}
satisfying (1.5) and (1.4)

and determine their expression. Of course

θij = aijkθ
k

for some aijk ∈ C∞(U) (where C∞(U) denotes the set of smooth functions defined
on the open set U), and (1.5) is equivalent to

aijk + ajik = 0. (1.6)

The 2-forms dθi can be written, for some (unique) coefficients bijk ∈ C∞(U), as

dθi =
1

2
bijk θ

j ∧ θk, bijk + bikj = 0.

Since (1.4) must hold we have:

1

2
bijkθ

j ∧ θk = −aijkθ
k ∧ θj = aijkθ

j ∧ θk =
1

2
(aijk − aikj)θ

j ∧ θk.

It follows that
bijk = aijk − aikj . (1.7)

Cyclic permutations of the indices i, j, k and use of (1.6) and (1.7) yield

bkij = akij − akji = −aikj + ajki; (1.8)

bjki = ajki − ajik = ajki + aijk. (1.9)

Adding (1.7) and (1.9) and subtracting (1.8) we get

aijk =
1

2
(bijk − bkij + bjki). (1.10)

The previous relation determines the expression of the forms θij and also proves
uniqueness. Now define

θij =
1

2
(bijk − bkij + bjki)θ

k, (1.11)

where the bijk’s satisfy

bijk + bikj = 0.

It is clear that

aijk =
1

2

(
bjik − bkji + bikj

)
= −1

2

(
bijk − bkij + bjki

)
= −aijk,

thus (1.6) is met, and then the θij defined in (1.11) satisfy (1.5); it is also immediate
to verify that they satisfy (1.4). �
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1.1.2 Covariant derivative of tensor fields

The Levi-Civita connection forms are the starting point to define a covariant
derivative of tensor fields in the following way. Following standard notation we
denote with TpM the tangent space at p ∈ M and with T ∗

pM the cotangent space
at p.
We recall that a tensor field T of type (r, s) is a law that assigns to all points
p ∈ M a multilinear map

Tp : T ∗
pM × · · · × T ∗

pM︸ ︷︷ ︸
r times

× TpM × · · · × TpM︸ ︷︷ ︸
s times

→ R

with the usual differentiability request with respect to the variable p (see e.g.
[Lee03]). The set of tensor fields of type (r, s) will be denoted by T s

r (M). Let us
begin considering the case of a vector field X on M , i.e., a tensor of type (1, 0).
We denote with X(M) the set of all (smooth) vector fields on M .

Let
{
θi
}
a local o.n. coframe and {ei} the dual frame.

Definition 1.2. The covariant derivative of the vector field X, ∇X, is the tensor
field of type (1, 1) ∇X defined in the following way: if X = Xiei,

∇X = (dXi)⊗ ei +Xi∇ei,

having defined
∇ei = θji ⊗ ej .

Setting
Xi

kθ
k = dXi +Xjθij ,

∇X can be then written as

∇X = (dXi +Xjθij)⊗ ei = Xi
kθ

k ⊗ ei,

and Xi
k is said to be the covariant derivative of the coefficient Xi.

If Y ∈ X(M) we define the covariant derivative of X in the direction of Y as
the vector field

∇Y X = ∇X(Y ),

which in components reads as

∇Y X = Xi
kθ

k(Y )ei = Xi
kY

kei.

Definition 1.3. The divergence of the vector field X ∈ X(M) is the trace of ∇X,
that is,

divX = tr (∇X) = 〈∇eiX, ei〉 = Xi
i . (1.12)

Analogously, for a 1-form ω (i.e., a tensor of type (0, 1)), we have:
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Definition 1.4. The covariant derivative of the 1-form ω, ∇ω, is the tensor field
of type (0, 2) defined in the following way: if ω = ωiθ

i,

∇ω = (dωi)⊗ θi + ωi∇θi,

with
∇θi = −θij ⊗ θj .

Note that, setting
ωikθ

k = dωi − ωjθ
j
i ,

it follows that
∇ω = ωikθ

k ⊗ θi.

