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Preface

In this second edition of the book, two major topics have been added to the
original version. The first one relates to copula models (Sect. 2.3), which are
used to study the effects of structural dependencies on system reliability. We
believe that an introduction to the fundamental ideas and concepts of copula
models is important when reviewing basic reliability theory. The second new
topic we have included is maintenance optimization models under constraints
(Sect. 5.5). These models have been addressed in some recent publications to
meet the demand for models that adequately balance economic criteria and
safety. We consider two specific models. The first is the so-called delay time
model where the aim is to determine optimal inspection intervals minimiz-
ing the expected discounted costs under some safety constraints. The second
model is also about optimal inspection, but here the system is represented
by a monotone (coherent) structure function. In addition, we have made a
number of minor adjustments to increase precision and we have also corrected
misprints.

We received positive feedback to the first edition from friends and col-
leagues. Their hints and suggestions have been incorporated into this second
edition. We thank all who contributed, by whatever means, to preparing the
new edition.

Stavanger, Norway Terje Aven
Stuttgart, Germany Uwe Jensen
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Preface to the First Edition

As can be seen from the files of the databases of Zentralblatt/Mathematical
Abstracts and Mathematical Reviews, about 1% of all mathematical publica-
tions are connected to the keyword reliability. This gives an impression of the
importance of this field and makes it clear that it is impossible to include all
the topics connected to reliability in one book. The existing literature on re-
liability covers inter alia lifetime analysis, complex systems and maintenance
models, and the books by Barlow and Proschan [31, 32] can be viewed as first
milestones in this area. Since then the models and tools have been developed
further. The aim of Stochastic Models in Reliability is to give a comprehensive
up-to-date presentation of some of the classical areas of reliability, based on a
more advanced probabilistic framework using the modern theory of stochas-
tic processes. This framework allows the analyst to formulate general failure
models, establish formulas for computing various performance measures, as
well as to determine how to identify optimal replacement policies in complex
situations. A number of special cases analyzed previously can be included in
this framework. Our book presents a unifying approach to some of the key re-
search areas of reliability theory, summarizing and extending results obtained
in recent years. Having future work in this area in mind, it will be useful
to have at hand a general set-up where the conditions and assumptions are
formulated independently of particular models.

This book comprises five chapters in addition to two appendices.
Chapter 1 gives a short introduction to stochastic models of reliability,

linking existing theory and the topics treated in this book. It also contains an
overview of some questions and problems to be treated in the book. In addition
Sect. 1.1.6 explains why martingale theory is a useful tool for describing and
analyzing the structure of complex reliability models. In the final section of
the chapter we briefly discuss some important aspects of reliability modeling
and analysis, and present two real-life examples. To apply reliability models
in practice successfully, there are many challenges related to modeling and
analysis that need to be faced. However, it is not within the scope of this

vii



viii Preface to the First Edition

book to discuss these challenges in detail. Our text is an introduction to the
topic and of motivational character.

Chapter 2 presents an overview of some parts of basic reliability theory: the
theory of complex (monotone) systems, both binary and multistate systems,
as well as lifetime distributions and nonparametric classes of lifetime distri-
butions. The aim of this chapter has not been to give a complete overview of
the existing theory, but to highlight important areas and give a basis for the
coming chapters.

Chapter 3 presents a general set-up for analyzing failure-prone systems.
A (semi-) martingale approach is adopted. This general approach makes it
possible to formulate a unifying theory of both nonrepairable and repairable
systems, and it includes point processes, counting processes, and Markov pro-
cesses as special cases. The time evolution of the system can also be analyzed
on different information levels, which is one of the main attractions of the
(semi-) martingale approach. Attention is drawn to the failure rate process,
which is a key parameter of the model. Several examples of application of the
set-up are given, including a monotone (coherent) system of possibly depen-
dent components, and failure time and (minimal) repair models. A model for
analyzing the time to failure based on risk reserves (the difference between
total income and accumulated costs of repairs) is also covered.

In the next two chapters we look more closely at types of models for
analyzing situations where the system and its components could be repaired
or replaced in the case of failures, and where we model the downtime or costs
associated with downtimes.

Chapter 4 gives an overview of availability theory of complex systems,
having components that are repaired upon failure. Emphasis is placed on
monotone systems comprising independent components, each generating an
alternating renewal process. Multistate systems are also covered, as well as
systems comprising cold standby components. Different performance measures
are studied, including the distributions of the number of system failures in a
time interval and the downtime of the system in a time interval. The chapter
gives a rather comprehensive asymptotic analysis, providing a theoretical basis
for approximation formulae used in cases where the time interval considered
is long or the components are highly available.

