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Preface

The concept of associating ordinary functions with operators has arisen in many
areas of science and mathematics and it can be argued that the earliest instance
was Leibniz’s attempt to define a fractional derivative. Up to the beginning of
the twentieth century, many isolated results were obtained and culminated with
the remarkable contributions of Heaviside and the efforts to put his methods on a
sound mathematical footing. These developments were mostly based on associating
a function of one variable with one operator, the operator generally being the
differentiation operator.

With the discovery of quantum mechanics in the years 1925-1930, there arose,
in a natural way, the issue that one has to associate a function of two variables
with a function of two operators that do not commute. This has led to a wonder-
fully rich mathematical development that has found applications in many fields,
including pseudo-differential operators, time-frequency analysis, quantum optics,
wave propagation, differential equations, image processing, radar, sonar, chemical
physics, and acoustics, among others. The earliest proposal for associating an or-
dinary function of two variables with an operator was that of Born and Jordan
(1925), and subsequently Weyl (1929) and others proposed other rules. There are
an infinite number of ways to associate a function of two ordinary variables with
a function of two operators because ordinary variables commute while operators
generally do not. The rules became known as rules of association, correspondence
rules, or ordering rules.

Independently of these developments Wigner, in 1932, and Kirkwood, in 1933
devised a classical-like joint distribution where one can calculate operator aver-
ages in the standard probability manner, that is, by phase-space integration. No
connection was made between these distributions and correspondence rules until
Moyal in 1949 saw things clearly. He derived the Wigner distribution using the
Weyl correspondence. Subsequently it was realized that for every correspondence
rule there is a corresponding phase-space distribution. Now the field of correspon-
dence rules and phase-space distributions are intimately connected. Remarkably,
around the same time as Moyal, a similar development occurred in the field of
time-varying spectral analysis whose aim was to understand signals with changing
frequencies, human speech being the prime historical example. It was realized by
Gabor and Ville that one can define time and frequency operators and make a

xi



xii Preface

mathematical analogy with the quantum case.
I have aimed to present the basic ideas and results of correspondence rules

in a straightforward elementary manner and have included many examples to
illustrate the ideas developed. I have strived to make the mathematics accessible
to a wide audience and I have avoided delving into advanced formulations such as
group theoretical considerations. The level of rigor and terminology are those of
the original contributors and standard in mathematical physics and engineering.

I would like to thank Man Wah Wong for his friendship and for encouraging
me to write the book. I express my deep appreciation to Livia Cohen, Lorenzo Gal-
leani, Barnabas Kim, Patrick Loughlin, and Jeruz Tekel for reading the manuscript
and for their many valuable suggestions. I thank the Office of Naval Research for
support of my research.



Chapter 1

Introduction and Terminology

This book deals with correspondence rules or rules of association. The fundamental
idea is to associate a function of ordinary variables with an operator. While in later
chapters we deal with arbitrary operators, in the main portion of the book we deal
with the operators X and D where,

X =

{
x in the x representation

i d
dp in the Fourier representation,

(1.1)

D =

{
1
i

d
dx in the x representation

p in the Fourier representation.
(1.2)

The fundamental relation between X and D is the commutator

[X,D] = XD −DX = i. (1.3)

Depending on the field, these operators may be appropriately called position and
spatial frequency, or position and momentum, and in time-frequency analysis they
correspond to the time and frequency operators.

One of the basic reasons for considering these particular operators is that
we can use them to evaluate expectation values of functions in the Fourier or x
representation without leaving the representation. In particular, suppose we have
a function, f(x), and a “state” function ϕ(x); then∫

f(x) |ϕ(x)|2 dx =

∫
ϕ̂∗(p)f(X) ϕ̂(p) dp (1.4)

where ϕ̂(p) is the Fourier transform of ϕ(x),

ϕ̂(p) =
1√
2π

∫
ϕ(x) e−ixp dx. (1.5)

DOI 10.1007/978-3-0348-0 - _1, © Springer Basel 2013
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2 Chapter 1. Introduction and Terminology

Therefore, we say that f(x) in the x domain is associated with or represented by
the operator f(X) in the Fourier domain and we write

f(X)↔ f(x) (1.6)

where ↔ indicates the association. Furthermore, suppose we have a function of p,
g(p), in the Fourier domain, then∫

g(p) |ϕ̂(p)|2 dp =

∫
ϕ∗(x)g(D)ϕ(x) dx (1.7)

and we say that g(p) in the Fourier domain is associated with g(D) in the x
domain,

g(D)↔ g(p). (1.8)

The right hand side of Eq. (1.7) is sometimes called sandwiching because the
operator, g(D), is in between ϕ∗(x) and ϕ(x).

The basic advantage of Eq. (1.7) is that if we want to calculate the expecta-
tion of g(p) as defined by the left hand side we do not have to first calculate ϕ̂(p).
We can remain in the x representation and use the right hand side to calculate it.

