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Preface

The purpose of this monograph is to present a unified approach to a certain
class of semimartingale inequalities, which have their roots at some classical prob-
lems in harmonic analysis. Preliminary results in this direction were obtained by
Burkholder in 60s and 70s during his work on martingale transforms and geom-
etry of UMD Banach spaces. The rapid development in the field occurred after
the appearance of a large paper of Burkholder in 1984, in which he described a
powerful method to handle martingale inequalities and used it to obtain a number
of interesting results. Since then, the method has been extended considerably in
many directions and successfully implemented in the study of related problems in
various areas of mathematics.

The literature on the subject is very large. One of the objectives of this
exposition is to put most of the existing results together, explain in detail the
underlying concepts and point out some connections and similarities. This book
contains also a number of new results as well as some open problems, which, we
hope, will stimulate the reader’s further interest in this field. The recent appli-
cations of the above results in the theory of quasiregular mappings (with deep
implications in geometric function theory), Fourier multipliers as well as their
connections to rank-one convexity and quasiconvexity indicate the need of further
developing this area.
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Chapter 1

Introduction

Inequalities for semimartingales appear in both measure-based and noncommuta-
tive probability theory, where they play a distinguished role, and have numerous
applications in many areas of mathematics. Before we introduce the necessary
probabilistic background, let us start with a related classical problem which inter-
ested many mathematicians during the first part of the 20th century. The question
is: how does the size of a periodic function control the size of its conjugate? To be
more specific, let 𝑓 be a trigonometric polynomial of the form

𝑓(𝜃) =
𝑎0

2
+

𝑁∑
𝑘=1

(
𝑎𝑘 cos(𝑘𝜃) + 𝑏𝑘 sin(𝑘𝜃)

)
, 𝜃 ∈ [0, 2𝜋),

with real coefficients 𝑎0, 𝑎1, 𝑎2, . . ., 𝑎𝑁 , 𝑏1, 𝑏2, . . ., 𝑏𝑁 . The polynomial conjugate
to 𝑓 is defined by

𝑔(𝜃) =
𝑁∑

𝑘=1

(
𝑎𝑘 sin(𝑘𝜃)− 𝑏𝑘 cos(𝑘𝜃)

)
, 𝜃 ∈ [0, 2𝜋).

The problem can be stated as follows. For a given 1 ≤ 𝑝 ≤ ∞, is there a universal
constant 𝐶𝑝 (that is, not depending on the coefficients or the number 𝑁) such
that

∣∣𝑔∣∣𝑝 ≤ 𝐶𝑝∣∣𝑓 ∣∣𝑝 ? (1.1)

Here ∣∣𝑓 ∣∣𝑝 denotes the 𝐿𝑝-norm of 𝑓 , which is given by
[∫ 2𝜋

0
∣𝑓(𝜃)∣𝑝 𝑑𝜃

2𝜋

]1/𝑝
when

𝑝 is finite, and equals the essential supremum of 𝑓 over [0, 2𝜋) when 𝑝 =∞. This
question is very easy when 𝑝 = 2: the orthogonality of the trigonometric system
implies that the inequality holds with the constant 𝐶2 = 1. Furthermore, this
value is easily seen to be optimal. What about the other values of 𝑝? As shown
by M. Riesz in [179] and [180], when 1 < 𝑝 < ∞, the estimate does hold with
some absolute 𝐶𝑝 < ∞; for 𝑝 = 1 or 𝑝 =∞, the inequality does not hold with any
finite constant. The best value of 𝐶𝑝 was determined by Pichorides [171] and Cole

     DOI 10.1007/978-3-0348-0370-0_1, © Springer Basel 2012 
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2 Chapter 1. Introduction

(unpublished; see Gamelin [79]): 𝐶𝑝 = cot(𝜋/(2𝑝∗)) is the optimal choice, where
𝑝∗ = max{𝑝, 𝑝/(𝑝− 1)}.

One may consider a non-periodic version of the problem above. To formulate
the statement, we need to introduce the Hilbert transform on the real line. For
1 ≤ 𝑝 < ∞, let 𝑓 ∈ 𝐿𝑝(ℝ) and put

𝐻𝑓(𝑥) = lim
𝜀→0

1

𝜋

∫
∣𝑦∣≥𝜀

𝑓(𝑥− 𝑦)

𝑦
d𝑦.

This limit can be shown to exist almost everywhere. The transform 𝐻 is the non-
periodic analogue of the harmonic conjugate operator and satisfies the following
𝐿𝑝 bound: if 1 < 𝑝 < ∞, then

∣∣𝐻𝑓 ∣∣𝑝 ≤ 𝐶𝑝∣∣𝑓 ∣∣𝑝,
where 𝐶𝑝 is the same constant as in (1.1): see [180] and [205].

Riesz’s inequality has been extended in many directions. A significant con-
tribution is due to Calderón and Zygmund [41], [42], who obtained the following
result concerning singular integral operators. They showed that for a large class
of kernels 𝐾 : ℝ𝑛 ∖ {0} → ℂ, the limit

𝑇𝑓(𝑥) = lim
𝜀→0

∫
∣𝑦∣≥𝜀

𝑓(𝑥− 𝑦)𝐾(𝑦)d𝑦

exists almost everywhere if 𝑓 ∈ 𝐿𝑝(ℝ𝑛) for some 1 ≤ 𝑝 < ∞ and
∣∣𝑇𝑓 ∣∣𝑝 ≤ 𝐶𝑝∣∣𝑓 ∣∣𝑝

when 1 < 𝑝 < ∞. Here the constant 𝐶𝑝 may be different from the one in (1.1),
but it depends only on 𝐾 and 𝑝.

We may ask analogous questions in the martingale setting. First let us in-
troduce the necessary notation: suppose that (Ω,ℱ ,ℙ) is a probability space,
filtered by (ℱ𝑛)𝑛≥0, a non-decreasing family of sub-𝜎-fields of ℱ . Assume that
𝑓 = (𝑓𝑛)𝑛≥0, 𝑔 = (𝑔𝑛)𝑛≥0 are adapted discrete-time martingales taking values
in ℝ. Then 𝑑𝑓 = (𝑑𝑓𝑛)𝑛≥0, 𝑑𝑔 = (𝑑𝑔𝑛)𝑛≥0, the difference sequences of 𝑓 and 𝑔,
respectively, are defined by 𝑑𝑓0 = 𝑓0 and 𝑑𝑓𝑛 = 𝑓𝑛 − 𝑓𝑛−1 for 𝑛 ≥ 1, and similarly
for 𝑑𝑔. In other words, we have the equalities

𝑓𝑛 =

𝑛∑
𝑘=0

𝑑𝑓𝑘 and 𝑔𝑛 =

𝑛∑
𝑘=0

𝑑𝑔𝑘, 𝑛 = 0, 1, 2, . . . .