Chapter 5 presents a framework for models of maintenance optimization,
using the set-up described in Chap. 3. The framework includes a number of
interesting special cases dealt with by other authors.

By allowing different information levels, it is possible to extend, for ex-
ample, the classical age replacement model and minimal repair/replacement
model to situations where information is available about the underlying con-
dition of the system and the replacement time is based on this information.
Again we illustrate the applicability of the model by considering monotone
systems.

Chapters 3–5 are based on stochastic process theory, including theory
of martingales and point, counting, and renewal processes. For the sake of
completeness and to help the reader who is not familiar with this theory,



Preface to the First Edition ix

two appendices have been included summarizing the mathematical basis and
some key results. Appendix A gives a general introduction to probability and
stochastic process theory, whereas Appendix B gives a presentation of results
from renewal theory. Appendix A also summarizes basic notation and symbols.

Although conceived mainly as a research monograph, this book can also
be used for graduate courses and seminars. It primarily addresses probabilists
and statisticians with research interests in reliability. But at least parts of it
should be accessible to a broader group of readers, including operations re-
searchers and engineers. A solid basis in probability and stochastic processes
is required, however. In some countries many operations researchers and reli-
ability engineers now have a rather comprehensive theoretical background in
these topics, so that it should be possible to benefit from reading the more
sophisticated theory presented in this book. To bring the reliability field for-
ward, we believe that more operations researchers and engineers should be
familiar with the probabilistic framework of modern reliability theory. Chap-
ters 1 and 2 and the first part of Chaps. 4 and 5 are more elementary and do
not require the more advanced theory of stochastic processes.

References are kept to a minimum throughout, but readers are referred to
the bibliographic notes following each chapter, which give a brief review of
the material covered and related references.
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1

Introduction

This chapter gives an introduction to the topics covered in this book: failure
time models, complex systems, different information levels, maintenance and
optimal replacement. We also include a section on reliability modeling, where
we draw attention to some important factors to be considered in the modeling
process. Two real life examples are presented: a reliability study of a system
in a power plant and an availability analysis of a gas compression system.

1.1 Lifetime Models

In reliability we are mainly concerned with devices or systems that fail at an
unforeseen or unpredictable (this term is defined precisely later) random age
of T > 0. This random variable is assumed to have a distribution F, F (t) =
P (T ≤ t), t ∈ R, with a density f . The hazard or failure rate λ is defined on
the support of the distribution by

λ(t) =
f(t)

F̄ (t)
,

with the survival function F̄ (t) = 1−F (t). The failure rate λ(t) measures the
proneness to failure at time t in that λ(t)� t ≈ P (T ≤ t+�t|T > t) for small
�t. The (cumulative) hazard function is denoted by Λ,

Λ(t) =

∫ t

0

λ(s) ds = − ln{F̄ (t)}.

The well-known relation

F̄ (t) = P (T > t) = exp{−Λ(t)} (1.1)

establishes the link between the cumulative hazard and the survival function.
Modeling in reliability theory is mainly concerned with additional information

T. Aven and U. Jensen, Stochastic Models in Reliability, Stochastic Modelling
and Applied Probability 41, DOI 10.1007/978-1-4614-7894-2 1,
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2 1 Introduction

about the state of a system, which is gathered during the operating time of
the system. This additional information leads to updated predictions about
proneness to system failure. There are many ways to introduce such additional
information into the model. In the following sections some examples of how to
introduce additional information and how to model the lifetime T are given.

1.1.1 Complex Systems

As will be introduced in detail in Chap. 2, a complex system comprises n
components with positive random lifetimes Ti, i = 1, 2, . . . , n, n ∈ N. Let
Φ : {0, 1}n → {0, 1} be the structure function of the system, which is
assumed to be monotone. The possible states of the components and of
the system, “intact” and “failed,” are indicated by “1” and “0,” respec-
tively. Then Φt = Φ(Xt) describes the state of the system at time t, where
Xt = (Xt(1), . . . , Xt(n)) and Xt(i) denotes the indicator function

Xt(i) = I(Ti > t) =

{
1 if Ti > t
0 if Ti ≤ t,

which is 1, if component i is intact at time t, and 0 otherwise. The lifetime T
of the system is then given by T = inf{t ∈ R+ : Φt = 0}.
Example 1.1. As a simple example the following system with three compo-
nents is considered, which is intact if component 1 and at least one of the
components 2 or 3 are intact:

2

3

• •1

In this example Φt = Xt(1){1− (1−Xt(2))(1−Xt(3))} is easily obtained
with T = inf{t ∈ R+ : Φt = 0} = T1 ∧ (T2 ∨ T3), where as usual a ∧ b and
a∨b denote min {a, b} and max {a, b}, respectively. The additional information
about the lifetime T is given by the observation of the state of the single
components. As long as all components are intact, only a failure of component
1 leads to system failure. If one of the components 2 or 3 fails first, then the
next component failure is a system failure.