1.1 The Fundamental Issue

In the above discussion we had no difficulty in associating a function of one variable
f(x) or g(p) with its corresponding operator. But what if we have a function of
two variables, for example xp2, then what will the association be? It could be,
for example, XD2, DXD, or D2X, among others; all of these associations are
proper in the sense that they reduce to xp2 if we just think of the operators as
ordinary variables. However, all these choices are different because X and D do
not commute. Formulating such associations for a general function a(x, p) is the
fundamental aim. There have been many rules proposed, among them the Weyl,
Standard, and Born-Jordan. In the next chapter we study the Weyl rule and
subsequently other rules. In Chap. 4 we present a general method that handles all
rules in a unified manner.

Furthermore, suppose we did have an association for the function a(x, p) with
an operator A(X,D). Then, what is the generalization of Eqs. (1.4) and (1.7)? We
will see that the proper generalization is that for a state function ϕ(x) we have
to introduce a joint function, C(x, p) called the generalized distribution function
which will allow us to write∫

ϕ∗(x)A(X,D)ϕ(x) dx =

∫∫
a(x, p)C(x, p) dx dp (1.9)

As we will see in Chap. 5 this is the generalization of Eqs. (1.4) and (1.7) and
reduces to them when the symbol is a function of x or p only.
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1.2 Notation and Terminology in Different Fields

Generally speaking there are five fields where these methods have been used.
They are quantum mechanics, pseudo-differential operators, time-frequency anal-
ysis, wave propagation, and image processing. We review here some mathematical
conventions and contrast the differences in terminology used in various fields.

“Symbol”, “classical function”, “c-function”, and “ordinary function” are terms
used in different fields to signify the same thing, namely an ordinary function,
a(x, ξ), of two variables x and ξ. This is the common notation used in mathematics,
while in quantum mechanics it is position and momentum signified by a(q, p),
and in time-frequency analysis one generally writes a(t, ω). In the case of wave
propagation and image processing one usually uses a(x, k) where x and k are
respectively position and wave-number (spatial-frequency). We will use (x, p).

“Association”, “correspondence rule,” “rule of association,” “quantization,” and
“ordering rule.” These words and phrases all mean the same thing, namely the
association of an operator A(X,D) with an ordinary function, a(x, p). The two
variables, x and p, are generally conjugate variables. Conjugate generally means
that their corresponding operators do not commute. For the Weyl case, the asso-
ciation is symbolized by

A(X,D)↔ a(x, p). (1.10)

We call A(X,D) the Weyl operator. When we study other correspondences we use

AW(X,D)↔ a(x, p) (1.11)

where the superscript denotes the particular correspondence, in this case the Weyl
rule. Similarly for other cases, as, for example

ABJ(X,D)↔ a(x, p) (1.12)

will denote the Born-Jordan correspondence.

The state function, signal, and image. Generally speaking the state function is an
ordinary function upon which the operator operates. In engineering it is called the
signal and in image processing it is called the image. In acoustics it is the pressure
wave and in electrodynamics it may be the electric or magnetic field. The term
state function comes from quantum mechanics where it represents the state of
the physical system at hand. This is in contrast to the operators which represent
physical observables. The state function may be square integrable or not and can
be a distribution in the delta function sense.

Phase-Space and quasi-distributions. By a phase-space function we mean a func-
tion of the two variables x and p. For example the symbol a(x, p) is a phase-
space function. The Wigner and other distributions are also phase-space functions
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and are called distributions. The terminology “distribution” comes from usage in
physics and chemistry and are densities in probability theory. The phase-space
distributions we consider in this book are generally not manifestly positive and
that is why they are sometimes called quasi-distributions, but we will simply use
the term distribution.

Fourier transform pairs. The Fourier transform of the symbol, a(x, p), will be
denoted by â(θ, τ) and the normalization is taken so that

â(θ, τ) =
1

4π2

∫∫
a(x, p) e−iθx−iτp dx dp, (1.13)

a(x, p) =

∫∫
â(θ, τ) eiθx+iτp dθ dτ. (1.14)

However, due to conventions in different fields we define Fourier transform pairs
for the state function by

ϕ̂(p) =
1√
2π

∫
ϕ(x) e−ixp dx, (1.15)

ϕ(x) =
1√
2π

∫
ϕ̂(p) eixp dp, (1.16)

and similarly for higher dimensions. The advantage of this convention is that it
keeps the symmetry between the two domains in the sense that∫

|ϕ(x)|2 dx =

∫
| ϕ̂(p)|2 dp (1.17)

and also keeps the symmetry in Eq. (1.4) and (1.7).

Commutator and anti-commutator. The commutator of two operators A and B is
standardly denoted by

[A,B] = AB −BA (1.18)

and the anti-commutator by

[A,B]+ = AB +BA. (1.19)

The D operator. We will occasionally use Dy = 1
i

d
dy , etc., otherwise D is under-

stood to be Dx.

Integrals. Integrals without limits imply integration over the reals,∫
=

∫
R

=

∫ ∞
−∞

. (1.20)