If Y ∈ X(M) we define the covariant derivative of ω in the direction of Y as
the 1-form

∇Y ω = ∇ω(Y ),

which in components reads as

∇Y ω = ωikθ
k(Y )θi = ωikY

kθi.

For a 0-form f ∈ C∞(M) we set

∇f = df (exterior differential of f).

We point out that this notation may give rise to some ambiguity; indeed, in the
literature (and also in this book) ∇f often denotes the gradient of f , i.e., the
vector field dual to the 1-form df : in this case, using standard notation (see for

instance [Lee97]), we can write ∇f = (df)
�
, where 	 is the sharp map from the

cotangent bundle T ∗M to the tangent bundle TM defined by〈
(df)

�
, Y
〉
= 〈∇f, Y 〉 = df(Y ) = Y (f),

for all Y ∈ X(M). Note that, in components, setting df = fjθ
j for some smooth

coefficients fj , we have (∇f)
i
= δij(df)j = δijfj = fi (that is, in an orthonormal

frame, differential and gradient of a function have the same coefficients with respect
to the (dual) basis

{
θi
}
and {ei}).

Finally, ∇ can be extended in a natural way to a generic tensor T , in order
to define a connection on each tensor bundle T s

r (M): this extension of ∇ satisfies
the Leibniz rule and some other nice properties, like the commutativity with the
trace on any pair of indices (see again [Lee97]).

Although the covariant derivative has been introduced by means of locally
defined objects, it is possible to show (using the transformation laws of

{
θi
}
and{

θij
}
as the coframe changes) that the new tensor field thus obtained is globally

defined.

Remark. One can verify that the previous definition matches the “canonical” one
usually given in terms of the Koszul formalism (see for example [Lee97], [Pet06a]).
Indeed, as we will see before long, the operator ∇ coincides precisely with the
Levi-Civita connection associated to the metric 〈 , 〉 of M .
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1.1.3 Meaning of the first structure equations

We now want to discuss the geometric meaning of condition (1.5), namely

θij + θji = 0.

To this purpose let us compute the covariant derivative of the metric tensor 〈 , 〉.
Using the Leibniz rule, and recalling that for every tangent vector Xp = X(p) ∈
TpM (with p in the domain of the o.n. coframe

{
θi
}
) it holds that ∇Xp

θi =
−θij(Xp)θ

j , we have

∇Xp
〈 , 〉 = ∇Xp

(δijθ
iθj) = δij(∇Xp

θi ⊗ θj + θi ⊗∇Xp
θj)

= δij(−θik(Xp)θ
k ⊗ θj − θjk(Xp)θ

i ⊗ θk)

= −θik(Xp)θ
k ⊗ θi − θik(Xp)θ

i ⊗ θk

= −(θik + θki )(Xp)θ
k ⊗ θi,

and therefore

∇〈 , 〉 = 0 if and only if θij + θji = 0,

i.e., condition (1.5) is equivalent to the parallelism of the metric (in other words:
∀X,Y, Z ∈ X(M), X 〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉).

On the other hand, the first structure equations (1.4) tell us that the metric
is torsion-free. Indeed, let X and Y be two vector fields on M and [X,Y ] their Lie
bracket, defined by

[X,Y ](f) = X(Y (f))− Y (X(f)), ∀f ∈ C∞(M). (1.13)

We claim that condition

[X,Y ] = ∇XY −∇Y X ∀X,Y ∈ X(M) (1.14)

is equivalent to the validity of (1.4). Note that the left-hand side of (1.14) is inde-
pendent of the choice of a metric on M . Since the torsion of a generic connection
∇ on M is the (0, 2) tensor field Tor(X,Y ) = ∇XY −∇Y X − [X,Y ], this justifies
the expression “torsion-free” used above. To prove the equivalence, recall that the
exterior differential of a 1-form ω is intrinsically defined by

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]);

moreover, as a consequence of the definition of covariant derivative,

(∇Xω)(Y ) = X(ω(Y ))− ω(∇XY ), (1.15)

so that

X
(
θi(Y )

)− θi(∇XY ) = (∇Xθi)(Y ) = −θij(X)θj(Y ),
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that is,
X
(
θi(Y )

)
+ θij(X)θj(Y ) = θi(∇XY ).