Under the classical assumption that all components work independently,
i.e., the random variables Ti, i = 1, . . . , n, are independent, certain character-
istics of the system lifetime are of interest:

• Determining the system lifetime distribution from the known component
lifetime distributions or at least finding bounds for this distribution (see
Sects. 2.1 and 2.2).
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• Are certain properties of the component lifetime distributions like
increasing failure rate (IFR) or increasing failure rate average (IFRA)
preserved by forming monotone systems? One of these closure theorems
states, for example, that the distribution of the system lifetime is IFRA if
all component lifetimes have IFRA distributions (see Sect. 2.2).

• In what way does a certain component contribute to the functioning of
the whole system? The answer to this question leads to the definition of
several importance measures (see Sect. 2.1).

1.1.2 Damage Models

Additional information about the lifetime T can also be introduced into the
model in a quite different way. If the state or damage of the system at time
t ∈ R+ can be observed and this damage is described by a random variableXt,
then the lifetime of the system may be defined as

T = inf{t ∈ R+ : Xt ≥ S},
i.e., as the first time the damage hits a given level S. Here S can be a constant
or, more general, a random variable independent of the damage process. Some
examples of damage processes X = (Xt) of this kind are described in the
following subsections.

Wiener Process

The damage process is a Wiener process with positive drift starting at 0 and
the failure threshold S is a positive constant. The lifetime of the system is
then known to have an inverse Gaussian distribution. Models of this kind are
especially of interest if one considers different environmental conditions under
which the system is working, as, for example, in so-called burn-in models.
An accelerated aging caused by additional stress or different environmental
conditions can be described by a change of time. Let τ : R+ → R+ be an
increasing function. Then Zt = Xτ(t) denotes the actual observed damage.
The time transformation τ drives the speed of the deterioration. One possible
way to express different stress levels in time intervals [ti, ti+1), 0 = t0 < t1 <
. . . < tk, i = 0, 1, . . . , k − 1, k ∈ N, is the choice

τ(t) =

i−1∑
j=0

βj(tj+1 − tj) + βi(t− ti), t ∈ [ti, ti+1), βv > 0.

In this case it is seen that if F0 is the inverse Gaussian distribution function
of T = inf{t ∈ R+ : Xt ≥ S}, and F is the distribution function of the
lifetime Ta = inf{t ∈ R+ : Zt ≥ S} under accelerated aging, then F (t) =
F0(τ(t)). A generalization in another direction is to consider a random time
change, which means that τ is a stochastic process. By this, randomly varying
environmental conditions can be modeled.
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Compound Point Processes

Processes of this kind describe so-called shock processes where the system is
subject to shocks that occur from time to time and add a random amount
to the damage. The successive times of occurrence of shocks, Tn, are given
by an increasing sequence 0 < T1 ≤ T2 ≤ . . . of random variables, where the
inequality is strict unless Tn = ∞. Each time point Tn is associated with a
real-valued randommark Vn, which describes the additional damage caused by
the nth shock. The marked point process is denoted (T, V ) = (Tn, Vn), n ∈ N.
From this marked point process the corresponding compound point process
X with

Xt =

∞∑
n=1

I(Tn ≤ t)Vn (1.2)

is derived, which describes the accumulated damage up to time t. The simplest
example is a compound Poisson process in which the shock arrival process is
Poisson and the shock amounts (Vn) are i.i.d. random variables. As before,
the lifetime T is the first time the damage process (Xt) hits the level S. If we
go one step further and assume that S is not deterministic and fixed, but a
random failure level, then we can describe a situation in which the observed
damage process does not carry complete information about the (failure) state
of the system; the failure can occur at different damage levels S.

Another way to describe the failure mechanism is the following. Let the
accumulated damage up to time t be given by the shock process Xt as in
(1.2). If the system is up at t− just before t, the accumulated damage equals
Xt− = x and a shock of magnitude y occurs at t, then the probability of
failure at t is p(x + y), where p(x) is a given [0, 1]-valued function. In this
model failures can only occur at shock times and the accumulated damage
determines the failure probability.