Let us now formulate the corresponding version of Riesz’s inequality. The role of a
conjugate function in the probabilistic setting is played by a ±1-transform, given
as follows. Let 𝜀 = (𝜀𝑘)𝑘≥0 be a deterministic sequence of signs: 𝜀𝑘 ∈ {−1, 1} for
each 𝑘. If 𝑓 is a given martingale, we define the transform of 𝑓 by 𝜀 as

𝑔𝑛 =

𝑛∑
𝑘=0

𝜀𝑘𝑑𝑓𝑘, 𝑛 = 0, 1, 2, . . . .
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Of course, such a sequence is again a martingale. A fundamental result of Burk-
holder [17] asserts that for any 𝑓 , 𝜀 and 𝑔 as above we have

∣∣𝑔∣∣𝑝 ≤ 𝐶𝑝∣∣𝑓 ∣∣𝑝, 1 < 𝑝 < ∞, (1.2)

for some finite 𝐶𝑝 depending only on 𝑝. Here and below, ∣∣𝑓 ∣∣𝑝 denotes the 𝑝th mo-
ment of 𝑓 , given by sup𝑛(𝔼∣𝑓𝑛∣𝑝)1/𝑝 when 0 < 𝑝 < ∞ and ∣∣𝑓 ∣∣∞ = sup𝑛essup∣𝑓𝑛∣.
This result is a starting point for many extensions and refinements and the purpose
of this monograph is to present a systematic and unified approach to this type of
problems. Let us first say a few words about the proof of (1.2). The initial approach
of Burkholder used a related weak-type estimate and some standard interpolation
and duality arguments. Then Burkholder refined his proof and invented a method
which can be used to study general estimates for a much wider class of processes.
Roughly speaking, the technique reduces the problem of proving a given inequal-
ity to the existence of a certain special function or, in other words, to finding the
solution to a corresponding boundary value problem. This is described in detail
in Chapter 2 below, and will be illustrated on many examples in Chapter 3. The
method can also be used in the case when the dominating process 𝑓 is a sub-
or supermartingale and, after some modifications, allows also to establish general
inequalities for maximal and square functions. Another very important feature of
the approach is that it enables us to derive the optimal constants: this, except for
the elegance, provides some additional insight into the structure of the extremal
processes and often leads to some further implications.

Coming back to the martingale setting described above, we shall be particu-
larly interested in the following estimates.

(i) moment inequalities (or strong type (𝑝, 𝑝) inequalities): see (1.2),

(ii) weak-type (𝑝, 𝑝) inequalities:

∣∣𝑔∣∣𝑝,∞ ≤ 𝑐𝑝,𝑝∣∣𝑓 ∣∣𝑝, 1 ≤ 𝑝 < ∞,

where ∣∣𝑔∣∣𝑝,∞ = sup𝜆>0 𝜆
(
ℙ(sup𝑛 ∣𝑔𝑛∣ ≥ 𝜆)

)1/𝑝
denotes the weak 𝑝th norm

of 𝑔,

(iii) logarithmic estimates:

∣∣𝑔∣∣1 ≤ 𝐾 sup
𝑛

𝔼∣𝑓𝑛∣ log ∣𝑓𝑛∣+ 𝐿(𝐾),

(iv) tail and Φ-inequalities:

ℙ(sup
𝑛
∣𝑔𝑛∣ ≥ 𝜆) ≤ 𝑃 (𝜆), sup

𝑛
𝔼Φ(∣𝑔𝑛∣) ≤ 𝐶Φ,

under the assumption that ∣∣𝑓 ∣∣∞ ≤ 1.
We shall study these and other related problems in the more general setting in

which the transforming sequence 𝜀 is predictable and takes values in [−1, 1]. Here
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by predictability we mean that each term 𝜀𝑛 is measurable with respect to ℱ(𝑛−1)∨0

(in particular, it may be random): this does not affect the martingale property of
the sequence 𝑔. This assumption will be further relaxed to the case when 𝑔 is a
martingale differentially subordinate to 𝑓 , which amounts to saying that for any
𝑛 ≥ 0 we have ∣𝑑𝑔𝑛∣ ≤ ∣𝑑𝑓𝑛∣ almost surely. We will succeed in determining the
optimal constants in most of the aforementioned estimates.

The next challenging problem is to study the above statements in the vector
case, when the processes 𝑓 , 𝑔 take values from a certain separable Banach space
ℬ. It turns out that when we deal with a Hilbert space, the passage from the real
case is typically quite easy and does not require much additional effort. However,
the extension of a given inequality to a non-Hilbert space setting is a much more
difficult problem and the question about the optimal constants becomes hopeless in
general. These and related martingale results are dealt with in Chapter 3. Sections
3.1–3.10 concern Hilbert-space-valued processes, while the next two treat the more
general case in which the martingales take values in a separable Banach space ℬ.
The final section of that chapter is devoted to some applications of these results
to the Haar system on [0, 1).

Chapter 4 contains analogous results in the case when the dominating process
𝑓 is a sub- or a supermartingale. The notion of differential subordination, which
is a very convenient condition in the martingale setting, becomes too weak and
needs to be strengthened. We do this by imposing an extra conditional subordi-
nation and assume that the terms ∣𝔼(𝑑𝑔𝑛∣ℱ𝑛−1)∣ are controlled by ∣𝔼(𝑑𝑓𝑛∣ℱ𝑛−1)∣,
𝑛 = 1, 2, . . .. This domination, called strong differential subordination, has a very
natural counterpart in the theory of Itô processes and stochastic integrals, and is
sufficient for our purposes.

In Chapter 5 we show how to extend the above inequalities to continuous-
time processes and stochastic integrals. In fact, some of the estimates studied
there can be regarded as a motivation to the results of Chapter 3 and Chapter 4.
Consider the following example. Let 𝑋 = (𝑋𝑡)𝑡≥0 be a continuous-time real-valued
martingale and let 𝐻 = (𝐻𝑡)𝑡≥0 be a predictable process taking values in [−1, 1].
As usual, we assume that the trajectories of both these processes are sufficiently
regular, that is, are right-continuous and have limits from the left. Suppose that
𝑌 is the Itô integral of 𝐻 with respect to 𝑋 : that is, we have

𝑌𝑡 = 𝐻0𝑋0 +

∫ 𝑡

0+

𝐻𝑠d𝑋𝑠

for 𝑡 ≥ 0. Then the pair (𝑋,𝑌 ) is precisely the continuous analogue of a martin-
gale and its transform by a predictable process bounded in absolute value by 1.
We may ask questions, similar to (i)–(iv) above, concerning the comparison of the
sizes of𝑋 and 𝑌 . As we shall see, some approximation theorems allow one to carry
over the inequalities from the discrete-time setting to that above, without chang-
ing the constants. In fact, we shall prove much more. The notions of differential
subordination and strong differential subordination can be successfully generalized
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to the continuous-time case, and we shall present an appropriate modification of
Burkholder’s method, which can be applied to study the corresponding estimates
in this wider setting. In one of the final sections, we apply the results to obtain
some interesting estimates for harmonic functions on Euclidean domains, which
can be regarded as extensions of Riesz’s inequality.