Then we compute
(
dθi + θij ∧ θj

)
(X,Y ), that is

dθi(X,Y ) + θij ∧ θj(X,Y )

= X(θi(Y ))− Y (θi(X))− θi([X,Y ]) + θij(X)θj(Y )− θij(Y )θj(X)

= X(θi(Y )) + θij(X)θj(Y ))− Y (θi(X))− θij(Y )θj(X))− θi([X,Y ])

= θi(∇XY −∇Y X − [X,Y ]),

and the claim follows.

Remark. By the fundamental theorem of Riemannian geometry (see for instance
[Lee97] or [Pet06b]), we deduce that the connection ∇ coincides, as we said pre-
viously, with the Levi-Civita connection of the metric 〈 , 〉.

We now define the Lie derivative of Y in the direction of X to be LXY =
[X,Y ], so that condition (1.14) can be written in the form

LXY = ∇XY −∇Y X. (1.16)

Setting also
LXf = X(f) (1.17)

for f ∈ C∞(M), and

(LXω)(Y ) = LX(ω(Y ))− ω(LXY ), (1.18)

if ω is a 1-form, we can extend LX to a generic tensor field requiring R-linearity
and the validity of the Leibniz rule (see also [Lee03], [Pet06a]). Using (1.15), we
compute the Lie derivative of the metric in the direction of X, LX 〈 , 〉 (note that
this latter has to be a covariant tensor of order 2, that is, a (0, 2)-tensor):

(LX 〈 , 〉)(Y, Z) = ((LXθi)⊗ θi + θi ⊗ (LXθi))(Y, Z)

= θi(Z)(LXθi)(Y ) + θi(Y )(LXθi)(Z)

= θi(Z)
[LX(θi(Y ))− θi(LXY )

]
+ θi(Y )

[LX(θi(Z))− θi(LXZ)
]

= θi(Z)X(θi(Y ))− θi(Z)θi(∇XY −∇Y X)

+ θi(Y )X(θi(Z))− θi(Y )θi(∇XZ −∇ZX)

= θi(Z)(∇Xθi)(Y ) + θi(Y )(∇Xθi)(Z)

+ θi(Z)θi(∇Y X) + θi(Y )θi(∇ZX)

= (∇Xθi ⊗ θi + θi ⊗∇Xθi)(Y, Z) + 〈∇Y X,Z〉+ 〈Y,∇ZX〉
= (∇X 〈 , 〉)(Y, Z) + 〈∇Y X,Z〉+ 〈Y,∇ZX〉
= 〈∇Y X,Z〉+ 〈Y,∇ZX〉 ,
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where in the last equality we have used the fact that the metric is parallel with
respect to the Levi-Civita connection. Thus, we have proved the useful identity

(LX 〈 , 〉)(Y, Z) = 〈∇Y X,Z〉+ 〈Y,∇ZX〉 (1.19)

for all X,Y, Z ∈ X(M), which will be repeatedly used in the sequel. Note that
equation (1.19) in components reads as

(LX 〈 , 〉)ij = 〈∇eiX, ej〉+
〈
ei,∇ejX

〉
= Xj

i +Xi
j . (1.20)

It can be proved that the Lie derivative of Y in the direction of X has the
following geometric meaning (see e.g. [Lee03]):

(LXY )p =
d

dt

∣∣∣∣
t=0

(ϕ−t)∗Yϕt(p) = lim
t→0

(ϕ−t)∗Yϕt(p) − Yp

t
,

where ϕt is the local flow generated by X and (ϕt)∗ is the push-forward. The
analogous applies to LXh, with h a generic tensor field (see also Chapter 2 for the
special case of LX 〈 , 〉).