1.1.3 Different Information Levels

It was pointed out above in what way additional information can lead to a reli-
ability model. But it is also important to note that in one and the same model
different observation levels are possible, i.e., the amount of actual available
information about the state of a system may vary. The following examples
will show the effect of different degrees of information.

1.1.4 Simpson’s Paradox

This paradox says that if one compares the death rates in two countries, say
A and B, then it is possible that the crude overall death rate in country A is
higher than in B although all age-specific death rates in B are higher than in A.
This can be transferred to reliability in the following way. Considering a two-
component parallel system, the failure rate of the system lifetime may increase
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although the component lifetimes have decreasing failure rates. The following
proposition, which can be proved by some elementary calculations, yields an
example of this.

Proposition 1.2. Let T = T1 ∨ T2 with i.i.d. random variables Ti, i = 1, 2,
following the common distribution F ,

F (t) = 1− e−u(t), t ≥ 0, u(t) = γt+ α(1− e−βt), α, β, γ > 0.

If 2αeα <
(

γ
β

)2
< 1, then the failure rate λ of the lifetime T increases,

whereas the component lifetimes Ti have decreasing failure rates.

This example shows that it makes a great difference whether only the sys-
tem lifetime can be observed (aging property: IFR) or additional information
about the component lifetimes is available (aging property: DFR). The aging
property of the system lifetime of a complex system does not only depend
on the joint distribution of the component lifetimes but also, of course, on
the structure function. Instead of a two-component parallel system, consider
a series system where the component lifetimes have the same distributions as
in Proposition 1.2. Then the failure rate of Tser = T1 ∧ T2 decreases, whereas
Tpar = T1 ∨ T2 has an IFR.

1.1.5 Predictable Lifetime

The Wiener process X = (Xt), t ∈ R+, with positive drift μ and variance
scaling parameter σ, is a popular damage threshold model. The process X can
be represented asXt = σBt+μt, where B is standard Brownian motion. If one
assumes that the failure level S is a fixed known constant, then the lifetime
T = inf{t ∈ R+ : Xt ≥ S} follows an inverse Gaussian distribution with a
finite mean ET = S/μ. One criticism of this model is that the paths of X are
not monotone. As a partial answer, one can respond that maintenance actions
also lead to improvements and thusX could be decreasing at some time points.
A more severe criticism from the point of view of the available information is
the following. It is often assumed that in this model the paths of the damage
process can be observed continuously. But this would make the lifetime T a
predictable random time (a precise definition follows in Chap. 3), i.e., there is
an increasing sequence τn, n ∈ N, of random time points that announces the
failure. In this model one could choose τn = inf{t ∈ R+ : Xt ≥ S − 1/n}, and
take n large enough and stop operating the system at τn “just” before failure,
to carry out some preventive maintenance, cf. Fig. 1.1. This does not usually
apply in practical situations. This example shows that one has to distinguish
carefully between the different information levels for the model formulation
(complete information) and for the actual observation (partial information).
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S − 1
n

Xt

0

t

S

τn T

Fig. 1.1. Predictable stopping time

1.1.6 A General Failure Model

The general failure model considered in Chap. 3 uses elements of the theory
of stochastic processes and particularly some martingale theory. Some of the
readers might wonder whether sophisticated theory like this is necessary and
suitable in reliability, a domain with engineering applications. Instead of a
comprehensive justification we give a motivating example.

Example 1.3. We consider a simple two-component parallel system with ind-
ependent Exp(αi) distributed component lifetimes Ti, i = 1, 2. The system
lifetime T = T1 ∨ T2 has distribution function

F (t) = P (T1 ≤ t, T2 ≤ t) = (1− e−α1t)(1 − e−α2t)

with an ordinary failure rate

λ(t) =
α1e

−α1t + α2e
−α2t − (α1 + α2)e

−(α1+α2)t

e−α1t + e−α2t − e−(α1+α2)t
.

This formula is rather complicated for such a simple system and reveals noth-
ing about the structure of the system.Using elementary calculus it can be
shown that for α1 �= α2 the failure rate is increasing on (0, t∗) and decreas-
ing on (t∗,∞) for some t∗ > 0. This property of the failure rate, however, is
neither obvious nor immediate to see. We also know that F is of IFRA type.