In Chapter 6 we continue the line of research started in Chapter 5. Namely,
we investigate there continuous-time processes under (strong) differential subor-
dination, but this time we impose the additional orthogonality assumption. The
martingales of this type turn out to be particularly closely related to periodic
functions and their conjugates, mentioned at the beginning. The final section of
that chapter is devoted to the description of the connections between these two
settings.

Chapter 7 deals with another important class of estimates: the maximal ones.
To be more specific, one can ask questions similar to (i)–(iv) above in the case
when 𝑓 (or 𝑔, or both) is replaced by the corresponding maximal function ∣𝑓 ∣∗ =
sup𝑛≥0 ∣𝑓𝑛∣ or one-sided maximal function 𝑓∗ = sup𝑛≥0 𝑓𝑛. For example, we shall
present the proof the classical Doob’s maximal inequality

∣∣𝑓∗∣∣𝑝 ≤ 𝑝

𝑝− 1 ∣∣𝑓 ∣∣𝑝, 1 < 𝑝 ≤ ∞,

where 𝑓 is a nonnegative submartingale, as well as a number of related weak-type
and logarithmic estimates. See Section 7.2.

Maximal inequalities involving two processes arise naturally in many situa-
tions and are of particular interest when the corresponding non-maximal versions
are not valid. For instance, there is no universal 𝐶1 < ∞ such that ∣∣𝑔∣∣1 ≤ 𝐶1∣∣𝑓 ∣∣1
for all real-valued martingales 𝑓 and their ±1-transforms 𝑔; on the other hand,
Burkholder [35] showed that for such 𝑓 and 𝑔 we have

∣∣𝑔∣∣1 ≤ 2.536 . . . ∣∣ ∣𝑓 ∣∗∣∣1,
and the bound is sharp. For other related results, see Sections 7.3–7.8.

Problems of this type can be successfully investigated using appropriate mod-
ification of Burkholder’s method, which was developed in [35]. However, it should
be stressed here that the corresponding boundary value problems become tricky
due to the increase of the dimension. That is, the special functions we search
for depend on three or four variables (each of the terms ∣𝑓 ∣∗, ∣𝑔∣∗ . . . involves an
additional parameter). Furthermore, in contrast with the non-maximal setting,
the passage to the Hilbert-space-valued setting does require extra effort and the
inequalities for Banach-space-valued semimartingales become even more difficult.
The next interesting feature is that, unlike in the non-maximal case, the addi-
tional assumption on the continuity of paths does affect the optimal constants
and Burkholder’s method needs further refinement. See Sections 7.9–7.12.

Chapter 8 is the final part of the exposition and is devoted to the study of
square function inequalities. Recall that if 𝑓 = (𝑓𝑛)𝑛≥0 is an adapted sequence,
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then its square function is given by

𝑆(𝑓) =

( ∞∑
𝑘=0

∣𝑑𝑓𝑘∣2
)1/2

.

Again, we may ask about sharp moment, weak type and other related estimates
between 𝑓 and 𝑆(𝑓). In addition, we can consider maximal inequalities which
involve a martingale, its square and maximal function. There are also continuous-
time analogues of such estimates (the role of the square function is played by
the square bracket or the quadratic covariance process), but they can be easily
reduced to the discrete-time bounds by means of standard approximation. The
problems of such type are classical and have numerous extensions in various ar-
eas of mathematics: see bibliographical notes at the end of Chapter 8. It turns
out that many interesting estimates can be immediately deduced from related re-
sults concerning Hilbert-space-valued differentially subordinated martingales (see
Chapter 2 below), but this approach does not always allow to keep track of the
optimal constants. To derive the sharp estimates, one may apply an appropriate
modification of Burkholder’s method, invented in [38]. However, the correspond-
ing boundary value problems are difficult in general and this technique has been
successfully implemented only in a few of cases: see Sections 8.2, 8.3 and 8.4.

The situation becomes a bit easier when we restrict ourselves to conditionally
symmetric martingales. Recall that 𝑓 is conditionally symmetric when for each
𝑛 ≥ 1, the conditional distributions of 𝑑𝑓𝑛 and −𝑑𝑓𝑛 given ℱ𝑛−1 coincide. For
example, consider the so-called dyadic martingales : take the probability space to
be ([0, 1],ℬ(0, 1), ∣ ⋅ ∣) and put 𝑓𝑛 =

∑𝑛
𝑘=0 𝑎𝑘ℎ𝑘, where ℎ = (ℎ𝑘)𝑘≥0 is the Haar

system and 𝑎1, 𝑎2, . . . are coefficients, which may be real or vector valued. Then
the corresponding boundary value problem can often (but not always) be dealt
with by solving the heat equation on a part of the domain of the special function.
See Sections 8.2, 8.3, 8.5 and 8.6.

The final part of Chapter 8 concerns the conditional square function. It is
another classical object in the martingale theory, given by

𝑠(𝑓) =

( ∞∑
𝑘=0

𝔼(∣𝑑𝑓𝑘∣2∣ℱ(𝑘−1)∨0)

)1/2

.

We shall show how to modify Burkholder’s method so that it yields estimates
involving 𝑓 and 𝑠(𝑓). The approach can be further extended to imply related esti-
mates for sums of nonnegative random variables and their predictable projections:
see Wang [199] and the author [134], but we shall not include this here.

A few words about the organization of the monograph. Typically, each sec-
tion starts with the statement of a number of theorems, which contain results on
semimartingale inequalities. In most cases, the proof of a given theorem is divided
into three separate parts. In the first step we make use of Burkholder’s method and
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establish the inequality contained in the statement. The next part deals with the
optimality of the constants appearing in this estimate. In the final part we present
some intuitive arguments which lead to the discovery of the special function, used
in the first step. Wherever possible, we have tried to present new proofs and new
reasoning which, as we hope, throws some additional light on the structure of the
problems. We also did our best to keep the exposition as self-contained as possi-
ble, and omit argumentation or its part only when a similar reasoning has been
presented earlier. Each chapter concludes with a section containing historical and
bibliographical notes concerning the results studied in the preceding sections as
well as some material for further reading.



Chapter 2

Burkholder’s Method

We start by introducing the main tool which will be used in the study of semi-
martingale inequalities. For the sake of clarity, in this chapter we focus on the
description of the method only for discrete-time martingales. The necessary mod-
ifications, leading to inequalities for wider classes of processes, will be presented
in the further parts of the monograph.