1.1.4 Curvature: the second structure equations

We now consider the second structure equations. Let
{
θi
}
be a local o.n. frame and{

θij
}
the corresponding Levi-Civita connection forms. The curvature forms

{
Θi

j

}
associated to the coframe are defined through the second structure equations,

dθij = −θik ∧ θkj +Θi
j . (1.21)

Obviously the Θi
j are 2-forms. Since, according to (1.5), θij + θji = 0, it follows

immediately that the Θi
j ’s satisfy the same antisymmetry condition

Θi
j +Θj

i = 0. (1.22)

Using the basis {θi ∧ θj}, 1 ≤ i < j ≤ m, of the space of skew-symmetric 2-forms∧2
(U) on the open set U , we may write

Θi
j =

1

2
Ri

jktθ
k ∧ θt =

∑
k<t

Ri
jktθ

k ∧ θt (1.23)

for some coefficients Ri
jkt ∈ C∞(U) satisfying

Ri
jkt +Ri

jtk = 0, (1.24)

while (1.22) implies that
Ri

jkt +Rj
ikt = 0. (1.25)
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From (1.24) and (1.25) we thus deduce the symmetries

Ri
jkt = −Ri

jtk = −Rj
ikt. (1.26)

Differentiating the first structure equation, using the second and the properties of
the exterior differential we have

0 = d(dθi) = −d(θij ∧ θj) = −dθij ∧ θj + θij ∧ dθj

= θik ∧ θkj ∧ θj −Θi
j ∧ θj − θij ∧ θjk ∧ θk

= θj ∧Θi
j ,

that is
θj ∧Θi

j = 0. (1.27)

These identities go under the name of the first Bianchi identities. Using (1.23) we
get

0 = Ri
jktθ

j ∧ θk ∧ θt =
∑

1≤j<k<t≤m

(Ri
jkt +Ri

ktj +Ri
tjk)θ

j ∧ θk ∧ θt,

and then we deduce the first Bianchi identities in the classical form

Ri
jkt +Ri

ktj +Ri
tjk = 0. (1.28)

It is possible also to show that another consequence of (1.26) and (1.28) is the
last, important symmetry

Ri
jkt = Rk

tij . (1.29)

One can verify that the coefficients Ri
jkt gives rise to a (global) (1, 3)-tensor, called

the Riemann curvature tensor,

Riem = Ri
jktθ

k ⊗ θt ⊗ θj ⊗ ei.

We warn the reader that there are a number of different conventions for the Rie-
mann curvature tensor (see the discussion in [Lee97]). We will often use the cur-
vature tensor of type (0, 4) given by

R = Rijktθ
i ⊗ θj ⊗ θk ⊗ θt,

with Rijkt = Ri
jkt. Note that we have performed the classical operation of lowering

indices using the metric tensor, that is, in our chosen orthonormal frame,

Rijkt = δisR
s
jkt = Ri

jkt

(compare with the discussion about gradient and differential in section 1.1.2).
We complete the description of the symmetries of the curvature tensor noting
that, from the first Bianchi identities, we can obtain the second Bianchi identities
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involving the covariant derivatives of the components of the curvature tensor,
namely:

Rijkt,l +Rijtl,k +Rijlk,t = 0. (1.30)

Tracing the curvature tensor on its first and third indices (or, equivalently,
on its second and fourth) we obtain the Ricci tensor

Ric = R(ei, ·, ei, ·) = R(·, ei, ·, ei, ) = Rijikθ
j ⊗ θk = Rjkθ

j ⊗ θk,

where {ei} is the dual basis of
{
θj
}
. Note that, according to (1.29), Ric is a

symmetric (0, 2)-tensor; in other words, ∀X,Y ∈ X(M)

Ric(X,Y ) = Ric(Y,X), (1.31)

and in components
Rij = Rji. (1.32)

The scalar curvature S is defined as the trace of Ric, i.e.,

S = Ric(ei, ei) = Rijij = Rii.

The sectional curvature of the 2-plane π ⊂ TpM spanned by the vectors u and v
is defined to be

Kp(π) =
R(u, v, u, v)

〈u, u〉 〈v, v〉 − 〈u, v〉2 ∈ R.