But is it not more natural and simpler to say that a failure rate (process)
should be 0 as long as both components work (no system failure can occur)
and, when the first component failure occurs, then the rate switches to α1 or
α2 depending on which component survives? We want to derive a model that
allows such a simple failure rate process and also includes the ordinary failure
rate. Of course, this simple failure rate process, which can be expressed as



1.2 Maintenance 7

λt = α1I(T2 ≤ t < T1) + α2I(T1 ≤ t < T2),

needs knowledge about the random component lifetimes Ti. Now the failure
rate λt is a stochastic process and the information about the status of the
components at time t is represented by a filtration. The model allows for
changing the information level and the ordinary failure rate can be derived
from λt on the lowest level possible, namely no information about the com-
ponent lifetimes.

The modern theory of stochastic processes allows for the development of
a general failure model that incorporates the above aspects: time dynamics
and different information levels. Chapter 3 presents this model. The failure
rate process λt is one of the basic parameters of this set-up. If we consider
the lifetime T , under some mild conditions we obtain the failure rate process
on {T > t} as the limit of conditional expectations with respect to the pre-t-
history (σ-algebra) Ft,

λt = lim
h→0+

1

h
P (T ≤ t+ h|Ft),

extending the classical failure rate λ(t) of the system. To apply the set-up,
focus should be placed on the failure rate process (λt). When this process
has been determined, the model has basically been established. Using the
above interpretation of the failure rate process, it is in most cases rather
straightforward to determine its form. The formal proofs are, however, often
quite difficult.

If we go one step further and consider a model in which the system can
be repaired or replaced at failure, then attention is paid to the number Nt of
system failures in [0, t]. Given certain conditions, the counting process N =
(Nt), t ∈ R+, has an “intensity” that as an extension of the failure rate process
can be derived as the limit of conditional expectations

λt = lim
h→0+

1

h
E[Nt+h −Nt|Ft],

where Ft denotes the history of the system up to time t. Hence we can interpret
λt as the (conditional) expected number of system failures per unit of time at
time t given the available information at that time. Chapter 3 includes several
special cases that demonstrate the broad spectrum of potential applications.

1.2 Maintenance

To prolong the lifetime, to increase the availability, and to reduce the prob-
ability of an unpredictable failure, various types of maintenance actions are
being implemented. The most important maintenance actions include:

• Preventive replacements of parts of the system or of the whole system
• Repairs of failed units
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• Providing spare parts
• Inspections to check the state of the system if not observed continuously

Taking maintenance actions into account leads, depending on the specific
model, to one of the following subject areas: Availability Analysis and Opti-
mization Models.

1.2.1 Availability Analysis

If the system or parts of it are repaired or replaced when failures occur, the
problem is to characterize the performance of the system. Different measures
of performance can be defined as, for example,

• The probability that the system is functioning at a certain point in time
(point availability)

• The mean time to the first failure of the system
• The probability distribution of the downtime of the system in a given time

interval.

Traditionally, focus has been placed on analyzing the point availability and
its limit (the steady-state availability). For a single component, the steady-
state formula is given by MTTF/(MTTF + MTTR), where MTTF and
MTTR represent the mean time to failure and the mean time to repair (mean
repair time), respectively. The steady-state probability of a system compris-
ing several components can then be calculated using the theory of complex
(monotone) systems.

Often, performance measures related to a time interval are used. Such
measures include the distribution of the number of system failures, and the
distribution of the downtime of the system, or at least the mean of these dis-
tributions. Measures related to the number of system failures are important
from an operational and safety point of view, whereas measures related to
the downtime are more interesting from a productional point of view. Infor-
mation about the probability of having a long downtime in a time interval
is important for assessing the economic risk related to the operation of the
system. For production systems, it is sometimes necessary to use a multistate
representation of the system and some of its components, to reflect different
production levels.

Compared to the steady-state availability, it is of course more complicated
to compute the performance measures related to a time interval, in particu-
lar the probability distributions of the number of system failures and of the
downtime. Using simplifications and approximations, it is however possible to
establish formulas that can be used in practice. For highly available systems,
a Poisson approximation for the number of system failures and a compound
Poisson approximation for the downtime distribution are useful in many cases.

These topics are addressed in Chap. 4, which gives a detailed analysis
of the availability of monotone systems. Emphasis is placed on performance
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measures related to a time interval. Sufficient conditions are given for when
the Poisson and the compound Poisson distributions are asymptotic limits.