2.1 Description of the technique

2.1.1 Inequalities for ±1-transforms

Burkholder’s method relates the validity of a certain given inequality for semi-
martingales to a corresponding boundary value problem, or, in other words, to
the existence of a special function, which has appropriate concave-type proper-
ties. To start, let us assume that (Ω,ℱ ,ℙ) is a probability space, which is filtered
by (ℱ𝑛)𝑛≥0, a non-decreasing family of sub-𝜎-fields of ℱ . Consider adapted sim-
ple martingales 𝑓 = (𝑓𝑛)𝑛≥0, 𝑔 = (𝑔𝑛)𝑛≥0 taking values in ℝ, with the corre-
sponding difference sequences (𝑑𝑓𝑛)𝑛≥0, (𝑑𝑔𝑛)𝑛≥0, respectively. Here by simplic-
ity of 𝑓 we mean that for any nonnegative integer 𝑛 the random variable 𝑓𝑛
takes a finite number of values and there is a deterministic integer 𝑁 such that
𝑓𝑁 = 𝑓𝑁+1 = 𝑓𝑁+2 = ⋅ ⋅ ⋅ .

Let 𝐷 = ℝ × ℝ and let 𝑉 : 𝐷 → ℝ be a function, not necessarily Borel or
even measurable. Let 𝑥, 𝑦 ∈ ℝ be fixed and denote by𝑀(𝑥, 𝑦) the class of all pairs
(𝑓, 𝑔) of simple martingales 𝑓 and 𝑔 starting from 𝑥 and 𝑦, respectively, such that
𝑑𝑔𝑛 ≡ 𝑑𝑓𝑛 or 𝑑𝑔𝑛 ≡ −𝑑𝑓𝑛 for any 𝑛 ≥ 1. Here the filtration may vary as well as
the probability space, unless it is assumed to be non-atomic. Suppose that we are
interested in the numerical value of

𝑈0(𝑥, 𝑦) = sup
{
𝔼𝑉 (𝑓𝑛, 𝑔𝑛)

}
, (2.1)

where the supremum is taken over 𝑀(𝑥, 𝑦) and all nonnegative integers 𝑛. Of
course, there is no problem with measurability or integrability of 𝑉 (𝑓𝑛, 𝑔𝑛), since

     DOI 10.1007/978-3-0348-0370-0_2, © Springer Basel 2012 
A. Os kowski, Sharp Martingale and Semimartingale Inequalities, Monografie Matematyczne 72, 9
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the sequences 𝑓 and 𝑔 are simple. Note that the definition of 𝑈0 can be rewritten
in the form

𝑈0(𝑥, 𝑦) = sup
(𝑓,𝑔)∈𝑀(𝑥,𝑦)

{
𝔼𝑉 (𝑓∞, 𝑔∞)

}
,

where 𝑓∞ and 𝑔∞ stand for the pointwise limits of 𝑓 and 𝑔 (which exist due to the
simplicity of the sequences). This is straightforward: for any (𝑓, 𝑔) ∈ 𝑀(𝑥, 𝑦)
and any nonnegative integer 𝑛, we have (𝑓𝑛, 𝑔𝑛) = (𝑓∞, 𝑔∞), where the pair
(𝑓, 𝑔) ∈ 𝑀(𝑥, 𝑦) is just (𝑓, 𝑔) stopped at time 𝑛.

In most cases, we will try to provide some upper bounds for 𝑈0, either on
the whole domain 𝐷, or on its part. The key idea in the study of such a problem
is to introduce a class of special functions. The class consists of all 𝑈 : 𝐷 → ℝ

satisfying the following conditions 1∘ and 2∘:

1∘ (Majorization property) For all (𝑥, 𝑦) ∈ 𝐷,

𝑈(𝑥, 𝑦) ≥ 𝑉 (𝑥, 𝑦). (2.2)

2∘ (Concavity-type property) For all (𝑥, 𝑦) ∈ 𝐷, 𝜀 ∈ {−1, 1} and any 𝛼 ∈ (0, 1),
𝑡1, 𝑡2 ∈ ℝ such that 𝛼𝑡1 + (1− 𝛼)𝑡2 = 0, we have

𝛼𝑈(𝑥+ 𝑡1, 𝑦 + 𝜀𝑡1) + (1− 𝛼)𝑈(𝑥 + 𝑡2, 𝑦 + 𝜀𝑡2) ≤ 𝑈(𝑥, 𝑦). (2.3)

Using a straightforward induction argument, we can easily show that the
condition 2∘ is equivalent to the following: for all (𝑥, 𝑦) ∈ 𝐷, 𝜀 ∈ {−1, 1} and any
simple mean-zero variable 𝑑 we have

𝔼𝑈(𝑥+ 𝑑, 𝑦 + 𝜀𝑑) ≤ 𝑈(𝑥, 𝑦). (2.4)

To put it in yet another words, (2.3) amounts to saying that the function 𝑈 is
diagonally concave, that is, concave along the lines of slope ±1.

The interplay between the problem of bounding 𝑈0 from above and the
existence of a special function 𝑈 satisfying 1∘ and 2∘ is described in the two
statements below, Theorem 2.1 and Theorem 2.2.

Theorem 2.1. Suppose that 𝑈 satisfies 1∘ and 2∘. Then for any simple 𝑓 and 𝑔
such that 𝑑𝑔𝑛 ≡ 𝑑𝑓𝑛 or 𝑑𝑔𝑛 ≡ −𝑑𝑓𝑛 for 𝑛 ≥ 1 we have

𝔼𝑉 (𝑓𝑛, 𝑔𝑛) ≤ 𝔼𝑈(𝑓0, 𝑔0), 𝑛 = 0, 1, 2, . . . . (2.5)

In particular, this implies

𝑈0(𝑥, 𝑦) ≤ 𝑈(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ ℝ. (2.6)

Proof. The key argument is that the process (𝑈(𝑓𝑛, 𝑔𝑛))𝑛≥0 is an (ℱ𝑛)-super-
martingale. To see this, note first that all the variables are integrable, by the
simplicity of 𝑓 and 𝑔. Fix 𝑛 ≥ 1 and observe that

𝔼[𝑈(𝑓𝑛, 𝑔𝑛)∣ℱ𝑛−1] = 𝔼[𝑈(𝑓𝑛−1 + 𝑑𝑓𝑛, 𝑔𝑛−1 + 𝑑𝑔𝑛)∣ℱ𝑛−1].



2.1. Description of the technique 11

An application of (2.4) conditionally on ℱ𝑛−1, with 𝑥 = 𝑓𝑛−1, 𝑦 = 𝑔𝑛−1 and
𝑑 = 𝑑𝑓𝑛 yields the supermartingale property. Thus, by 1

∘,

𝔼𝑉 (𝑓𝑛, 𝑔𝑛) ≤ 𝔼𝑈(𝑓𝑛, 𝑔𝑛) ≤ 𝔼𝑈(𝑓0, 𝑔0) (2.7)

and the proof is complete. □

Therefore, we have obtained that 𝑈0(𝑥, 𝑦) ≤ inf 𝑈(𝑥, 𝑦), where the infimum
is taken over all 𝑈 satisfying 1∘ and 2∘. The remarkable feature of the approach is
that the reverse inequality is also valid. To be more precise, we have the following
statement.

Theorem 2.2. If 𝑈0 is finite on 𝐷, then it is the least function satisfying 1∘ and 2∘.