It is not difficult to verify that the right-hand side of the above formula is in fact
independent of the chosen basis of π. Clearly, if u v are an orthonormal basis for
π, then

Kp(π) = R(u, v, u, v).

We note that a common notation for the sectional curvature of the plane π spanned
by u and v is

Kp(π) = Sect(u ∧ v).

1.1.5 Einstein manifolds and Schur’s Theorem

Definition 1.5. The manifold (M, 〈 , 〉), dim(M) = m ≥ 2, is said to be Einstein if

Ric = λ 〈 , 〉 , (1.33)

for some λ ∈ R.

Using the moving frame formalism we now show that, if the dimension of
the manifold is greater than or equal to 3 and equation (1.33) holds for some
λ ∈ C∞(M), where C∞(M) is the set of smooth functions defined on M , then
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λ is automatically constant. Indeed, first note that, tracing equation (1.33), we
immediately obtain

λ =
S

m
. (1.34)

We now trace the second Bianchi identities (1.30) with respect to the indices i and
l to get

Rijkt,i +Rijti,k +Rijik,t = 0.

Since covariant derivative commutes with contractions, the previous relation yields

Rijkt,i = Rjt,k −Rjk,t, (1.35)

whence, contracting again this time with respect to j and k, we get

Rikkt,i = Rkt,k −Rkk,t

that is,

2Rkt, k = St. (1.36)

Now because of (1.33) and (1.34) we have

Rkt =
S

m
δkt,

and using again the fact that the metric tensor is parallel we deduce that

Rkt,l =
1

m
Slδkt.

Now tracing with respect to k and l, we get

Rkt,k =
1

m
St; (1.37)

substituting in (1.36), we obtain(
2

m
− 1

)
St = 0,

and we conclude that if m ≥ 3 and M is connected, then the scalar curvature, and
therefore λ, are constant. We have thus proved the well-known result of Schur:

Theorem 1.6. Let (M, 〈 , 〉) be a connected Riemannian manifold of dimension
m ≥ 3. If

Ric = λ 〈 , 〉
for some λ ∈ C∞(M), then M is Einstein.
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Note that, if m ≥ 3, then (M, 〈 , 〉) is Einstein if and only if the traceless
Ricci tensor

T = Ric− S

m
〈 , 〉 (1.38)

is identically null. Observe also that, in our o.n. coframe,

Tij = Rij − S

m
δij . (1.39)

Using (1.37) (sometimes called Schur’s identities) we shall obtain a remark-
able formula, an infinitesimal version of the Kazdan-Warner obstruction, that will
be discussed in detail below (see Section 2.1.2).

1.2 Comparison theorems

1.2.1 Ricci identities

We now want to recall that the curvature tensor can be interpreted as an obstruc-
tion to the validity of Schwarz’s theorem for mixed derivatives of third order and
higher. Since this will be useful in the sequel, we consider the case of a function
u : M → R which we assume to be at least C3(M). If

du = uiθ
i (1.40)

for some smooth coefficients ui, the Hessian of u is defined as the 2-covariant
tensor Hess(u) = ∇du of components uij given by

uijθ
j = dui − ukθ

k
i , (1.41)

that is,
Hess(u) = uijθ

j ⊗ θi. (1.42)

The Laplacian of u is the trace of the Hessian, that is,

Δu = tr (Hess(u)) = uii. (1.43)

One can verify that the operator Δ defined in (1.43) is the Laplace-Beltrami
operator associated to the metric 〈 , 〉 (see for instance [Pet06b]). Since second
derivatives commute we expect Hess(u) to be a symmetric tensor. This can be
verified as follows: we differentiate equation (1.40) and use the structure equations
to get

0 = dui ∧ θi + uidθ
i = (uijθ

j + ukθ
k
i ) ∧ θi − uiθ

i
k ∧ θk

= uijθ
j ∧ θi

=
1

2
(uij − uji)θ

j ∧ θi,