1.2.2 Optimization Models

If a valuation structure is given, i.e., costs of replacements, repairs, downtime,
etc., and gains, then one is naturally led to the problem of planning the main-
tenance action so as to minimize (maximize) the costs (gains) with respect to
a given criterion. Examples of such criteria are expected costs per unit time
and total expected discounted costs.

Example 1.4. We resume Example 1.3, p. 6, and consider the simple two-
component parallel system with independent Exp(αi) distributed component
lifetimes Ti, i = 1, 2, with the system lifetime T = T1 ∨ T2. We now allow
preventive replacements at costs of c units to be carried out before failure,
and a replacement upon system failure at cost c + k. It seems intuitive that
T1 ∧ T2, the time of the first component failure, should be a candidate for an
optimal replacement time with respect to some cost criterion, at least if c is
“small” compared to k. How can we prove that this random time T1 ∧ T2 is
optimal among all possible replacement times? How can we characterize the
set of all possible replacement times?

These questions can only be answered in the framework of martingale
theory and are addressed in Chap. 5.

One can imagine that thousands of models (and papers) can be created by
combining the different types of lifetime models with different maintenance
actions. The general optimization framework formulated in Chap. 5 incorpo-
rates a number of such models. Here the emphasis is placed on determining
the optimal replacement time of a deteriorating system. The framework is
based on the failure model of Chap. 3, which means that rather complex and
very different situations can be studied. Special cases include monotone sys-
tems, (minimal) repair models, and damage processes, with different informa-
tion levels.

1.3 Reliability Modeling

Models analyzed in this book are general, in the sense that they do not refer
to any specific real life situation but are applicable in a number of cases. This
is the academic and theoretical approach of mathematicians (probabilists,
statisticians) who provide tools that can be used in applications.

The reliability engineer, on the other hand, has a somewhat different start-
ing point. He or she is faced with a real problem and has to analyze this prob-
lem using a mathematical model that describes the situation appropriately.
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Sometimes it is rather straightforward to identify a suitable model, but often
the problem is complex and it is difficult to see how to solve it. In many cases,
a model needs to be developed. The modeling process requires both experience
on the part of the practitioner and knowledge on the part of the theorist.

However, it is not within the scope of this book to discuss in detail the
many practical aspects related to reliability modeling and analysis. Only a
few issues will be addressed. In this introductory section we will highlight
important factors to be considered in the modeling process and two real life
examples will be presented.

The objectives of the reliability study can affect modeling in many ways,
for example, by specifying which performance measures and which factors
(parameters) are to be analyzed. Different objectives will require different
approaches and methods for modeling and analysis. Is the study to provide
decision support in a design process of a system where the problem is to choose
between alternative solutions; is the problem to give a basis for specifying
reliability requirements; or is the aim to search for an optimal preventive
maintenance strategy? Clearly, these situations call for different models.

The objectives of the study may also influence the choice of the computa-
tional approach. If it is possible to use analytical calculation methods, these
would normally be preferred. For complex situations, Monte Carlo simulation
often represents a useful alternative, cf., e.g., [13, 64].

The modeling process starts by clarifying the characteristics of the situa-
tion to be analyzed. Some of the key points to address are:

Can the system be decomposed into a set of independent subsystems (com-
ponents)? Are all components operating normally or are some on stand-by?
What is the state of the component after a repair? Is it “as good as new”?
What are the resources available for carrying out the repairs? Are some types
of preventive maintenance being employed? Is the state of the components
and the system continuously monitored, or is it necessary to carry out inspec-
tions to reveal their condition? Is information available about the underlying
condition of the system and components, such as wear, stress, and damage?

Having identified important features of the system, we then have to look
more specifically at the various elements of the model and resolve questions
like the following:

• How should the deterioration process of the components and system
be modeled? Is it sufficient to use a standard lifetime model where
the age of the unit is the only information available? How should the
repair/replacement times be modeled?

• How are the preventive maintenance activities to be reflected in the model?
Are these activities to be considered fixed in the model or is it possible to
plan preventive maintenance action so that costs (rewards) are minimized
(maximized)?

• Is a binary (two-state) approach for components and system sufficiently
accurate, or is multistate modeling required?
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• How are the system and components to be represented? Is a reliability
block diagram appropriate?

• Are time dynamics to be included or is a time stationary model sufficient?
• How are the parameters of the model to be determined? What kind of

input data are required for using the model? How is uncertainty to be
dealt with?

Depending on the answers to these questions, relevant models can be iden-
tified. It is a truism that no model can cover all aspects, and it is recommended
that one starts with a simple model describing the main features of the system.

The following application examples give further insight into the situations
that can be modeled using the theory presented in this book.