Proof. The fact that 𝑈0 satisfies 1∘ is immediate: the deterministic constant pair
(𝑥, 𝑦) belongs to 𝑀(𝑥, 𝑦). To prove 2∘, we will use the so-called “splicing argu-
ment”. Take (𝑥, 𝑦) ∈ 𝐷, 𝜀 ∈ {−1, 1} and 𝛼, 𝑡1, 𝑡2 as in the statement of the condi-
tion. Pick pairs (𝑓 𝑗, 𝑔𝑗) from the class𝑀(𝑥+ 𝑡𝑗, 𝑦+𝜀𝑡𝑗), 𝑗 = 1, 2. We may assume
that these pairs are given on the Lebesgue probability space ([0, 1],ℬ([0, 1]), ∣ ⋅ ∣),
equipped with some filtration. By the simplicity, there is a deterministic integer 𝑇
such that these pairs terminate before time 𝑇 . Now we will “glue” these pairs into
one using the number 𝛼. To be precise, let (𝑓, 𝑔) be a pair on ([0, 1],ℬ([0, 1]), ∣ ⋅ ∣),
given by (𝑓0, 𝑔0) ≡ (𝑥, 𝑦) and

(𝑓𝑛, 𝑔𝑛)(𝜔) = (𝑓
1
𝑛−1, 𝑔

1
𝑛−1)(𝜔/𝛼), if 𝜔 ∈ [0, 𝛼) ,

and

(𝑓𝑛, 𝑔𝑛)(𝜔) = (𝑓
2
𝑛−1, 𝑔

2
𝑛−1)

(
𝜔 − 𝛼

1− 𝛼

)
, if 𝜔 ∈ [𝛼, 1) ,

when 𝑛 = 1, 2, . . . , 𝑇. Finally, we let 𝑑𝑓𝑛 = 𝑑𝑔𝑛 ≡ 0 for 𝑛 > 𝑇 . Then it is
straightforward to check that 𝑓 , 𝑔 are martingales with respect to the natural
filtration and (𝑓, 𝑔) ∈ 𝑀(𝑥, 𝑦). Therefore, by the very definition of 𝑈0,

𝑈0(𝑥, 𝑦) ≥ 𝔼𝑉 (𝑓𝑇 , 𝑔𝑇 )

=

∫ 𝛼

0

𝑉 (𝑓1
𝑇−1, 𝑔

1
𝑇−1)

(𝜔

𝛼

)
d𝜔 +

∫ 1

𝛼

𝑉 (𝑓2
𝑇−1, 𝑔

2
𝑇−1)

(
𝜔 − 𝛼

1− 𝛼

)
d𝜔

= 𝛼𝔼𝑉 (𝑓1
∞, 𝑔1∞) + (1− 𝛼)𝔼𝑉 (𝑓2

∞, 𝑔2∞).

Taking supremum over the pairs (𝑓1, 𝑔1) and (𝑓2, 𝑔2) gives

𝑈0(𝑥, 𝑦) ≥ 𝛼𝑈0(𝑥+ 𝑡1, 𝑦 + 𝜀𝑡1) + (1− 𝛼)𝑈0(𝑥+ 𝑡2, 𝑦 + 𝜀𝑡2),

which is 2∘. To see that 𝑈0 is the least special function, simply look at (2.6). □
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The above two facts give the following general method of proving inequali-
ties for ±1-transforms. Let 𝑉 : 𝐷 → ℝ be a given function and suppose we are
interested in showing that

𝔼𝑉 (𝑓𝑛, 𝑔𝑛) ≤ 0, 𝑛 = 0, 1, 2, . . . , (2.8)

for all simple 𝑓 , 𝑔, such that 𝑑𝑔𝑛 ≡ 𝑑𝑓𝑛 or 𝑑𝑔𝑛 ≡ −𝑑𝑓𝑛 for all 𝑛 (in particular, also
for 𝑛 = 0).

Theorem 2.3. The inequality (2.8) is valid if and only if there exists 𝑈 : 𝐷 → ℝ

satisfying 1∘, 2∘ and the initial condition

3∘ 𝑈(𝑥, 𝑦) ≤ 0 for all 𝑥, 𝑦 such that 𝑦 = ±𝑥.

Proof. If there is a function 𝑈 satisfying 1∘, 2∘ and 3∘, then (2.8) follows immedi-
ately from (2.5), since 3∘ guarantees that the term 𝔼𝑈(𝑓0, 𝑔0) is nonpositive. To
get the reverse implication, we use Theorem 2.2: as we know from its proof, the
function 𝑈0 satisfies 1∘ and 2∘. It also enjoys 3∘, directly from the definition of
𝑈0 combined with the inequality (2.8). The only thing which needs to be checked
is the finiteness of 𝑈0, which is assumed in Theorem 2.2. Since 𝑈0 ≥ 𝑉 , we only
need to show that 𝑈0(𝑥, 𝑦) < ∞ for every (𝑥, 𝑦). The condition 3∘, which we have
already established, guarantees the inequality on the diagonals 𝑦 = ±𝑥. Suppose
that ∣𝑥∣ ∕= ∣𝑦∣ and let (𝑓, 𝑔) be any pair from 𝑀(𝑥, 𝑦). Consider another martin-
gale pair (𝑓 ′, 𝑔′), which starts from ((𝑥 + 𝑦)/2, (𝑥 + 𝑦)/2) and, in the first step,
moves to (𝑥, 𝑦) or to (𝑦, 𝑥). If it jumped to (𝑦, 𝑥), it stops; otherwise, we determine
(𝑓 ′, 𝑔′) by the assumption that the conditional distribution of (𝑓 ′

𝑛, 𝑔
′
𝑛)𝑛≥1 coincides

with the (unconditional) distribution of (𝑓𝑛, 𝑔𝑛)𝑛≥0. We easily check that 𝑔′ is a
±1-transform of 𝑓 ′, and hence, for any 𝑛 ≥ 1,

0 ≥ 𝔼𝑉 (𝑓 ′
𝑛, 𝑔′𝑛) =

1

2
𝑉 (𝑦, 𝑥) +

1

2
𝔼𝑉 (𝑓𝑛−1, 𝑔𝑛−1).