1.3.1 Nuclear Power Station

In this example we consider a small part of a very complex technical system, in
which safety aspects are of great importance. The nuclear power station under
consideration consists of two identical boiling water reactors in commercial
operation, each with an electrical power of 1,344MW. They started in 1984
and 1985, respectively, working with an efficiency of 35%.

Nuclear power plants have to shut down from time to time to exchange
the nuclear fuel. This is usually performed annually. During the shutdown
phase a lot of maintenance tasks and surveillance tests are carried out. One
problem during such phases is that decay heat is still produced and thus
has to be removed. Therefore, residual heat removal (RHR) systems are in
operation. At the particular site, three identical systems are available, each
with a capacity of 100%. They are designed to remove decay heat during
accident conditions occurring at full power as well as for operational purposes
in cooldown phases.

One of these RHR systems is schematically shown in Fig. 1.2. It consists of
three different trains including the closed cooling water system. Several pumps
and valves are part of the RHR system. The primary cooling system can be
modeled as a complex system comprising the following main components:

• Closed cooling water system pump (CCWS)
• Service water system pump (SWS)
• Low-pressure pump with a pre-stage (LP)
• High-pressure pump (HP)
• Nuclear heat exchanger (RHR)
• Valves (V1, V2, V3)

For the analysis we have to distinguish between two cases:

1. The RHR system is not in operation.
Then the functioning of the system can be viewed as a binary structure
of the main components as is shown in the reliability block diagram in
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Fig. 1.2. Cooling system of a power plant

V1

V2

LP RHR SWS CCWS HP V3

Fig. 1.3. Reliability block diagram

Fig. 1.3. When the system is needed, it is possible that single components
or the whole system fails to start on demand. In this case, to calculate the
probability of a failure on demand, we have to take all components in the
reliability block diagram into consideration. Two of the valves, V1 and V2,
are in parallel. Therefore, the RHR system fails on demand if either V1 and
V2 fail or at least one of the remaining components LP,. . . , HP, V3 fails.
We assume that the time from a check of a component until a failure in the
idle state is exponentially distributed. The failure rates are λv1 , λv2 , λv3
for the valves and λp1 , λp2 , λp3 , λp4 , λh for the other components. If the
check (inspection or operating period) dates t time units back, then the
probability of a failure on demand is given by

1− {1− (1− e−λv1 t)(1− e−λv2 t)}e−(λp1+λp2+λp3+λp4+λh+λv3 )t.
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2. The RHR system is in operation.
During an operation phase, only the pumps and the nuclear heat exchanger
can fail to operate. If the valves have once opened on demand when the op-
eration phase starts, these valves cannot fail during operation. Therefore,
in this operation case, we can either ignore the valves in the block diagram
or assign failure probability 0 to V1, V2, V3. The structure reduces to a
simple series system. If we assume that the failure-free operating times
of the pumps and the heat exchanger are independent and have distribu-
tions Fp1 , Fp2 , Fp3 , Fp4 , and Fh, respectively, then the probability that the
system fails before a fixed operating time t is just

1− F̄p1(t)F̄p2 (t)F̄p3 (t)F̄p4 (t)F̄h(t),

where F̄ (t) denotes the survival probability.

In both cases the failure time distributions and the failure rates have to be
estimated. One essential condition for the derivation of the above formulae is
that all components have stochastically independent failure times or lifetimes.
In some cases such an independence condition does not apply. In Chap. 3 a
general theory is developed that also includes the case of complex systems
with dependent component lifetimes. The framework presented covers differ-
ent information levels, which allow updating of reliability predictions using
observations of the condition of the components of the system, for example.

1.3.2 Gas Compression System

This example outlines various aspects of the modeling process related to the
design of a gas compression system.

A gas producer was designing a gas production system, and one of the most
critical decisions was related to the design of the gas compression system.

At a certain stage of the development, two alternatives for the compression
system were considered:

(i) One gas train with a maximum throughput capacity of 100%
(ii) Two trains in parallel, each with a maximum throughput capacity of 50%.

Normal production is 100%. For case (i) this means that the train is
operating normally and a failure stops production completely. For case (ii)
both trains are operating normally. If one train fails, production is reduced to
50%. If both trains are down, production is 0.