Consequently, taking supremum over 𝑓 , 𝑔 and 𝑛 gives 𝑈0(𝑥, 𝑦) ≤ −𝑉 (𝑦, 𝑥) and
we are done. □
Remark 2.1. Suppose that 𝑉 has the symmetry property

𝑉 (𝑥, 𝑦) = 𝑉 (−𝑥, 𝑦) = 𝑉 (𝑥,−𝑦) for all 𝑥, 𝑦 ∈ ℝ. (2.9)

Then we may replace 3∘ by the simpler condition

3∘′ 𝑈(0, 0) ≤ 0.
In other words, if there is 𝑈 which satisfies the conditions 1∘, 2∘ and 3∘’, then
there is 𝑈̄ which satisfies 1∘, 2∘ and 3∘. To prove this, fix 𝑈 as in the previ-
ous sentence. By (2.9), the functions (𝑥, 𝑦) �→ 𝑈(−𝑥, 𝑦), (𝑥, 𝑦) �→ 𝑈(𝑥,−𝑦) and
(𝑥, 𝑦) �→ 𝑈(−𝑥,−𝑦) also enjoy the properties 1∘, 2∘ and 3∘’, and hence so does 𝑈̄
given by

𝑈̄(𝑥, 𝑦) = min{𝑈(𝑥, 𝑦), 𝑈(−𝑥, 𝑦), 𝑈(𝑥,−𝑦), 𝑈(−𝑥,−𝑦)}, 𝑥, 𝑦 ∈ ℝ.
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But this function satisfies 3∘: indeed, by 2∘,

𝑈̄(𝑥,±𝑥) =
𝑈̄(𝑥, 𝑥) + 𝑈̄(−𝑥,−𝑥)

2
≤ 𝑈̄(0, 0) ≤ 0,

for any 𝑥 ∈ ℝ.

The approach described above concerns only real-valued processes. Further-
more, the condition of being a ±1-transform is quite restrictive. There arises the
natural question whether the methodology can be extended to a wider class of
martingales and we will shed some light on it.

2.1.2 Inequalities for general transforms of Banach-space-valued
martingales

Let us start with the following vector-valued version of Theorem 2.3. The proof is
the same as in the real case and is omitted. Let ℬ be a Banach space.
Theorem 2.4. Let 𝑉 : ℬ × ℬ → ℝ be a given function. The inequality

𝔼𝑉 (𝑓𝑛, 𝑔𝑛) ≤ 0
holds for all 𝑛 and all pairs (𝑓, 𝑔) of simple ℬ-valued martingales such that 𝑔 is a
±1-transform of 𝑓 if and only if there exists 𝑈 : ℬ×ℬ → ℝ satisfying the following
three conditions.

1∘ 𝑈 ≥ 𝑉 on ℬ × ℬ.
2∘ For all 𝑥, 𝑦 ∈ ℬ, 𝜀 ∈ {−1, 1} and any 𝛼 ∈ (0, 1), 𝑡1, 𝑡2 ∈ ℬ such that

𝛼𝑡1 + (1− 𝛼)𝑡2 = 0, we have

𝛼𝑈(𝑥 + 𝑡1, 𝑦 + 𝜀𝑡1) + (1− 𝛼)𝑈(𝑥+ 𝑡2, 𝑦 + 𝜀𝑡2) ≤ 𝑈(𝑥, 𝑦).

3∘ 𝑈(𝑥,±𝑥) ≤ 0 for all 𝑥 ∈ ℬ.
In the previous situation, we had 𝑑𝑔𝑛 = 𝑣𝑛𝑑𝑓𝑛, 𝑛 = 0, 1, 2, . . ., where each 𝑣𝑛

was deterministic and took values in the set {−1, 1}. Now let us consider the more
general situation in which the sequence 𝑣 is simple, predictable and takes values in
[−1, 1]. Recall that predictability means that each 𝑣𝑛 is measurable with respect to
ℱ(𝑛−1)∨0 and, in particular, this allows random terms. The corresponding version
of Theorem 2.4 can be stated as follows. We omit the proof, it requires no new
ideas.

Theorem 2.5. Let 𝑉 : ℬ × ℬ → ℝ be a given function. The inequality

𝔼𝑉 (𝑓𝑛, 𝑔𝑛) ≤ 0
holds for all 𝑛 and all 𝑓 , 𝑔 as above if and only if there exists 𝑈 : ℬ × ℬ → ℝ

satisfying the following three conditions.
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1∘ 𝑈 ≥ 𝑉 on ℬ × ℬ.
2∘ For all (𝑥, 𝑦) ∈ ℬ × ℬ, any deterministic 𝑎 ∈ [−1, 1] and any 𝛼 ∈ (0, 1),

𝑡1, 𝑡2 ∈ ℬ such that 𝛼𝑡1 + (1− 𝛼)𝑡2 = 0 we have

𝛼𝑈(𝑥+ 𝑡1, 𝑦 + 𝑎𝑡1) + (1− 𝛼)𝑈(𝑥+ 𝑡2, 𝑦 + 𝑎𝑡2) ≤ 𝑈(𝑥, 𝑦).

3∘ 𝑈(𝑥, 𝑦) ≤ 0 for all 𝑥, 𝑦 ∈ ℬ such that 𝑦 = 𝑎𝑥 for some 𝑎 ∈ [−1, 1].
Let us make here some important observations.

Remark 2.2. (i) Condition 2∘ of Theorem 2.5 extends to the following inequality:
for all 𝑥, 𝑦 ∈ ℬ, any deterministic 𝑎 ∈ [−1, 1] and any simple mean zero ℬ-valued
random variable 𝑑 we have

𝔼𝑈(𝑥+ 𝑑, 𝑦 + 𝑎𝑑) ≤ 𝑈(𝑥, 𝑦).

(ii) Condition 2∘ can be rephrased as follows: for any 𝑥, 𝑦, ℎ ∈ ℬ and 𝑎 ∈
[−1, 1], the function 𝐺 = 𝐺𝑥,𝑦,ℎ,𝑎 : ℝ → ℝ given by 𝐺(𝑡) = 𝑈(𝑥 + 𝑡ℎ, 𝑦 + 𝑡𝑎ℎ) is
concave.

(iii) Arguing as in Remark 2.1, we can prove the following statement. If 𝑉
satisfies 𝑉 (𝑥, 𝑦) = 𝑉 (−𝑥, 𝑦) = 𝑉 (𝑥,−𝑦) for all 𝑥, 𝑦 ∈ ℬ, then we may replace the
above initial condition 3∘ by

3∘′ 𝑈(0, 0) ≤ 0.
It is worth mentioning here that ±1 transforms usually are the extremal se-

quences in the above class of transforms. To be more precise, we have the following
decomposition.

Theorem 2.6. Let 𝑔 be the transform of a ℬ-valued martingale 𝑓 by a real-valued
predictable sequence 𝑣 uniformly bounded in absolute value by 1. Then there exist
ℬ-valued martingales 𝐹 𝑗 = (𝐹 𝑗

𝑛)𝑛≥0 and Borel measurable functions 𝜙𝑗 : [−1, 1]→
{−1, 1} such that for 𝑗 ≥ 1 and 𝑛 ≥ 0,

𝑓𝑛 = 𝐹 𝑗
2𝑛+1, and 𝑔𝑛 =

∞∑
𝑗=1

2−𝑗𝜙𝑗(𝑣0)𝐺
𝑗
2𝑛+1,

where 𝐺𝑗 is the transform of 𝐹 𝑗 by 𝜀 = (𝜀𝑘)𝑘≥0 with 𝜀𝑘 = (−1)𝑘.
Proof. First we consider the special case when each 𝑣𝑛 takes values in the set
{−1, 1}. Let

𝐷2𝑛 =
1 + 𝑣0𝑣𝑛
2

𝑑𝑛,

𝐷2𝑛+1 =
1− 𝑣0𝑣𝑛
2

𝑑𝑛.
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Then 𝐷 = (𝐷𝑛)𝑛≥0 is a martingale difference sequence with respect to its natural
filtration. Indeed, for even indices,

𝔼(𝐷2𝑛∣𝜎(𝐷0, 𝐷1, . . . , 𝐷2𝑛−1)) = 𝔼

[
1 + 𝑣0𝑣𝑛
2

𝔼(𝑑𝑛∣ℱ𝑛−1)
∣∣∣𝜎(𝐷0, . . . , 𝐷2𝑛−1)

]
= 0.

Here (ℱ𝑛)𝑛≥0 stands for the original filtration. Furthermore, we have 𝐷2𝑛 = 0 or
𝐷2𝑛+1 = 0 for all 𝑛, so

𝔼(𝐷2𝑛+1∣𝜎(𝐷0, . . . , 𝐷2𝑛)) = 𝔼(𝐷2𝑛+11{𝐷2𝑛=0}∣𝜎(𝐷0, . . . , 𝐷2𝑛))

= 𝔼(𝐷2𝑛+11{𝐷2𝑛=0}∣𝜎(𝐷0, . . . , 𝐷2𝑛−1)) = 0.

Now, let 𝐹 be the martingale determined by 𝐷 and let 𝐺 be its transform by 𝜀.
By the definition of 𝐷 we have 𝑑𝑛 = 𝐷2𝑛+𝐷2𝑛+1 and 𝑣0𝑣𝑛𝑑𝑛 = 𝐷2𝑛−𝐷2𝑛+1, so
𝑓𝑛 = 𝐹2𝑛+1 and 𝑔𝑛 = 𝑣0𝐺2𝑛+1.

In the general case when the terms 𝑣𝑛 take values in [−1, 1], note that there
are Borel measurable functions 𝜙𝑗 : [−1, 1]→ {−1, 1} satisfying

𝑡 =

∞∑
𝑗=1

2−𝑗𝜙𝑗(𝑡), 𝑡 ∈ [−1, 1].

Now, for any 𝑗, consider the sequence 𝑣𝑗 = (𝜙𝑗(𝑣𝑛))𝑛≥0, which is predictable with
respect to the filtration (ℱ𝑛)𝑛≥0. By the previous special case there is a martingale
𝐹 𝑗 and its transform 𝐺𝑗 satisfying

𝑓𝑛 = 𝐹 𝑗
2𝑛+1,

𝑛∑
𝑘=0

𝜙𝑗(𝑣𝑘) = 𝜙𝑗(𝑣0)𝐺
𝑗
2𝑛+1.

It suffices to multiply both sides by 2−𝑗 and sum the obtained equalities to get
the claimed decomposition. □

2.1.3 Differential subordination

Now we shall introduce another very important class of martingale pairs. It is
much wider than that considered in the previous two subsections and allows many
interesting applications. Let ℬ be a given separable Banach space with the norm ∣⋅∣.
Definition 2.1. Suppose that 𝑓 , 𝑔 are martingales taking values in ℬ. Then 𝑔 is
differentially subordinate to 𝑓 , if for any 𝑛 = 0, 1, 2, . . .,

∣𝑑𝑔𝑛∣ ≤ ∣𝑑𝑓𝑛∣

with probability 1.
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If 𝑔 is a transform of 𝑓 by a predictable sequence bounded in absolute value
by 1, then, obviously, 𝑔 is differentially subordinate to 𝑓 . Another very important
example is related to martingale square function. Suppose that 𝑓 takes values
in a given separable Banach space and let 𝑔 be ℓ2(ℬ)-valued process, defined by
𝑑𝑔𝑛 = (0, 0, . . . , 0, 𝑑𝑓𝑛, 0, . . .), 𝑛 = 0, 1, 2, . . . (where the difference 𝑑𝑓𝑛 appears
on the 𝑛th place). Let us treat 𝑓 as an ℓ2(ℬ)-valued process, via the embedding
𝑓𝑛 ∼ (𝑓𝑛, 0, 0, . . .). Then, obviously, 𝑔 is differentially subordinate to 𝑓 and 𝑓 is
differentially subordinate to 𝑔. However,

∣∣𝑔𝑛∣∣ℓ2(ℬ) =

(
𝑛∑

𝑘=0

∣𝑑𝑓𝑘∣2
)1/2

is the square function of 𝑓 . Thus, any inequality valid for differentially subordinate
martingales with values in ℓ2(ℬ) leads to a corresponding estimate for the square
function of a ℬ-valued martingale. This observation will be particularly efficient
when ℬ is a separable Hilbert space.

Let us formulate the version of Burkholder’s method when the underlying
domination is the differential subordination of martingales. Let 𝑉 : ℬ×ℬ → ℝ be
a given Borel function. Consider 𝑈 : ℬ × ℬ → ℝ such that

1∘ 𝑈(𝑥, 𝑦) ≥ 𝑉 (𝑥, 𝑦) for all 𝑥, 𝑦 ∈ ℬ,
2∘ there are Borel 𝐴, 𝐵 : ℬ × ℬ → ℬ∗ such that for any 𝑥, 𝑦 ∈ ℬ and any

ℎ, 𝑘 ∈ ℬ with ∣𝑘∣ ≤ ∣ℎ∣, we have

𝑈(𝑥+ ℎ, 𝑦 + 𝑘) ≤ 𝑈(𝑥, 𝑦) + ⟨𝐴(𝑥, 𝑦), ℎ⟩ + ⟨𝐵(𝑥, 𝑦), 𝑘⟩.

3∘ 𝑈(𝑥, 𝑦) ≤ 0 for all 𝑥, 𝑦 ∈ ℬ with ∣𝑦∣ ≤ ∣𝑥∣.
Theorem 2.7. Suppose that 𝑈 satisfies 1∘, 2∘ and 3∘. Let 𝑓 , 𝑔 be ℬ-valued mar-
tingales such that 𝑔 is differentially subordinate to 𝑓 and

𝔼∣𝑉 (𝑓𝑛, 𝑔𝑛)∣ < ∞, 𝔼∣𝑈(𝑓𝑛, 𝑔𝑛)∣ < ∞
𝔼
(∣𝐴(𝑓𝑛, 𝑔𝑛)∣∣𝑑𝑓𝑛+1∣+ ∣𝐵(𝑓𝑛, 𝑔𝑛)∣∣𝑑𝑔𝑛+1∣

)
< ∞,

(2.10)

for all 𝑛 = 0, 1, 2, . . .. Then

𝔼𝑉 (𝑓𝑛, 𝑔𝑛) ≤ 0 (2.11)

for all 𝑛 = 0, 1, 2, . . ..