Each train comprises compressor–turbine, cooler, and scrubber. A failure
of one of these “components” results in the shutdown of the train. Thus a
train is represented by a series structure of the three components compressor–
turbine, cooler, and scrubber.
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The following failure and repair time data were assumed:

Component Failure rate Mean repair time
(unit of time: 1 year) (unit of time: 1 h)

Compressor–turbine 10 12
Cooler 2 50
Scrubber 1 20

To compare the two alternatives, a number of performance measures were
considered. Particular interest was shown in performance measures related to
the number of system shutdowns, the time the system has a reduced produc-
tion level, and the total production loss due to failures of the system. The gas
sales agreement states that the gas demand is to be met with a very high reli-
ability, and failures could lead to considerable penalties and loss of goodwill,
as well as worse sales perspectives for the future.

Using models as will be described in Chap. 4, it was possible to compute
these performance measures, given certain assumptions.

It was assumed that each component generates an alternating renewal pro-
cess, which means that the repair brings the component to a condition that is
as good as new. The uptimes were assumed to be distributed exponentially,
so that the component in the operating state has a constant failure rate. The
failure rate used was based on experience data for similar equipment. Such a
component model was considered to be sufficiently accurate for the purpose
of the analysis. The exponential model represents a “first-order approxima-
tion,” which makes it rather easy to gain insight into the performance of the
system. For a complex “component” with many parts to be maintained, it is
known that the overall failure rate exhibits approximately exponential nature.
Clearly, if all relevant information is utilized, the exponential model is rather
crude. But again we have to draw attention to the purpose of the analysis:
provide decision support concerning the choice of design alternatives. Only
the essential features should be included in the model.

A similar type of reasoning applies to the problem of dependency between
components. In this application all uptimes and downtimes of the compo-
nents were assumed to be independent. In practice there are, of course, some
dependencies present, but by looking into the failure causes and the way the
components were defined, the assumption of independence was not considered
to be a serious weakness of the model, undermining the results of the analysis.

To determine the repair time distribution, expert opinions were used. The
repair times, which also include fault diagnosis, repair preparation, test and
restart, were assessed for different failure modes. As for the uptimes, it was
assumed that no major changes over time take place concerning component
design, operational procedures, etc.
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Uncertainty related to the input quantities used was not considered. Ins-
tead, sensitivity studies were performed with the purpose of identifying how
sensitive the results were with respect to variations in input parameters.

Of the results obtained, we include the following examples:

• The gas train is down 2.7% of the time in the long run.
• For alternative (i), the average system failure rate, i.e., the average number

of system failures per year, equals 13. For alternative (ii) it is distinguished
between failures resulting in production below 100% and below 50%. The
average system failure rates for these levels are approximately 26 and 0.7,
respectively. Alternative (ii) has a probability of about 50% of having one
or more complete shutdowns during a year.

• The mean lost production equals 2.7% for both alternatives. The proba-
bility that the lost production during 1 year is more than 4% of demand is
approximately equal to 0.16 for alternative (i) and 0.08 for alternative (ii).

This last result is based on assumptions concerning the variation of the
repair times. Refer to Sect. 4.7.1, p. 162, where the models and methods used
to compute these measures are summarized.

The results obtained, together with an economic analysis, gave the man-
agement a good basis for choosing the best alternative.

Bibliographic Notes. There are now many journals strongly devoted
to reliability, for example, the IEEE Transactions on Reliability and Relia-
bility Engineering and System Safety. In addition, there are many journals in
Probability and Operations Research that publish papers in this field.

As mentioned before, there is an extensive literature covering a variety of
stochastic models of reliability. Instead of providing a long and, inevitably,
almost certainly incomplete list of references, some of the surveys and review
articles are quoted, as well as some of the reliability books.

From time to time, the Naval Research Logistics Quarterly journal pub-
lishes survey articles in this field, among them the renowned article by Pier-
skalla and Voelker [130], which appeared with 259 references in 1976, updated
by Sherif and Smith [144] with an extensive bibliography of 524 references
in 1981, followed by Valdez-Flores and Feldman [158] with 129 references in
1989. Bergman’s review [39] reflects the author’s experience in industry and
emphasizes the usefulness of reliability methods in applications. Gertsbakh’s
paper [75] reviews asymptotic methods in reliability and especially investigates
under what conditions the lifetime of a complex system with many compo-
nents is approximately exponentially distributed. Natvig [125] gives a concise
overview of importance measures for monotone systems. The surveys of Arjas
[4] and Koch [108] consider reliability models using more advanced mathemat-
ical tools as marked point processes and martingales. A guided tour for the
non-expert through point process and intensity-based models in reliability is
presented in the article of Hokstad [89]. The book of Thompson [155] gives a