Proof. Note that this result goes beyond the scope of Burkholder’s method de-
scribed so far, since the processes 𝑓 , 𝑔 are no longer assumed to be simple. This is
why we have assumed the Borel measurability of 𝑈 , 𝑉 , 𝐴 and 𝐵; this is also why
we have imposed condition (2.10): it guarantees the integrability of the random
variables appearing below. However, the underlying idea is the same: we show that
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for 𝑓 , 𝑔 as above the process (𝑈(𝑓𝑛, 𝑔𝑛))𝑛≥0 is a supermartingale. To prove this,
we use 2∘ to obtain, for any 𝑛 ≥ 1,

𝑈(𝑓𝑛, 𝑔𝑛) ≤ 𝑈(𝑓𝑛−1, 𝑔𝑛−1) + ⟨𝐴(𝑓𝑛−1, 𝑔𝑛−1), 𝑑𝑓𝑛⟩+ ⟨𝐵(𝑓𝑛−1, 𝑔𝑛−1), 𝑑𝑔𝑛⟩

with probability 1. By (2.10), both sides above are integrable. Taking the condi-
tional expectation with respect to ℱ𝑛−1 yields

𝔼(𝑈(𝑓𝑛, 𝑔𝑛)∣ℱ𝑛−1) ≤ 𝑈(𝑓𝑛−1, 𝑔𝑛−1)

and, consequently,

𝔼𝑉 (𝑓𝑛, 𝑔𝑛) ≤ 𝔼𝑈(𝑓𝑛, 𝑔𝑛) ≤ 𝔼𝑈(𝑓0, 𝑔0) ≤ 0.

This completes the proof. □

Remark 2.3. (i) Condition 2∘ seems quite complicated. However, if 𝑈 is of class 𝐶1,
it is easy to see that the only choice for 𝐴 and 𝐵 is to take the partial derivatives
𝑈𝑥 and 𝑈𝑦, respectively. Then 2

∘ is equivalent to saying that

2∘′ for any 𝑥, 𝑦, ℎ, 𝑘 ∈ ℬ with ∣𝑘∣ ≤ ∣ℎ∣, the function 𝐺 = 𝐺𝑥,𝑦,ℎ,𝑘 : ℝ → ℝ,
given by

𝐺(𝑡) = 𝑈(𝑥+ 𝑡ℎ, 𝑦 + 𝑡𝑘),

is concave.

In a typical situation, 𝑈 is piecewise 𝐶1, and then 2∘′ still implies 2∘: one takes
𝐴(𝑥, 𝑦) = 𝑈𝑥(𝑥, 𝑦), 𝐵(𝑥, 𝑦) = 𝑈𝑦(𝑥, 𝑦) for (𝑥, 𝑦) at which 𝑈 is differentiable and,
for remaining points, one defines 𝐴 and 𝐵 as appropriate limits of 𝑈𝑥 and 𝑈𝑦.

(ii) Condition 2∘′ can be simplified further. Obviously, it is equivalent to

𝐺′′(𝑡) ≤ 0 (2.12)

at the points where 𝐺 is twice differentiable, and

𝐺′(𝑡−) ≤ 𝐺′(𝑡+) (2.13)

for the remaining 𝑡. However, the family (𝐺𝑥,𝑦,ℎ,𝑘)𝑥,𝑦,ℎ,𝑘 enjoys the following trans-
lation property:

𝐺𝑥,𝑦,ℎ,𝑘(𝑡+ 𝑠) = 𝐺𝑥+𝑡ℎ,𝑦+𝑡𝑘,ℎ,𝑘(𝑠) for all 𝑠, 𝑡.

Hence, it suffices to check (2.12) and (2.13) for 𝑡 = 0 only (but, of course, for all
appropriate 𝑥, 𝑦, ℎ and 𝑘).
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2.2 Further remarks

Now let us make some general observations, some of which will be frequently used
in the later parts of the monograph.

(i) The technique can be applied in the situation when the pair (𝑓, 𝑔) takes
values in a set 𝐷 different from ℬ×ℬ. For example, one can work in 𝐷 = ℝ+×ℝ

or 𝐷 = ℬ × [0, 1], and so on. This does not require any substantial changes in the
methodology; one only needs to ensure that all the points (𝑥, 𝑦), (𝑥 + 𝑡𝑖, 𝑦 + 𝜀𝑡𝑖),
and so on, appearing in the statements of 1∘, 2∘ and 3∘, belong to the considered
domain 𝐷.

(ii) A remarkable feature of Burkholder’s method is its efficiency. Namely, if
we know a priori that a given estimate

𝔼𝑉 (𝑓𝑛, 𝑔𝑛) ≤ 0, 𝑛 = 0, 1, 2, . . . ,

or, more generally,

𝔼𝑉 (𝑓𝑛, 𝑔𝑛) ≤ 𝑐, 𝑛 = 0, 1, 2, . . . ,

is valid, then it can be established using the above approach. In particular, the
technique can be used to derive the optimal constants in the inequalities under
investigation.

(iii) Formula (2.1) can be used to narrow the class of functions in which
we search for the suitable majorant. Here is a typical example. Suppose we are
interested in showing the strong-type inequality

𝔼∣𝑔𝑛∣𝑝 ≤ 𝐶𝑝
𝔼∣𝑓𝑛∣𝑝, 𝑛 = 0, 1, 2, . . . ,

for all real martingales 𝑓 and their ±1-transforms 𝑔. This corresponds to the
choice 𝑉 (𝑥, 𝑦) = ∣𝑦∣𝑝−𝐶𝑝∣𝑥∣𝑝, 𝑥, 𝑦 ∈ ℝ. We have that 𝑉 is homogeneous of order
𝑝 and this property carries over to the function 𝑈0. It follows from the fact that
(𝑓, 𝑔) ∈ 𝑀(𝑥, 𝑦) if and only if (𝜆𝑓, 𝜆𝑔) ∈ 𝑀(𝜆𝑥, 𝜆𝑦) for any 𝜆 > 0. Thus, we
may search for 𝑈 in the class of functions which are homogeneous of order 𝑝. This
reduces the dimension of the problem. Indeed, we need to find an appropriate
function 𝑢 of only one variable and then let 𝑈(𝑥, 𝑦) = ∣𝑦∣𝑝𝑢(∣𝑥∣/∣𝑦∣) for ∣𝑦∣ ∕= 0
and 𝑈(𝑥, 0) = 𝑐∣𝑥∣𝑝 for some 𝑐. As another example, suppose that 𝑉 satisfies the
symmetry condition 𝑉 (𝑥, 𝑦) = 𝑉 (𝑥,−𝑦) for all 𝑥, 𝑦. Then we may search for 𝑈 in
the class of functions which are symmetric with respect to the second variable.

(iv) A natural way of showing that the constant in a given inequality is the
best possible is to construct appropriate examples. However, this can be shown by
the use of the reverse implication of Burkholder’s method. That is, one assumes
the validity of an estimate with a given constant 𝐶 and then exploits the prop-
erties 1∘, 2∘ and 3∘ of the function 𝑈0 to obtain the lower bound for 𝐶. This
approach is often much simpler and less technical, and will be frequently used in
the considerations below.


